1
|
Khodarahmian K, Ghiasvand A, Barkhordari A. Exploring the optimal electropolymerization strategy for the preparation of solid-phase microextraction fibers using pyrrole-dopamine copolymers. J Chromatogr A 2024; 1714:464562. [PMID: 38065025 DOI: 10.1016/j.chroma.2023.464562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
In-situ electropolymerization of conductive polymers on the surface of stainless-steel substrates is a well-established but promising procedure for the preparation of solid-phase microextraction (SPME) tools. Herein, different electrochemical methods including constant potential (CP), constant potential pulse (CPP), and cyclic voltammetry (CV) were utilized to fabricate SPME fibers by in-situ electropolymerization of pyrrole-dopamine copolymers (PPY/PDA) on the surface of stainless-steel fibers. The coated fibers were characterized and applied for the direct-immersion SPME (DI-SPME) sampling of ultra-trace amounts of plant hormones including abscisic acid (ABA), gibberellic acid (GA3), and indole acetic acid (IAA) in fruit juices, followed by HPLC-UV determination. The results showed that CV electropolymerization is significantly more efficient than the two other methods. The coatings created by the CV method were satisfactorily uniform, adhesive, and durable and exhibited higher extraction performance compared to the CP and CPP procedures. The important experimental variables of the proposed DI-SPME-HPLC method were evaluated and optimized using response surface methodology with a Box-Behnken design. The developed method showed wide-range linearities, spanning from 0.05 to 20μg mL-1 for GA3, and 0.02 to 20μg mL-1 for ABA and IAA. The limits of detection were obtained 0.01μg mL-1 for GA3, and 0.005μg mL-1 for ABA and IAA. The fiber was successfully employed for the simultaneous DI-SPME-HPLC analysis of plant hormones in fruit juice samples.
Collapse
Affiliation(s)
- Kobra Khodarahmian
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| | - Abdullah Barkhordari
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
2
|
Xu R, Liu WG, Huang TW, Li BR, Dai HX, Yang XD. Drought stress-induced the formation of heteromorphic leaves of Populus euphratica Oliv: evidence from gene transcriptome. FRONTIERS IN PLANT SCIENCE 2023; 14:1194169. [PMID: 37351211 PMCID: PMC10282185 DOI: 10.3389/fpls.2023.1194169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
Populus euphratica Oliv., a dominant species of arid desert community, grows heteromorphic leaves at different crown positions. Whether heteromorphic leaves are a strategy of plant adaptation to drought stress is rarely reported. This study sequenced the transcriptome of three typical heteromorphic leaves (lanceolate, ovate and broad-ovate leaves) of P. euphratica, and measured their drought stress. We wanted to reveal the molecular mechanisms underlying the formation of heteromorphic leaves. Drought stress was increased significantly from lanceolate to ovate to broad-ovate leaves. Gene ontology (GO) and KEGG enrichment analysis showed that the MADs-box gene regulated the expression of peroxidase (POD) in the phenylpropane biosynthetic pathway. The up-regulated expression of the chalcone synthase (CHS) gene in broad-ovate leaves significantly activated the flavonoid biosynthetic pathway. In the process of leaf shape change, the different expressions of homeodomain leucine zipper (HD-ZIP) among the three heteromorphic leaves had potential interactions on the AUX and ABA pathways. The expression of Sucrose phosphate synthase (SPS) and sucrose synthase (SUS) increased from lanceolate to broad-ovate leaves, resulting in a consistent change in starch and sucrose content. We concluded that these resistance-related pathways are expressed in parallel with leaf formation genes, thereby inducing the formation of heteromorphic leaves. Our work provided a new insights for desert plants to adapt to drought stress.
Collapse
Affiliation(s)
- Rui Xu
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Wei-Guo Liu
- College of Ecology and Environment, Xinjiang University, Urumqi, China
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
| | - Ting-Wen Huang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Bo-Rui Li
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Hui-Xian Dai
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Xiao-Dong Yang
- Department of Geography and Spatial Information Techniques/Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Feng X, Yang X, Zhong M, Li X, Zhu P. BoALG10, an α-1,2 glycosyltransferase, plays an essential role in maintaining leaf margin shape in ornamental kale. HORTICULTURE RESEARCH 2022; 9:uhac137. [PMID: 36072832 PMCID: PMC9437718 DOI: 10.1093/hr/uhac137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The morphological diversity of leaf margin shapes is an identifying characteristic of many plant species. In our previous work, BoALG10 (α-1,2 glycosyltransferase) was predicted to be a key regulator of leaf margin shape in ornamental kale (Brassica oleracea var. acephala). An alanine and a leucine residue in the conserved domain of the smooth-margined S0835 were replaced by an aspartate and a phenylalanine, respectively, in the corresponding positions of the feathered-margined F0819. However, the expression pattern and function of this gene remain unclear. Here, we examined the expression patterns of BoALG10 using quantitative real-time PCR, and found that statistically significant differences in expression existed between F0819 and S0835 in nine developmental stages. The BoALG10 protein localized to the endoplasmic reticulum. The function of BoALG10 was then examined using complementary mutant assays. The overexpression strains phenocopied the smooth leaf margin after introduction of BoALG10 S0835 into the feathered-margined inbred line F0819. Simultaneously, irregular dissections appeared in the leaf margins of knockout mutants KO-1 and KO-2, which were generated by CRISPR/Cas9 technology from the smooth-margined inbred line S0835. Microscopic observation showed that the leaf margin cells of the smooth-margined plants S0835 and OE-3 were arranged regularly, while the cells of the feathered-margined plants F0819 and KO-1 were of inconsistent size and distributed in an irregular manner, particularly around the indentations of the leaf. This elucidation of BoALG10 function provides a novel insight into the morphological regulation of leaf margin shape.
Collapse
Affiliation(s)
- Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Xinru Yang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Meiqin Zhong
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Li
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China
| | | |
Collapse
|
4
|
Bo K, Duan Y, Qiu X, Zhang M, Shu Q, Sun Y, He Y, Shi Y, Weng Y, Wang C. Promoter variation in a homeobox gene, CpDll, is associated with deeply lobed leaf in Cucurbita pepo L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1223-1234. [PMID: 34985539 DOI: 10.1007/s00122-021-04026-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
CpDll, encoding an HD-Zip I transcription factor, positively regulates formation of deeply lobed leaf shape in zucchini, Cucurbita pepo, which is associated with sequence variation in its promoter region. Leaf shape is an important horticultural trait in zucchini (Cucurbita pepo L.). Deeply lobed leaves have potential advantages for high-density planting and hybrid production. However, little is known about the molecular basis of deeply lobed leaf formation in this important vegetable crop. Here, we conducted QTL analysis and fine mapping of the deeply lobed leaf (CpDll) locus using recombinant inbred lines and large F2 populations developed from crosses between the deeply lobed leaf HM-S2, and entire leaf Jin-GL parental lines. We show that CpDll exhibited incomplete dominance for the deeply lobed leaf shape in HM-S2. Map-based cloning provided evidence that CpCll encodes a type I homeodomain (HD)- and Leu zipper (Zip) element-containing transcription factor. Sequence analysis between HM-S2 and Jin-GL revealed no sequence variations in the coding sequences, whereas a number of variations were identified in the promoter region between them. DUAL-LUC assays revealed significantly stronger promoter activity in HM-S2 than that in Jin-GL. There was also significantly higher expression of CpDll in the leaf base of deeply lobed leaves of HM-S2 compared with entire leaf Jin-GL. Comparative analysis of CpDll gene homologs in nine cucurbit crop species (family Cucurbitaceae) revealed conservation in both structure and function of this gene in regulation of deeply lobed leaf formation. Our work provides new insights into the molecular basis of leaf lobe formation in pumpkin/squash and other cucurbit crops. This work also facilitates marker-assisted selection for leaf shape in zucchini breeding.
