1
|
Functional Metabolomics—A Useful Tool to Characterize Stress-Induced Metabolome Alterations Opening New Avenues towards Tailoring Food Crop Quality. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080138] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The breeding of stress-tolerant cultivated plants that would allow for a reduction in harvest losses and undesirable decrease in quality attributes requires a new quality of knowledge on molecular markers associated with relevant agronomic traits, on quantitative metabolic responses of plants to stress challenges, and on the mechanisms controlling the biosynthesis of these molecules. By combining metabolomics with genomics, transcriptomics and proteomics datasets a more comprehensive knowledge of the composition of crop plants used for food or animal feed is possible. In order to optimize crop trait developments, to enhance crop yields and quality, as well as to guarantee nutritional and health factors that provide the possibility to create functional food or feedstuffs, knowledge about the plants’ metabolome is crucial. Next to classical metabolomics studies, this review focuses on several metabolomics-based working techniques, such as sensomics, lipidomics, hormonomics and phytometabolomics, which were used to characterize metabolome alterations during abiotic and biotic stress in order to find resistant food crops with a preferred quality or at least to produce functional food crops.
Collapse
|
2
|
Fujii T, Matsuda S, Tejedor ML, Esaki T, Sakane I, Mizuno H, Tsuyama N, Masujima T. Direct metabolomics for plant cells by live single-cell mass spectrometry. Nat Protoc 2015; 10:1445-56. [DOI: 10.1038/nprot.2015.084] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Hölscher D, Fuchser J, Knop K, Menezes RC, Buerkert A, Svatoš A, Schubert US, Schneider B. High resolution mass spectrometry imaging reveals the occurrence of phenylphenalenone-type compounds in red paracytic stomata and red epidermis tissue of Musa acuminata ssp. zebrina cv. 'Rowe Red'. PHYTOCHEMISTRY 2015; 116:239-245. [PMID: 26004822 DOI: 10.1016/j.phytochem.2015.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
The banana epidermis and in particular their stomata are conducive sites for the penetration of pathogenic fungi which can severely limit global banana production. The red pseudostem of the ornamental banana Musa acuminata ssp. zebrina cv. 'Rowe Red' was used to study the chemical constituents of the epidermal cell layer using matrix-free laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric imaging (LDI-FT-ICR-MSI). The high resolution of this technique allowed phenylphenalenone-type compounds to be located in single plant cells. Some of these secondary metabolites were identified as constitutive compounds and found in specialized epidermal cells in banana pseudostem tissue. Especially the red paracytic stomata revealed higher signal intensities of certain phenylphenalenones than normal epidermis cells. The ease of detection of polycyclic aromatic compounds on the cellular level is discussed with regard to future investigations of plant-pathogen interactions.
Collapse
Affiliation(s)
- Dirk Hölscher
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany; Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstr. 19, D-37213 Witzenhausen, Germany.
| | - Jens Fuchser
- Application Development Pharma, Bruker Daltonik GmbH, Fahrenheitstrasse 4, D-28359 Bremen, Germany
| | - Katrin Knop
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany
| | - Riya C Menezes
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Andreas Buerkert
- Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), University of Kassel, Steinstr. 19, D-37213 Witzenhausen, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany; Jena Center of Soft Matter, Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany
| | - Bernd Schneider
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
4
|
Misra BB, Assmann SM, Chen S. Plant single-cell and single-cell-type metabolomics. TRENDS IN PLANT SCIENCE 2014; 19:637-46. [PMID: 24946988 DOI: 10.1016/j.tplants.2014.05.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 05/19/2023]
Abstract
In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M Assmann
- Department of Biology, Penn State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Abstract
The technological progress of the genomics has transformed life science research. The main objectives of genomics are sequencing of new genomes and genome-wide identification of the function and the interaction of genes and their products. The recently developed second generation or next generation sequencing platforms and DNA microarray technology are immensely important and powerful tools for functional genomic analyses. However, their application is limited by the requirement of sufficient amounts of high quality nucleic acid samples. Therefore, when only a single cell or a very small number of cells are available or are preferred, the whole genomic sequencing or functional genomic objectives cannot be achieved conventionally and require a robust amplification method. This review highlights DNA amplification technologies and summarizes the strategies currently utilized for whole genome sequencing of a single cell, with specific focus on studies investigating microorganisms; An outline for targeted re-sequencing enabling the analysis of larger genomes is also provided. Furthermore, the review presents the emerging functional genomic applications using next-generation sequencing or microarray analysis to examine genome-wide transcriptional profile, chromatin modification and other types of protein-DNA binding profile, and CpG methylation mapping in a single cell or a very low quantity of cells. The nature of these technologies and their prospects are also addressed.
Collapse
|
6
|
Analytical techniques for single-cell metabolomics: state of the art and trends. Anal Bioanal Chem 2010; 398:2493-504. [DOI: 10.1007/s00216-010-3850-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/09/2010] [Accepted: 05/13/2010] [Indexed: 01/09/2023]
|
7
|
Single cell analytics: an overview. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:99-122. [PMID: 21072695 DOI: 10.1007/10_2010_96] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The research field of single cell analysis is rapidly expanding, driven by developments in flow cytometry, microscopy, lab-on-a-chip devices, and many other fields. The promises of these developments include deciphering cellular mechanisms and the quantification of cell-to-cell differences, ideally with spatio-temporal resolution. However, these promises are challenging as the analytical techniques have to cope with minute analyte amounts and concentrations. We formulate first these challenges and then present state-of-the-art analytical techniques available to investigate the different cellular hierarchies--from the genome to the phenome, i.e., the sum of all phenotypes.