Collapse
Affiliation(s)
- Kailiang Bo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ying Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiyan Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qin Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yapei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yadi He
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuzi Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
| | - Changlin Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
- China Vegetable Biotechnology (Shouguang) Co., Ltd, Shouguang, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Wen S, Li J, Hao Z, Wei L, Ma J, Zong Y, Li H. Overexpression of the LcCUC2-like gene in Arabidopsis thaliana alters the cotyledon morphology and increases rosette leaf number. PeerJ 2022; 10:e12615. [PMID: 35178288 PMCID: PMC8817629 DOI: 10.7717/peerj.12615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 11/18/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The unique 'mandarin jacket' leaf shape is the most famous trait of Liriodendron chinense and this characteristic gives L. chinense aesthetic and landscaping value. However, the underlying regulatory mechanism of genes involved in the leaf development of L. chinense has remained unclear. METHODS Based on transcriptome data of leaves at different developmental stages from L. chinense, we identified differentially expression genes (DEGs) functioning in leaf development. A candidate gene named LcCUC2-like (LcCUC2L) had high similarity in sequence with Arabidopsis thaliana CUC2, and used for further research. We isolated the full-length LcCUC2L gene and its promoter from L. chinense. Subsequently, we analyzed the function of the LcCUC2L gene and its promoter activity via transformation into A. thaliana. RESULTS In this study, we found that the LcCUC2L and AtCUC2 are homologous in sequence but not homologous in function. Unlike the role of AtCUC2 in leaf serration and SAM formation, the LcCUC2L mainly regulates cotyledon development and rosette leaf number. Histochemical β-glucuronidase (GUS) staining revealed that LcCUC2L was expressed in the cotyledons of A. thaliana seedlings, indicating that the LcCUC2L may play a role in cotyledon development. Ectopic expression of LcCUC2L resulted in long, narrow cotyledons without petioles, abnormal lamina epidermis cells and defective vascular tissue in cotyledons, and these results were consistent with the LcCUC2L expression pattern. Further analysis showed that overexpression of LcCUC2L also induced numerous rosette leaves. Also, LcCUC2L and other related genes showed a severe response in L. chinense by introducing exogenous auxin stimulation, partly revealed that LcCUC2L affects the leaf development by regulating the auxin content. CONCLUSIONS These results suggest that LcCUC2L may play a critical role in leaf development and morphogenesis in L. chinense, and our findings provide insight into the molecular mechanisms of leaf development in L. chinense.
Collapse
Affiliation(s)
- Shaoying Wen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jiayu Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Ziyuan Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Lingmin Wei
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Jikai Ma
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Mo X, He L, Liu Y, Wang D, Zhao B, Chen J. The Genetic Control of the Compound Leaf Patterning in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 12:749989. [PMID: 35095943 PMCID: PMC8792858 DOI: 10.3389/fpls.2021.749989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Simple and compound which are the two basic types of leaves are distinguished by the pattern of the distribution of blades on the petiole. Compared to simple leaves comprising a single blade, compound leaves have multiple blade units and exhibit more complex and diverse patterns of organ organization, and the molecular mechanisms underlying their pattern formation are receiving more and more attention in recent years. Studies in model legume Medicago truncatula have led to an improved understanding of the genetic control of the compound leaf patterning. This review is an attempt to summarize the current knowledge about the compound leaf morphogenesis of M. truncatula, with a focus on the molecular mechanisms involved in pattern formation. It also includes some comparisons of the molecular mechanisms between leaf morphogenesis of different model species and offers useful information for the molecular design of legume crops.
Collapse
Affiliation(s)
- Xiaoyu Mo
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Ye Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dongfa Wang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Baolin Zhao
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Abstract
Plants and animals are both important for studies in evolutionary developmental biology (EvoDevo). Plant morphology as a valuable discipline of EvoDevo is set for a paradigm shift. Process thinking and the continuum approach in plant morphology allow us to perceive and interpret growing plants as combinations of developmental processes rather than as assemblages of structural units (“organs”) such as roots, stems, leaves, and flowers. These dynamic philosophical perspectives were already favored by botanists and philosophers such as Agnes Arber (1879–1960) and Rolf Sattler (*1936). The acceptance of growing plants as dynamic continua inspires EvoDevo scientists such as developmental geneticists and evolutionary biologists to move towards a more holistic understanding of plants in time and space. This review will appeal to many young scientists in the plant development research fields. It covers a wide range of relevant publications from the past to present.
Collapse
|
8
|
Nitrate Reductase-Mediated Nitric Oxide Regulates the Leaf Shape in Arabidopsis by Mediating the Homeostasis of Reactive Oxygen Species. Int J Mol Sci 2019; 20:ijms20092235. [PMID: 31067654 PMCID: PMC6539879 DOI: 10.3390/ijms20092235] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
As a gaseous biological signaling molecule, nitric oxide (NO) regulates many physiological processes in plants. Over the last decades, this low molecular weight compound has been identified as a key signaling molecule to regulate plant stress responses, and also plays an important role in plant development. However, elucidation of the molecular mechanisms for NO in leaf development has so far been limited due to a lack of mutant resources. Here, we employed the NO-deficient mutant nia1nia2 to examine the role of NO in leaf development. We have found that nia1nia2 mutant plants displayed very different leaf phenotypes as compared to wild type Col-0. Further studies have shown that reactive oxygen species (ROS) levels are higher in nia1nia2 mutant plants. Interestingly, ROS-related enzymes ascorbate peroxidase (APX), catalases (CAT), and peroxidases (POD) have shown decreases in their activities. Our transcriptome data have revealed that the ROS synthesis gene RBOHD was enhanced in nia1nia2 mutants and the photosynthesis-related pathway was impaired, which suggests that NO is required for chloroplast development and leaf development. Together, these results imply that NO plays a significant role in plant leaf development by regulating ROS homeostasis.
Collapse
|
9
|
Transcriptomic analysis of contrasting inbred lines and F 2 segregant of Chinese cabbage provides valuable information on leaf morphology. Genes Genomics 2019; 41:811-829. [PMID: 30900192 DOI: 10.1007/s13258-019-00809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Leaf morphology influences plant growth and productivity and is controlled by genetic and environmental cues. The various morphotypes of Brassica rapa provide an excellent resource for genetic and molecular studies of morphological traits. OBJECTIVE This study aimed to identify genes regulating leaf morphology using segregating B. rapa p F2 population. METHODS Phenotyping and transcriptomic analyses were performed on an F2 population derived from a cross between Rapid cycling B. rapa (RCBr) and B. rapa ssp. penkinensis, inbred line Kenshin. Analyses focused on four target traits: lamina (leaf) length (LL), lamina width (LW), petiole length (PL), and leaf margin (LM). RESULTS All four traits were controlled by multiple QTLs, and expression of 466 and 602 genes showed positive and negative correlation with leaf phenotypes, respectively. From this microarray analysis, large numbers of genes were putatively identified as leaf morphology-related genes. The Gene Ontology (GO) category containing the highest number of differentially expressed genes (DEGs) was "phytohormones". The sets of genes enriched in the four leaf phenotypes did not overlap, indicating that each phenotype was regulated by a different set of genes. The expression of BrAS2, BrAN3, BrCYCB1;2, BrCYCB2;1,4, BrCYCB3;1, CrCYCBD3;2, BrULT1, and BrANT seemed to be related to leaf size traits (LL and LW), whereas BrCUC1, BrCUC2, and BrCUC3 expression for LM trait. CONCLUSION An analysis integrating the results of the current study with previously published data revealed that Kenshin alleles largely determined LL and LW but LM resulted from RCBr alleles. Genes identified in this study could be used to develop molecular markers for use in Brassica breeding projects and for the dissection of gene function.
Collapse
|
10
|
Zhang Y, Wang B, Qi S, Dong M, Wang Z, Li Y, Chen S, Li B, Zhang J. Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus. PLANTA 2019; 249:635-646. [PMID: 30327883 DOI: 10.1007/s00425-018-3029-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/05/2018] [Indexed: 05/23/2023]
Abstract
Cell-size enlargement plays a pivotal role in increasing the leaf size of triploid poplar, and polyploidization could change leaf shape. ABP1 was highly expressed in triploid plants and positively related to cell size. In the plant kingdom, the leaf is the most important energy production organ, and polyploidy often exhibits a "Gigas" effect on leaf size, which benefits agriculture and forestry. However, little is known regarding the cellular and molecular mechanisms underlying the leaf size superiority of polyploid woody plants. In the present study, the leaf area and abaxial epidermal cells of diploid and triploid full-sib groups and their parents were measured at three different positions. We measured the expression of several genes related to cell division and cell expansion. The results showed that the leaf area of triploids was significantly larger than that of diploids, and the triploid group showed transgressive variation compared to their full-sib diploid group. Cell size but not cell number was the main reason for leaf size variation. Cell expansion was in accordance with leaf enlargement. In addition, the leaf shape changes in triploids primarily resulted from a significant decrease in the leaf ratio of length to -width. Auxin-binding protein 1 (ABP1) was highly expressed in triploids and positively related to leaf size. These results enhanced the current understanding that giant leaf is affected by polyploidy vigor. However, significant heterosis is not exhibited in diploid offspring. Overall, polyploid breeding is an effective strategy to enhance leaf size, and Populus, as an ideal material, plays an important role in studying the leaf morphological variations of polyploid woody plants.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Beibei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuaizheng Qi
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Mingliang Dong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zewei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yixuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Siyuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Bailian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jinfeng Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Key Laboratory of Forest Trees and Ornamental Plants Biological Engineering of State Forestry Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Dry Season Irrigation Promotes Leaf Growth in Eucalyptus urophylla × E. grandis under Fertilization. FORESTS 2019. [DOI: 10.3390/f10010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leaves are essential for photosynthesis and gas exchange, and their growth characteristics are the key factors that influence the carbon budget. Eucalyptus is widely afforested in south China due to its fast-growing and high-yield features. Water and fertilizer are the main factors affecting plant growth. Studying the effects of different water and fertilizer treatments on the growth of Eucalyptus leaves under seasonal drought could further elucidate the optimal additions for Eucalyptus productivity. In this study, we investigated the leaf area, length, width, perimeter, and expansion rates of the commercial species E. urophylla × E. grandis under different treatments of dry season irrigation and fertilizer application to elucidate the growth dynamics of the leaves. The results indicated that both dry season irrigation and fertilizer could affect whole leaf expansion. Leaf area was largest when water and fertilizer were added at the same time. In this experiment, we found that fertilization had a significant effect on the leaf shape index of the Eucalyptus leaves. The leaf shape index was larger with the fertilizer treatment, which made the leaves slender. Dry season irrigation shorten the peak period of leaf growth and increase the leaf area. Our results help to further understand the mechanism of Eucalyptus productivity under seasonal drought and provide theoretical support for Eucalyptus production.
Collapse
|
12
|
Ma J, Wei L, Li J, Li H. The Analysis of Genes and Phytohormone Metabolic Pathways Associated with Leaf Shape Development in Liriodendron chinense via De Novo Transcriptome Sequencing. Genes (Basel) 2018; 9:E577. [PMID: 30486397 PMCID: PMC6316054 DOI: 10.3390/genes9120577] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/10/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022] Open
Abstract
The leaf, a photosynthetic organ that plays an indispensable role in plant development and growth, has a certain ability to adapt to the environment and exhibits tremendous diversity among angiosperms. Liriodendron chinense, an ancestral angiosperm species, is very popular in landscaping. The leaf of this species has two lobes and resembles a Qing Dynasty Chinese robe; thus, leaf shape is the most valuable ornamental trait of the tree. In this work, to determine the candidate genes associated with leaf development in L. chinense, scanning electron microscopy (SEM) was employed to distinguish the developmental stages of tender leaves. Four stages were clearly separated, and transcriptome sequencing was performed for two special leaf stages. Altogether, there were 48.23 G clean reads in the libraries of the two leaf developmental stages, and 48,107 assembled unigenes were annotated with five databases. Among four libraries, 3118 differentially expressed genes (DEGs) were enriched in expression profiles. We selected ten DEGs associated with leaf development and validated their expression patterns via quantitative real-time PCR (qRT-PCR) assays. Most validation results were closely correlated with the RNA-sequencing data. Taken together, we examined the dynamic process of leaf development and indicated that several transcription factors and phytohormone metabolism genes may participate in leaf shape development. The transcriptome data analysis presented in this work aims to provide basic insights into the mechanisms mediating leaf development, and the results serve as a reference for the genetic breeding of ornamental traits in L. chinense.
Collapse
Affiliation(s)
- Jikai Ma
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Lingmin Wei
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiayu Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| | - Huogen Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Evkaikina AI, Berke L, Romanova MA, Proux-Wéra E, Ivanova AN, Rydin C, Pawlowski K, Voitsekhovskaja OV. The Huperzia selago Shoot Tip Transcriptome Sheds New Light on the Evolution of Leaves. Genome Biol Evol 2018; 9:2444-2460. [PMID: 28957460 PMCID: PMC5622374 DOI: 10.1093/gbe/evx169] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Lycopodiophyta—consisting of three orders, Lycopodiales, Isoetales and Selaginellales, with different types of shoot apical meristems (SAMs)—form the earliest branch among the extant vascular plants. They represent a sister group to all other vascular plants, from which they differ in that their leaves are microphylls—that is, leaves with a single, unbranched vein, emerging from the protostele without a leaf gap—not megaphylls. All leaves represent determinate organs originating on the flanks of indeterminate SAMs. Thus, leaf formation requires the suppression of indeterminacy, that is, of KNOX transcription factors. In seed plants, this is mediated by different groups of transcription factors including ARP and YABBY. We generated a shoot tip transcriptome of Huperzia selago (Lycopodiales) to examine the genes involved in leaf formation. Our H. selago transcriptome does not contain any ARP homolog, although transcriptomes of Selaginella spp. do. Surprisingly, we discovered a YABBY homolog, although these transcription factors were assumed to have evolved only in seed plants. The existence of a YABBY homolog in H. selago suggests that YABBY evolved already in the common ancestor of the vascular plants, and subsequently was lost in some lineages like Selaginellales, whereas ARP may have been lost in Lycopodiales. The presence of YABBY in the common ancestor of vascular plants would also support the hypothesis that this common ancestor had a simplex SAM. Furthermore, a comparison of the expression patterns of ARP in shoot tips of Selaginella kraussiana (Harrison CJ, etal. 2005. Independent recruitment of a conserved developmental mechanism during leaf evolution. Nature 434(7032):509–514.) and YABBY in shoot tips of H. selago implies that the development of microphylls, unlike megaphylls, does not seem to depend on the combined activities of ARP and YABBY. Altogether, our data show that Lycopodiophyta are a diverse group; so, in order to understand the role of Lycopodiophyta in evolution, representatives of Lycopodiales, Selaginellales, as well as of Isoetales, have to be examined.
Collapse
Affiliation(s)
- Anastasiia I Evkaikina
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Lidija Berke
- Department of Plant Sciences, Wageningen University, The Netherlands
| | - Marina A Romanova
- Department of Botany, St. Petersburg State University, St. Petersburg, Russia
| | - Estelle Proux-Wéra
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Alexandra N Ivanova
- Laboratory of Anatomy and Morphology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
14
|
Zhao H, Lü S, Xiong L. AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process. FRONTIERS IN PLANT SCIENCE 2017; 8:337. [PMID: 28344588 PMCID: PMC5344897 DOI: 10.3389/fpls.2017.00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
AtLSG1-2 is a circularly permuted GTPase required for ribosome biogenesis and recently shown to be involved in early leaf development, although it was unclear how AtLSG1-2 affects leaf growth. Here, we found that atlsg1-2 mutants had reduced leaf size as a result of decreased cell size and cell number. Leaf kinematic analysis and CYCB1;1::GUS expression pattern in atlsg1-2 mutant indicated that loss of function of AtLSG1-2 delays the transition from cell division to cell expansion. Decreases in ploidy levels and trichome branch number suggest that AtLSG1-2 deficiency suppresses endoreduplication. Real-time PCR analysis showed that genes specifically expressed in the proliferation stage were highly expressed and those involved in endoreduplication were differentially regulated. LSG1 is known to mediate the recruitment of nucleocytoplasmic shuttling protein NMD3 back to the nucleus in yeast, yet their relationship was unclear in plants. Our genetic analysis revealed that the atlsg1 atnmd3 double mutant displayed enhanced phenotypes as compared with the respective single mutant and that AtLSG1-2 and AtNMD3 synergistically affect the cell proliferation process.
Collapse
Affiliation(s)
- Huayan Zhao
- Applied Biotechnology Center, Wuhan Institute of BioengineeringWuhan, China
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
| | - Liming Xiong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
- Department of Horticulture Sciences, Texas A&M University, College StationTX, USA
- Texas A&M Agrilife Research Center, DallasTX, USA
| |
Collapse
|
15
|
Zhang X, Niu J, Zhang X, Xiao R, Lu M, Cai Z. Graphene oxide-SiO 2 nanocomposite as the adsorbent for extraction and preconcentration of plant hormones for HPLC analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1046:58-64. [DOI: 10.1016/j.jchromb.2017.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/30/2016] [Indexed: 12/21/2022]
|
16
|
Campanella B, Pulidori E, Onor M, Passaglia E, Tegli S, Izquierdo CG, Bramanti E. New polymeric sorbent for the solid-phase extraction of indole-3-acetic acid from plants followed by liquid chromatography — Fluorescence detector. Microchem J 2016. [DOI: 10.1016/j.microc.2016.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Yang W, Guo Z, Huang C, Wang K, Jiang N, Feng H, Chen G, Liu Q, Xiong L. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5605-15. [PMID: 25796084 PMCID: PMC4585412 DOI: 10.1093/jxb/erv100] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Leaves are the plant's solar panel and food factory, and leaf traits are always key issues to investigate in plant research. Traditional methods for leaf trait measurement are time-consuming. In this work, an engineering prototype has been established for high-throughput leaf scoring (HLS) of a large number of Oryza sativa accessions. The mean absolute per cent of errors in traditional measurements versus HLS were below 5% for leaf number, area, shape, and colour. Moreover, HLS can measure up to 30 leaves per minute. To demonstrate the usefulness of HLS in dissecting the genetic bases of leaf traits, a genome-wide association study (GWAS) was performed for 29 leaf traits related to leaf size, shape, and colour at three growth stages using HLS on a panel of 533 rice accessions. Nine associated loci contained known leaf-related genes, such as Nal1 for controlling the leaf width. In addition, a total of 73, 123, and 177 new loci were detected for traits associated with leaf size, colour, and shape, respectively. In summary, after evaluating the performance with a large number of rice accessions, the combination of GWAS and high-throughput leaf phenotyping (HLS) has proven a valuable strategy to identify the genetic loci controlling rice leaf traits.
Collapse
Affiliation(s)
- Wanneng Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chenglong Huang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ke Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ni Jiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Hui Feng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Guoxing Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
18
|
Guo J. Mechanisms for the evolution of complex and diversely elaborated sepals in Iris identified by comparative analysis of developmental sequences. AMERICAN JOURNAL OF BOTANY 2015; 102:819-32. [PMID: 26101409 DOI: 10.3732/ajb.1400519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 05/11/2015] [Indexed: 05/28/2023]
Abstract
PREMISE OF THE STUDY Crested sepals, which have evolved at least five times in Iris, are adaxially elaborated with a sinuous and/or uneven median structure (crest) along the proximal-distal axis and sometimes with various lateral structures (ridges, crests, and linear protuberances) flanking the median crest. These structural elaborations are complex yet diverse in form, providing a good opportunity to investigate developmental mechanisms for the diversification of reproductive lateral organs. METHODS Morphologies of the median and lateral structures at different developmental stages from selected crested sepals representing the major types of structural elaborations were recorded using scanning electron microscopy and light microscopy. Developmental (morphogenetic) events that contribute to changes in shape (e.g., sinuousness, unevenness) between consecutive stages were recorded. Developmental sequences-trajectories that consist of a series of developmental events-were compared in a phylogenetic context. KEY RESULTS Three developmental events (development of outgrowths, greater expansion of the upper zone, and greater expansion of the lower zone), are shared across lineages, occur in the same developmental sequences, and are responsible for the changes in shape during the development of diverse structural elaborations. In addition, two novel developmental events and the development of trichomes on elaborate structures were observed within the core-crested clade. CONCLUSIONS Developmental sequences are conserved across independently evolved crested lineages. Heterochronic and heterotopic shifts of developmental events play the major role in the diversification of elaborations of crested sepals in Iris. The evolution of novel developmental events and the development of trichomes also contribute to the diversity.
Collapse
Affiliation(s)
- Jinyan Guo
- Department of Biology, Brigham Young University, Provo, Utah 84602 USA
| |
Collapse
|
19
|
Cardozo AP, Godinho Temponi L, Moreira de Andrade I, Mayo SJ, de Camargo Smidt E. A morphometric and taxonomic study ofAnthurium augustinumcomplex (Araceae), endemic to the Brazilian Atlantic Forest. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/fedr.201400025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Abstract
The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 × Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (6−9 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions.
Collapse
|
21
|
Fu G, Bo W, Pang X, Wang Z, Chen L, Song Y, Zhang Z, Li J, Wu R. Mapping shape quantitative trait loci using a radius-centroid-contour model. Heredity (Edinb) 2013; 110:511-9. [PMID: 23572125 PMCID: PMC3656636 DOI: 10.1038/hdy.2012.97] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/27/2012] [Accepted: 10/15/2012] [Indexed: 11/08/2022] Open
Abstract
As the consequence of complex interactions between different parts of an organ, shape can be used as a predictor of structural-functional relationships implicated in changing environments. Despite such importance, however, it is no surprise that little is known about the genetic detail involved in shape variation, because no approach is currently available for mapping quantitative trait loci (QTLs) that control shape. Here, we address this problem by developing a statistical model that integrates the principle of shape analysis into a mixture-model-based likelihood formulated for QTL mapping. One state-of-the-art approach for shape analysis is to identify and analyze the polar coordinates of anatomical landmarks on a shape measured in terms of radii from the centroid to the contour at regular intervals. A procrustes analysis is used to align shapes to filter out position, scale and rotation effects on shape variation. To the end, the accurate and quantitative representation of a shape is produced with aligned radius-centroid-contour (RCC) curves, that is, a function of radial angle at the centroid. The high dimensionality of the RCC data, crucial for a comprehensive description of the geometric feature of a shape, is reduced by principal component (PC) analysis, and the resulting PC axes are treated as phenotypic traits, allowing specific QTLs for global and local shape variability to be mapped, respectively. The usefulness and utilization of the new model for shape mapping in practice are validated by analyzing a mapping data collected from a natural population of poplar, Populus szechuanica var tibetica, and identifying several QTLs for leaf shape in this species. The model provides a powerful tool to compute which genes determine biological shape in plants, animals and humans.
Collapse
Affiliation(s)
- G Fu
- Center for Computational Biology, Beijing Forestry University, Beijing, China
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - W Bo
- Center for Computational Biology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - X Pang
- Center for Computational Biology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Z Wang
- Center for Computational Biology, Beijing Forestry University, Beijing, China
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - L Chen
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Y Song
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - Z Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Beijing Forestry University, Beijing, China
| | - J Li
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| | - R Wu
- Center for Computational Biology, Beijing Forestry University, Beijing, China
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
22
|
Wang X, Zhang S, Su L, Liu X, Hao Y. A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11. PLoS One 2013; 8:e57044. [PMID: 23468909 PMCID: PMC3585328 DOI: 10.1371/journal.pone.0057044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.
Collapse
Affiliation(s)
- Xiaofei Wang
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shizhong Zhang
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ling Su
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xin Liu
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yujin Hao
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- * E-mail:
| |
Collapse
|
23
|
Ursache R, Nieminen K, Helariutta Y. Genetic and hormonal regulation of cambial development. PHYSIOLOGIA PLANTARUM 2013; 147:36-45. [PMID: 22551327 DOI: 10.1111/j.1399-3054.2012.01627.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stems and roots of most dicot plants increase in diameter by radial growth, due to the activity of secondary meristems. Two types of meristems function in secondary plant body formation: the vascular cambium, which gives rise to secondary xylem and phloem, and the cork cambium, which produces a bark layer that replaces the epidermis and protects the plant stem from mechanical damage and pathogens. Cambial development, the initiation and activity of the vascular cambium, leads to an accumulation of wood, the secondary xylem tissue. The thick, cellulose-rich cell walls of wood provide a source of cellulose and have the potential to be used as a raw material for sustainable and renewable energy production. In this review, we will discuss what is known about the mechanisms regulating the cambium and secondary tissue development.
Collapse
Affiliation(s)
- Robertas Ursache
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | |
Collapse
|
24
|
Busch BL, Schmitz G, Rossmann S, Piron F, Ding J, Bendahmane A, Theres K. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules. THE PLANT CELL 2011; 23:3595-609. [PMID: 22039213 PMCID: PMC3229137 DOI: 10.1105/tpc.111.087981] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/19/2011] [Accepted: 10/17/2011] [Indexed: 05/18/2023]
Abstract
Aerial plant architecture is predominantly determined by shoot branching and leaf morphology, which are governed by apparently unrelated developmental processes, axillary meristem formation, and leaf dissection. Here, we show that in tomato (Solanum lycopersicum), these processes share essential functions in boundary establishment. Potato leaf (C), a key regulator of leaf dissection, was identified to be the closest paralog of the shoot branching regulator Blind (Bl). Comparative genomics revealed that these two R2R3 MYB genes are orthologs of the Arabidopsis thaliana branching regulator REGULATOR OF AXILLARY MERISTEMS1 (RAX1). Expression studies and complementation analyses indicate that these genes have undergone sub- or neofunctionalization due to promoter differentiation. C acts in a pathway independent of other identified leaf dissection regulators. Furthermore, the known leaf complexity regulator Goblet (Gob) is crucial for axillary meristem initiation and acts in parallel to C and Bl. Finally, RNA in situ hybridization revealed that the branching regulator Lateral suppressor (Ls) is also expressed in leaves. All four boundary genes, C, Bl, Gob, and Ls, may act by suppressing growth, as indicated by gain-of-function plants. Thus, leaf architecture and shoot architecture rely on a conserved mechanism of boundary formation preceding the initiation of leaflets and axillary meristems.
Collapse
Affiliation(s)
- Bernhard L. Busch
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gregor Schmitz
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Susanne Rossmann
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Florence Piron
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, 91057 Evry cedex, France
| | - Jia Ding
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Abdelhafid Bendahmane
- Unité de Recherche en Génomique Végétale, Unité Mixte de Recherche, Institut National de la Recherche Agronomique–Centre National de la Recherche Scientifique, 91057 Evry cedex, France
| | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Address correspondence to
| |
Collapse
|
25
|
Bourque L, Lacroix C. Lobe-generating centres in the simple leaves of Myriophyllum aquaticum: evidence for KN1-like activity. ANNALS OF BOTANY 2011; 107:639-651. [PMID: 21330333 PMCID: PMC3064546 DOI: 10.1093/aob/mcr014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/29/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The mature morphology of most plants can usually be said to consist of three mutually exclusive organs: leaves, stems, and roots. The vast majority of mature morphologies may be easily grouped into one of these mutually exclusive categories. However, during very early stages of development and in many instances from inception, the division between organ categories becomes fuzzy due to the overlap in developmental processes that are shared between the aforementioned mutually exclusive categories. One such overlap has been described at the gene level where KNOXI homologues, transcription factors responsible for maintaining indeterminate cell fate, are expressed in the shoot apical meristem and during early stages of compound leaf development. This study characterizes the occurrence and spatial localization of mRNA of a KNOXI homologue, MaKN1, during the early stages of development in the simple leaves of Myriophyllum aquaticum, an aquatic angiosperm from the family Haloragaceae exhibiting pentamerous whorls of finely lobed leaves. METHODS A 300-bp KNOXI fragment was sequenced from M. aquaticum and used in an RNA localization study to determine the temporal and spatial expression of KNOXI during the early stages of leaf lobe development in M. aquaticum. The developmental sequence of leaves of M. aquaticum was also described using scanning electron microscopy. KEY RESULTS Lobe development of M. aquaticum occurs in two very distinct regions at the leaf base in an alternating fashion reminiscent of a distichous shoot system. It was discovered that MaKN1 expression is localized to both the shoot apical meristem and early stages of leaf primordia development (P1-P7). Initially, MaKN1 is expressed ubiquitously throughout primordia (P1-P3); however, as lobes develop, MaKN1 becomes localized to recently emerged lobe primordia, and disappears as lobes develop basipetally. CONCLUSIONS The pattern of gene expression is indicative of shared developmental processes during early development between shoots, compound leaves, highly lobed simple leaves and unifoliate simple leaves which lack KNOXI expression. These findings are supportive of Arber's less rigid 'partial shoot' theory, which conceptualizes compound leaves as having shoot-like elements.
Collapse
|
26
|
Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An LS, Zhang JL. Overexpression of ACL1 (abaxially curled leaf 1) increased Bulliform cells and induced Abaxial curling of leaf blades in rice. MOLECULAR PLANT 2010; 3:807-17. [PMID: 20494951 DOI: 10.1093/mp/ssq022] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Understanding the genetic mechanism underlying rice leaf-shape development is crucial for optimizing rice configuration and achieving high yields; however, little is known about leaf abaxial curling. We isolated a rice transferred DNA (T-DNA) insertion mutant, BY240, which exhibited an abaxial leaf curling phenotype that co-segregated with the inserted T-DNA. The T-DNA was inserted in the promoter of a novel gene, ACL1 (Abaxially Curled Leaf 1), and led to overexpression of this gene in BY240. Overexpression of ACL1 in wild-type rice also resulted in abaxial leaf curling. ACL1 encodes a protein of 116 amino acids with no known conserved functional domains. Overexpression of ACL2, the only homolog of ACL1 in rice, also induced abaxial leaf curling. RT-PCR analysis revealed high expressions of ACLs in leaf sheaths and leaf blades, suggesting a role for these genes in leaf development. In situ hybridization revealed non-tissue-specific expression of the ACLs in the shoot apical meristem, leaf primordium, and young leaf. Histological analysis showed increased number and exaggeration of bulliform cells and expansion of epidermal cells in the leaves of BY240, which caused developmental discoordination of the abaxial and adaxial sides, resulting in abaxially curled leaves. These results revealed an important mechanism in rice leaf development and provided the genetic basis for agricultural improvement.
Collapse
Affiliation(s)
- Ling Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In biological development, the generation of shape is preceded by the spatial localization of growth factors. Localization, and how it is maintained or changed during the process of growth, determines the shapes produced. Mathematical models have been developed to investigate the chemical, mechanical and transport properties involved in plant morphogenesis. These synthesize biochemical and biophysical data, revealing underlying principles, especially the importance of dynamics in generating form. Chemical kinetics has been used to understand the constraints on reaction and transport rates to produce localized concentration patterns. This approach is well developed for understanding de novo pattern formation, pattern spacing and transitions from one pattern to another. For plants, growth is continual, and a key use of the theory is in understanding the feedback between patterning and growth, especially for morphogenetic events which break symmetry, such as tip branching. Within the context of morphogenetic modelling in general, the present review gives a brief history of chemical patterning research and its particular application to shape generation in plant development.
Collapse
|
28
|
Tansupo P, Suwannasom P, Luthria DL, Chanthai S, Ruangviriyachai C. Optimised separation procedures for the simultaneous assay of three plant hormones in liquid biofertilisers. PHYTOCHEMICAL ANALYSIS : PCA 2010; 21:157-162. [PMID: 19845039 DOI: 10.1002/pca.1172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTION The overuse of petrochemical-based synthetic fertilisers has caused detrimental effects to soil, water supplies, foods and animal health. This, in addition to increased awareness of organic farming, has generated considerable interest in the evaluation of renewable biofertilisers. OBJECTIVE The three objectives of the current research were: (1) to evaluate and optimise a solid phase extraction procedure for extraction of three plant hormones, IAA, GA(3) and ABA from two model biofertilisers produced from coconut shells and pineapple peels; (2) to develop an HPLC analysis procedure for the simultaneous separation and quantification of three plant hormones (IAA, GA(3) and ABA); and (3) to evaluate the changes in three plant hormones levels at four different fermentation time periods and varying number of general bacteria, lactic acid bacteria and yeast. RESULT An optimised procedure for sample preparation, separation and simultaneous analysis of three plant hormones [indole-3-acetic acid (IAA), gibberellic acid (GA(3)) and abscisic acid (ABA)] produced in liquid biofertilisers was developed. This method involves sample cleanup using a Sep-pack OasisMAX cartridge containing mixed-mode anion-exchange and reverse-phase sorbents that provided optimum recovery of 85.6, 91.9 and 94.3%, respectively, for the three hormones, IAA, GA(3), and ABA. Baseline separation of three hormones was achieved using mobile phase consisting of 1% acetic acid and acetonitrile (75:25, v/v) at pH 4.0. The amounts of hormones produced in liquid biofertilisers were influenced by fruit types, fermentation time and total number of general bacteria, lactic acid bacteria and yeasts. The quantities of three plant hormones produced during fermentation correlated well with the total number of microorganisms present in the liquid biofertilisers. CONCLUSION A simple and rapid sample preparation procedure followed by RP-HPLC with UV detection was optimised and developed for simultaneous quantification and identification of three plant hormones namely, IAA, GA(3) and ABA in the liquid biofertilisers. This procedure allows quantification of the three plant hormones in their natural states without any prior derivatisation step. The results presented illustrate that the contents of the three plant hormones depended on the type of fruit wastes, fermentation time and the number of microorganisms found in liquid biofertilisers. This method can be extended to determine the quantity of three hormones in other matrices. This assay procedure will aid in the development of liquid biofertilisers, a valuable alternative fertilisers to promote plant growth. This process will help farmers to reduce production cost and pollution problems.
Collapse
Affiliation(s)
- Panadda Tansupo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | | |
Collapse
|
29
|
Marcotrigiano M. A role for leaf epidermis in the control of leaf size and the rate and extent of mesophyll cell division. AMERICAN JOURNAL OF BOTANY 2010; 97:224-33. [PMID: 21622382 DOI: 10.3732/ajb.0900102] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Little is known about the control of leaf size in plants, yet there must be mechanisms by which organ size is measured. Because the control of leaf size extends beyond the action of individual genes or cells, an understanding of the role of leaf cell layers in the determination of leaf size is warranted. Following the construction of graft chimeras composed of small- and large-leaf genotypes of Nicotiana, bilateral leaf blade asymmetry was observed on leaves possessing either a genetically larger or smaller epidermis on one side of the midrib. Although cell size was unaffected by the genotype of the epidermis, the rate and extent of cell division in leaf epidermis altered the rate and extent of cell division in mesophyll and affected leaf size. The data presented neither prove nor disprove whether the mesophyll impacts epidermal cell division but provide the first unequivocal evidence that the extent of cell division in the leaf epidermis alters the extent of cell division in the mesophyll and is a factor regulating blade expansion and ultimate leaf size.
Collapse
Affiliation(s)
- Michael Marcotrigiano
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063 USA
| |
Collapse
|
30
|
Xu ZQ, Huang X, Feng C, Tian N, Xu D, Feng SZ. Multicellular genesis of leaf primordium was demonstrated via chimaeric transgenic plant of maize (Zea mays L.) regenerated from Type II calli. Mol Biol Rep 2009; 37:3525-31. [PMID: 20039139 DOI: 10.1007/s11033-009-9946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 02/03/2009] [Indexed: 10/20/2022]
Abstract
Type-II embryonic calli were induced from immature embryos of maize (Zea mays L.) genotype YD and bombarded with beta-glucuronidase gene. Bombarded calli were proliferated on normal N6 medium for 2 weeks at 26°C in the dark and selected on N6 medium containing 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 5 mg/l phosphinothricin (PPT) but without casamino acids and proline under the same conditions for 14 days. Regeneration was carried out on hormone-free MS medium containing 5 mg/l phosphinothricin at 26°C under 3000 lux illumination. Plants over 8 cm were transplanted into soil and sprayed with 250 mg/l phosphinothricin when two new leaves appeared. Except normal transgenic plants, chimaeric transgenics also were regenerated in the present work. The expression pattern of beta-glucuronidase gene in leaves of chimaeric transgenic plant revealed that more than one cell formed leaf primordium at the initial stage, and filial cells stemed from each cell in leaf primordium arranged in a row longitudinally from leaf base to leaf apex. There was a clear boundary as a straight line between the area formed by transformed cells and the area formed by normal cells. A hypothesis was put forward that the primitive cells in leaf primordium divided in a longitudinal style, resulted in leaf elongation, then the filial cells divided transversally and synchronously toward the outside to broaden the leaf.
Collapse
Affiliation(s)
- Zi-Qin Xu
- Provincial Key Laboratory of Biotechnology, Institute of Life Science, Northwest University, Xian, 710069, China.
| | | | | | | | | | | |
Collapse
|
31
|
Moraga ÁR, Mozos AT, Ahrazem O, Gómez-Gómez L. Cloning and characterization of a glucosyltransferase from Crocus sativus stigmas involved in flavonoid glucosylation. BMC PLANT BIOLOGY 2009; 9:109. [PMID: 19695093 PMCID: PMC2736960 DOI: 10.1186/1471-2229-9-109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 08/20/2009] [Indexed: 05/20/2023]
Abstract
BACKGROUND Flavonol glucosides constitute the second group of secondary metabolites that accumulate in Crocus sativus stigmas. To date there are no reports of functionally characterized flavonoid glucosyltransferases in C. sativus, despite the importance of these compounds as antioxidant agents. Moreover, their bitter taste makes them excellent candidates for consideration as potential organoleptic agents of saffron spice, the dry stigmas of C. sativus. RESULTS Using degenerate primers designed to match the plant secondary product glucosyltransferase (PSPG) box we cloned a full length cDNA encoding CsGT45 from C. sativus stigmas. This protein showed homology with flavonoid glucosyltransferases. In vitro reactions showed that CsGT45 catalyses the transfer of glucose from UDP_glucose to kaempferol and quercetin. Kaempferol is the unique flavonol present in C. sativus stigmas and the levels of its glucosides changed during stigma development, and these changes, are correlated with the expression levels of CsGT45 during these developmental stages. CONCLUSION Findings presented here suggest that CsGT45 is an active enzyme that plays a role in the formation of flavonoid glucosides in C. sativus.
Collapse
Affiliation(s)
- Ángela Rubio Moraga
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIA, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete, 02071, Spain
| | - Almudena Trapero Mozos
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIA, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete, 02071, Spain
- Current address: Centro Regional de Investigaciones Biomedicas, C/Almansa 14, Albacete, 02006, Spain
| | - Oussama Ahrazem
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIA, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete, 02071, Spain
| | - Lourdes Gómez-Gómez
- Departamento de Ciencia y Tecnología Agroforestal y Genética, ETSIA, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete, 02071, Spain
| |
Collapse
|
32
|
Lee JY, Lee HS, Wi SJ, Park KY, Schmit AC, Pai HS. Dual functions of Nicotiana benthamiana Rae1 in interphase and mitosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:278-91. [PMID: 19392703 DOI: 10.1111/j.1365-313x.2009.03869.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rae1 performs multiple functions in animal systems, acting in interphase as an mRNA export factor and during mitosis as a mitotic checkpoint and spindle assembly regulator. In this study we characterized multiple functions of Rae1 in plants. Virus-induced gene silencing of Nicotiana benthamiana Rae1, NbRae1, which encodes a protein with four WD40 repeats, resulted in growth arrest and abnormal leaf development. NbRae1 was mainly associated with the nuclear envelope during interphase, and NbRae1 deficiency caused accumulation of poly(A) RNA in the nuclei of leaf cells, suggesting defective mRNA export. In the shoot apex, depletion of NbRae1 led to reduced mitotic activities, accompanied by reduced cyclin-dependent kinase (CDK) activity and decreased expression of cyclin B1, CDKB1-1, and histones H3 and H4. The secondary growth of stem vasculature was also inhibited, indicating reduced cambial activities. Differentiated leaf cells of NbRae1-silenced plants exhibited elevated ploidy levels. Immunolabeling in BY-2 cells showed that NbRae1 protein localized to mitotic microtubules and the cell plate-forming zone during mitosis, and recombinant NbRae1 directly bound to microtubules in vitro. Inhibition of NbRae1 expression in BY-2 cells using a beta-estradiol-inducible RNAi system resulted in severe defects in spindle organization and chromosome alignment and segregation, which correlated with delays in cell cycle progression. Together, these results suggest that NbRae1 plays a dual role in mRNA export in interphase and in spindle assembly in mitosis.
Collapse
Affiliation(s)
- Jae-Yong Lee
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
33
|
Kang YW, Kim RN, Cho HS, Kim WT, Choi D, Pai HS. Silencing of a BYPASS1 homolog results in root-independent pleiotrophic developmental defects in Nicotiana benthamiana. PLANT MOLECULAR BIOLOGY 2008; 68:423-37. [PMID: 18716882 DOI: 10.1007/s11103-008-9384-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/16/2008] [Indexed: 05/20/2023]
Abstract
The Arabidopsis bypass1 mutant (bps1) exhibits defective shoot and root growth that is associated with constitutive production of a root-derived carotenoid-related signal (Van Norman et al., Curr Biol 14:1739-1746, 2004). Since the identity of the signal and the function of BPS1 are still unknown, we investigated effects of BPS1 depletion in Nicotiana benthamiana to elucidate BPS1 function in plant growth and development. The predicted protein of NbBPS1, a BPS1 homolog of N. benthamiana, contains a central transmembrane domain, and a NbBPS1:GFP fusion protein was mainly associated with the endoplasmic reticulum. Virus-induced gene silencing (VIGS) of NbBPS1 resulted in pleiotrophic phenotypes, including growth retardation and abnormal leaf development. At the cellular level, the plants exhibited hyperproliferation of the cambial cells and defective xylem differentiation during stem vascular development. Hyperactivity of the cambium was associated with an elevated auxin and cytokinin response. In contrast, the leaves had reduced numbers of cells with increased cell size and elevated endoreduplication. Cell death in NbBPS1 VIGS leaves started with vacuole collapse, followed by degeneration of the organelles. Interestingly, these phenotypes were mainly caused by silencing of NbBPS1 in the aerial parts of the plants, different from the case of the Arabidopsis bps1 mutant. These results suggest that NbBPS1 plays a role in the control of cell division and differentiation in the cambium of N. benthamiana, and BPS homologs may have a diverse function in different tissues and in different species.
Collapse
Affiliation(s)
- Yong Won Kang
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
34
|
Moyle LC. Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 2008; 62:2995-3013. [PMID: 18752600 DOI: 10.1111/j.1558-5646.2008.00487.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The plant group Solanum section Lycopersicon (the clade containing the domesticated tomato and its wild relatives) is ideal for integrating genomic tools and approaches into ecological and evolutionary research. Wild species within Lycopersicon span broad morphological, physiological, life history, mating system, and biochemical variation, and are separated by substantial, but incomplete postmating reproductive barriers, making this an ideal system for genetic analyses of these traits. This ecological and evolutionary diversity is matched by many logistical advantages, including extensive historical occurrence records for all species in the group, publicly available germplasm for hundreds of known wild accessions, demonstrated experimental tractability, and extensive genetic, genomic, and functional tools and information from the tomato research community. Here I introduce the numerous advantages of this system for Ecological and Evolutionary Functional Genomics (EEFG), and outline several ecological and evolutionary phenotypes and questions that can be fruitfully tackled in this system. These include biotic and abiotic adaptation, reproductive trait evolution, and the genetic basis of speciation. With the modest enhancement of some research strengths, this system is poised to join the best of our currently available model EEFG systems.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, Indiana 474051, USA.
| |
Collapse
|
35
|
Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 2008; 279:499-507. [PMID: 18293011 DOI: 10.1007/s00438-008-0328-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/22/2008] [Indexed: 01/18/2023]
Abstract
Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant decrease in the width of the leaf blade, termed narrow leaf 7 (nal7). This spontaneous mutation of nal7 occurred during the process of developing advanced back-crossed progeny derived from crosses of rice varieties with wild type leaf phenotype. While the mutation resulted in reduced leaf width, no significant morphological changes at the cellular level in leaves were observed, except in bulli-form cells. The NAL7 locus encodes a flavin-containing monooxygenase, which displays sequence homology with YUCCA. Inspection of a structural model of NAL7 suggests that the mutation results in an inactive enzyme. The IAA content in the nal7 mutant was altered compared with that of wild type. The nal7 mutant overexpressing NAL7 cDNA exhibited overgrowth and abnormal morphology of the root, which was likely to be due to auxin overproduction. These results indicate that NAL7 is involved in auxin biosynthesis.
Collapse
Affiliation(s)
- Kenji Fujino
- Agricultural Research Institute, HOKUREN Federation of Agricultural Cooperatives, Higashi-5, Kita-15, Naganuma, Hokkaido 0691317, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Liu HT, Li YF, Luan TG, Lan CY, Shu WS. Simultaneous Determination of Phytohormones in Plant Extracts using SPME and HPLC. Chromatographia 2007. [DOI: 10.1365/s10337-007-0350-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Brand A, Shirding N, Shleizer S, Ori N. Meristem maintenance and compound-leaf patterning utilize common genetic mechanisms in tomato. PLANTA 2007; 226:941-51. [PMID: 17520278 DOI: 10.1007/s00425-007-0540-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 04/24/2007] [Indexed: 05/15/2023]
Abstract
Balancing shoot apical meristem (SAM) maintenance and organ formation from its flanks is essential for proper plant growth and development and for the flexibility of organ production in response to internal and external cues. Leaves are formed at the SAM flanks and display a wide variability in size and form. Tomato (Solanum lycopersicum) leaves are compound with lobed margins. We exploited 18 recessive tomato mutants, representing four distinct phenotypic classes and six complementation groups, to track the genetic mechanisms involved in meristem function and compound-leaf patterning in tomato. In goblet (gob) mutants, the SAM terminates following cotyledon production, but occasionally partially recovers and produces simple leaves. expelled shoot (exp) meristems terminate after the production of several leaves, and these leaves show a reduced level of compoundness. short pedicel (spd) mutants are bushy, with impaired meristem structure, compact inflorescences, short pedicels and less compound leaves. In multi drop (mud) mutants, the leaves are more compound and the SAM tends to divide into two active meristems after the production of a few leaves. The range of leaf-compoundness phenotypes observed in these mutants suggests that compound-leaf patterning involves an array of genetic factors, which act successively to elaborate leaf shape. Furthermore, the results indicate that similar mechanisms underlie SAM activity and compound-leaf patterning in tomato.
Collapse
Affiliation(s)
- Arnon Brand
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Otto Warburg Minerva Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
38
|
Falcone A, Nelissen H, Fleury D, Van Lijsebettens M, Bitonti MB. Cytological investigations of the Arabidopsis thaliana elo1 mutant give new insights into leaf lateral growth and Elongator function. ANNALS OF BOTANY 2007; 100:261-70. [PMID: 17565971 PMCID: PMC2735317 DOI: 10.1093/aob/mcm102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Leaf growth is a complex developmental process controlled by genetic and environmental factors and is determined by a proliferation, expansion and maturation phase. Mutational analysis in Arabidopsis thaliana showed that leaf size and shape is dependent on cell division and cell expansion activity. An investigation was made at the cytophysiological and ultrastructural level of the elo1 mutant of Arabidopsis thaliana, which is defective in one of the components of the histone acetyl transferase Elongator complex and displays a distinct 'narrow leaves' phenotype, owing to a reduced cell number and no transition between petiole and lamina. Relative expression levels of three sucrose metabolism/transport-related genes were also investigated. The aim was to determine the physiological basis of leaf morphology in this mutant, by investigating the modulatory role of sucrose. METHODS The elo1 mutant was taken as representative of all the elo mutations and investigated at cytophysiological level. A germination test and growth assays were performed on seedlings grown for 21 d at different sucrose concentrations. Leaf morphometric and ultrastructural features were also investigated by image analysis and electron microscopy, respectively. Finally, a quantitative PCR (qPCR) analysis was performed with three sucrose metabolism/transport-related genes that were investigated under different sucrose concentrations. KEY RESULTS elo1 plants at high sucrose concentrations exhibited an enhancement of germination and inhibition of leaf growth as compared with wild-type plants. qPCR experiments with three sucrose metabolism/transport-related genes showed an interaction between sucrose availability and the elo1 mutation. Furthermore, electron microscopy analysis provided the first ultrastructural description of an elo mutant, which showed a hypotonic vacuole, alterations in the size of grana and starch grains in the chloroplasts, and the massive presence of Golgi vesicles in the cytoplasm. CONCLUSIONS Based on the results obtained it is proposed that mechanisms producing carbon assimilates or importing sucrose could be affected in elo1 plants and could account for the observed differences, implying a role for Elongator in the regulation of these processes.
Collapse
Affiliation(s)
- Andrea Falcone
- Università della Calabria, Dipartimento di Ecologia, Via ponte P. Bucci, Cubo 6B, I-87036, Arcavacata di Rende, CS, Italia.
| | | | | | | | | |
Collapse
|
39
|
Zhang FZ, Wagstaff C, Rae AM, Sihota AK, Keevil CW, Rothwell SD, Clarkson GJJ, Michelmore RW, Truco MJ, Dixon MS, Taylor G. QTLs for shelf life in lettuce co-locate with those for leaf biophysical properties but not with those for leaf developmental traits. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:1433-49. [PMID: 17347132 DOI: 10.1093/jxb/erm006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.
Collapse
Affiliation(s)
- Fang Z Zhang
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton S016 7PX, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
NIINEMETS Ü, PORTSMUTH A, TOBIAS M. Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Funct Ecol 2007. [DOI: 10.1111/j.1365-2435.2006.01221.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua NH, Park CM. A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. THE PLANT CELL 2006; 18:3132-44. [PMID: 17098812 PMCID: PMC1693948 DOI: 10.1105/tpc.106.043018] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 09/01/2006] [Accepted: 10/23/2006] [Indexed: 05/12/2023]
Abstract
Controlled release of membrane-tethered, dormant precursors is an intriguing activation mechanism that regulates diverse cellular functions in eukaryotes. An exquisite example is the proteolytic activation of membrane-bound transcription factors. The proteolytic cleavage liberates active transcription factors from the membranes that can enter the nucleus and evokes rapid transcriptional responses to incoming stimuli. Here, we show that a membrane-bound NAC (for NAM, ATAF1/2, CUC2) transcription factor, designated NTM1 (for NAC with transmembrane motif1), is activated by proteolytic cleavage through regulated intramembrane proteolysis and mediates cytokinin signaling during cell division in Arabidopsis thaliana. Cell proliferation was greatly reduced in an Arabidopsis mutant with retarded growth and serrated leaves in which a transcriptionally active NTM1 form was constitutively expressed. Accordingly, a subset of cyclin-dependent kinase (CDK) inhibitor genes (the KIP-related proteins) was induced in this mutant with a significant reduction in histone H4 gene expression and in CDK activity. Consistent with a role for NTM1 in cell cycling, a Ds element insertional mutant was morphologically normal but displayed enhanced hypocotyl growth with accelerated cell division. Interestingly, cytokinins were found to regulate NTM1 activity by controlling its stability. These results indicate that the membrane-mediated activation of NTM1 defines a molecular mechanism by which cytokinin signaling is tightly regulated during cell cycling.
Collapse
Affiliation(s)
- Youn-Sung Kim
- Department of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
42
|
Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:8437-42. [PMID: 16248534 DOI: 10.1021/jf050884b] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A rapid multiresidue method to quantify three different classes of plant hormones has been developed. The reduced concentrations of these metabolites in real samples with complex matrixes require sensitive techniques for their quantification in small amounts of plant tissue. The method described combines high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Deuterium-labeled standards were added prior to sample extraction to achieve an accurate quantification of abscisic acid, indole-3-acetic acid, and jasmonic acid in a single run. A simple method of extraction and purification involving only centrifugation, a partition against diethyl ether, and filtration was developed and the analytical method validated in four different plant tissues, citrus leaves, papaya roots, barley seedlings, and barley immature embryos. This method represents a clear advantage because it extensively reduces sample preparation and total time for routine analysis of phytohormones in real plant samples.
Collapse
Affiliation(s)
- Abhilasha Durgbanshi
- Departamento de Ciencias Experimentales, Universitat Jaume I, Campus Riu Sec, E-12071 Castelló, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Rutishauser R, Moline P. Evo-devo and the search for homology (“sameness”) in biological systems. Theory Biosci 2005; 124:213-41. [PMID: 17046357 DOI: 10.1007/bf02814485] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Accepted: 09/08/2005] [Indexed: 11/28/2022]
Abstract
Developmental biology and evolutionary studies have merged into evolutionary developmental biology ("evo-devo"). This synthesis already influenced and still continues to change the conceptual framework of structural biology. One of the cornerstones of structural biology is the concept of homology. But the search for homology ("sameness") of biological structures depends on our favourite perspectives (axioms, paradigms). Five levels of homology ("sameness") can be identified in the literature, although they overlap to some degree: (i) serial homology (homonomy) within modular organisms, (ii) historical homology (synapomorphy), which is taken as the only acceptable homology by many biologists, (iii) underlying homology (i.e., parallelism) in closely related taxa, (iv) deep evolutionary homology due to the "same" master genes in distantly related phyla, and (v) molecular homology exclusively at gene level. The following essay gives emphasis on the heuristic advantages of seemingly opposing perspectives in structural biology, with examples mainly from comparative plant morphology. The organization of the plant body in the majority of angiosperms led to the recognition of the classical root-shoot model. In some lineages bauplan rules were transcended during evolution and development. This resulted in morphological misfits such as the Podostemaceae, peculiar eudicots adapted to submerged river rocks. Their transformed "roots" and "shoots" fit only to a limited degree into the classical model which is based on either-or thinking. It has to be widened into a continuum model by taking over elements of fuzzy logic and fractal geometry to accommodate for lineages such as the Podostemaceae.
Collapse
Affiliation(s)
- Rolf Rutishauser
- Institut für Systematische Botanik der Universität Zürich, Zollikerstr.107, CH-8008 Zürich, Switzerland.
| | | |
Collapse
|
44
|
Cloutier M, Vigneault F, Lachance D, Séguin A. Characterization of a poplar NIMA-related kinase PNek1 and its potential role in meristematic activity. FEBS Lett 2005; 579:4659-65. [PMID: 16098516 DOI: 10.1016/j.febslet.2005.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/11/2005] [Accepted: 07/12/2005] [Indexed: 12/14/2022]
Abstract
Meristems are sites of undifferentiated cell division, which carry on developing into functional organs. Using the two-hybrid system with a poplar 14-3-3, we uncovered poplar NIMA-related kinase 1 (PNek1) as an interacting protein. PNek1 shows high homology to the mammalian NIMA-related kinases, which are thought to be involved in cell cycle progression. Using a synchronized poplar cell suspension, we observed an accumulation of PNek1 mRNA at the G1/S transition and throughout the G2-to-M progression. Moreover, PNek1-GFP fusion protein localized in the cytoplasm and in both the nuclear and nucleolar regions. Overexpression of PNek1-GFP in Arabidopsis caused morphological abnormalities in flower and siliques. Overall, these results suggest that PNek1 is involved in plant development.
Collapse
Affiliation(s)
- Monikca Cloutier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 3800, Sainte-Foy, Que., Canada
| | | | | | | |
Collapse
|
45
|
Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. THE PLANT CELL 2005; 17:2676-92. [PMID: 16126837 PMCID: PMC1242265 DOI: 10.1105/tpc.105.033415] [Citation(s) in RCA: 382] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Auxin/indole-3-acetic acid (Aux/IAA) proteins are transcriptional regulators that mediate many aspects of plant responses to auxin. While functions of most Aux/IAAs have been defined mainly by gain-of-function mutant alleles in Arabidopsis thaliana, phenotypes associated with loss-of-function mutations have been scarce and subtle. We report here that the downregulation of IAA9, a tomato (Solanum lycopersicum) gene from a distinct subfamily of Aux/IAA genes, results in a pleiotropic phenotype, consistent with its ubiquitous expression pattern. IAA9-inhibited lines have simple leaves instead of wild-type compound leaves, and fruit development is triggered before fertilization, giving rise to parthenocarpy. This indicates that IAA9 is a key mediator of leaf morphogenesis and fruit set. In addition, antisense plants displayed auxin-related growth alterations, including enhanced hypocotyl/stem elongation, increased leaf vascularization, and reduced apical dominance. Auxin dose-response assays revealed that IAA9 downregulated lines were hypersensitive to auxin, although the only early auxin-responsive gene that was found to be upregulated in the antisense lines was IAA3. The activity of the IAA3 promoter was stimulated in the IAA9 antisense genetic background, indicating that IAA9 acts in planta as a transcriptional repressor of auxin signaling. While no mutation in any member of subfamily IV has been reported to date, the phenotypes associated with the downregulation of IAA9 reveal distinct and novel roles for members of the Aux/IAA gene family.
Collapse
Affiliation(s)
- Hua Wang
- Unité Mixte de Recherche 990, Institut National de la Recherche Agronomique/Institut National Polytechnique-Ecole Nationale Supérieure Agronomique Toulouse, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ainsworth EA, Walter A, Schurr U. Glycine max leaflets lack a base-tip gradient in growth rate. JOURNAL OF PLANT RESEARCH 2005; 118:343-6. [PMID: 16136362 DOI: 10.1007/s10265-005-0227-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 07/21/2005] [Indexed: 05/04/2023]
Abstract
The paradigm of dicotyledonous leaf expansion describes high relative growth rates at the leaf base, dampening towards the leaf tip. Soybean leaflet expansion was measured under different growth conditions with both conventional and time-lapse video techniques. In contrast to findings from other species, maximum growth rates occurred at approximately 2 a.m. and the basipetal growth pattern was absent, suggesting the factors controlling soybean expansion are distinct from other species.
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA/ARS and Department of Plant Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.
| | | | | |
Collapse
|
47
|
Woo HH, Jeong BR, Hawes MC. Flavonoids: from cell cycle regulation to biotechnology. Biotechnol Lett 2005; 27:365-74. [DOI: 10.1007/s10529-005-1521-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Accepted: 01/25/2005] [Indexed: 10/25/2022]
|
48
|
Friedman WE, Moore RC, Purugganan MD. The evolution of plant development. AMERICAN JOURNAL OF BOTANY 2004; 91:1726-1741. [PMID: 21652320 DOI: 10.3732/ajb.91.10.1726] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The last decade has witnessed a resurgence in the study of the evolution of plant development, combining investigations in systematics, developmental morphology, molecular developmental genetics, and molecular evolution. The integration of phylogenetic studies, structural analyses of fossil and extant taxa, and molecular developmental genetic information allows the formulation of explicit and testable hypotheses for the evolution of morphological characters. These comprehensive approaches provide opportunities to dissect the evolution of major developmental transitions among land plants, including those associated with apical meristems, the origins of the root/shoot dichotomy, diversification of leaves, and origin and subsequent modification of flower structure. The evolution of these major developmental innovations is discussed within both phylogenetic and molecular genetic contexts. We conclude that it is the combination of these approaches that will lead to the greatest understanding of the evolution of plant development.
Collapse
Affiliation(s)
- William E Friedman
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309 USA
| | | | | |
Collapse
|
49
|
Abstract
After hatching in the soil, root-knot nematodes must locate and penetrate a root, migrate into the vascular cylinder, and establish a permanent feeding site. Presumably, these events are accompanied by extensive signaling between the nematode parasite and the host. Hence, much emphasis has been placed on identifying proteins that are secreted by the nematode during the migratory phase. Further progress in understanding the signaling events has been made recently by studying the host response. Striking parallels can be drawn between the nematode-plant interaction and plant symbioses with other microorganisms, and evidence is emerging to suggest that nematodes acquired components of their parasitic armory from those microbes.
Collapse
Affiliation(s)
- David McK Bird
- Center for the Biology of Nematode Parasitism, Box 7253 North Carolina State University, Raleigh, North Carolina 27695-7253, USA.
| |
Collapse
|