Collapse
|
8
|
Hölscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, Heckel DG, Schubert US, Svatos A. Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:907-18. [PMID: 19732382 DOI: 10.1111/j.1365-313x.2009.04012.x] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The present paper describes matrix-free laser desorption/ionisation mass spectrometric imaging (LDI-MSI) of highly localized UV-absorbing secondary metabolites in plant tissues at single-cell resolution. The scope and limitations of the method are discussed with regard to plants of the genus Hypericum. Naphthodianthrones such as hypericin and pseudohypericin are traceable in dark glands on Hypericum leaves, placenta, stamens and styli; biflavonoids are also traceable in the pollen of this important phytomedical plant. The highest spatial resolution achieved, 10 microm, was much higher than that achieved by commonly used matrix-assisted laser desorption/ionization (MALDI) imaging protocols. The data from imaging experiments were supported by independent LDI-TOF/MS analysis of cryo-sectioned, laser-microdissected and freshly cut plant material. The results confirmed the suitability of combining laser microdissection (LMD) and LDI-TOF/MS or LDI-MSI to analyse localized plant secondary metabolites. Furthermore, Arabidopsis thaliana was analysed to demonstrate the feasibility of LDI-MSI for other commonly occurring compounds such as flavonoids. The organ-specific distribution of kaempferol, quercetin and isorhamnetin, and their glycosides, was imaged at the cellular level.
Collapse
Affiliation(s)
- Dirk Hölscher
- Department of Entomology, Mass Spectrometry Research Group, Biosynthesis/NMR Research Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Izumi Y, Kajiyama S, Nakamura R, Ishihara A, Okazawa A, Fukusaki E, Kanematsu Y, Kobayashi A. High-resolution spatial and temporal analysis of phytoalexin production in oats. PLANTA 2009; 229:931-943. [PMID: 19148672 DOI: 10.1007/s00425-008-0887-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 12/23/2008] [Indexed: 05/27/2023]
Abstract
The production of oat (Avena sativa L.) phytoalexins, avenanthramides, occurs in response to elicitor treatment with oligo-N-acetylchitooligosaccharides. In this study, avenanthramides production was investigated by techniques that provide high spatial and temporal resolution in order to clarify the process of phytoalexin production at the cellular level. The amount of avenanthramides accumulation in a single mesophyll cell was quantified by a combination of laser micro-sampling and low-diffuse nanoflow liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) techniques. Avenanthramides, NAD(P)H and chlorophyll were also visualized in elicitor-treated mesophyll cells using line-scanning fluorescence microscopy. We found that elicitor-treated mesophyll cells could be categorized into three characteristic cell phases, which occurred serially over time. Phase 0 indicated the normal cell state before metabolic or morphological change in response to elicitor, in which the cells contained abundant NAD(P)H. In phase 1, rapid NAD(P)H oxidation and marked movement of chloroplasts occurred, and this phase was the early stage of avenanthramides biosynthesis. In phase 2, avenanthramides accumulation was maximized, and chloroplasts were degraded. Avenanthramides appear to be synthesized in the chloroplast, because a fluorescence signal originating from avenanthramides was localized to the chloroplasts. Moreover, our results indicated that avenanthramides biosynthesis and the hypersensitive response (HR) occurred in identical cells. Thus, the avenanthramides production may be one of sequential events programmed in HR leading to cell death. Furthermore, the phase of the defense response was different among mesophyll cells simultaneously treated with elicitor. These results suggest that individual cells may have different susceptibility to the elicitor.
Collapse
Affiliation(s)
- Yoshihiro Izumi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Moco S, Schneider B, Vervoort J. Plant Micrometabolomics: The Analysis of Endogenous Metabolites Present in a Plant Cell or Tissue. J Proteome Res 2009; 8:1694-703. [DOI: 10.1021/pr800973r] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sofia Moco
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, and Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Bernd Schneider
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, and Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Jacques Vervoort
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, and Max-Planck-Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| |
Collapse
|
11
|
Sawchuk MG, Donner TJ, Head P, Scarpella E. Unique and overlapping expression patterns among members of photosynthesis-associated nuclear gene families in Arabidopsis. PLANT PHYSIOLOGY 2008; 148:1908-24. [PMID: 18820083 PMCID: PMC2593682 DOI: 10.1104/pp.108.126946] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/24/2008] [Indexed: 05/18/2023]
Abstract
Light provides crucial positional information in plant development, and the morphogenetic processes that are orchestrated by light signals are triggered by changes of gene expression in response to variations in light parameters. Control of expression of members of the RbcS and Lhc families of photosynthesis-associated nuclear genes by light cues is a paradigm for light-regulated gene transcription, but high-resolution expression profiles for these gene families are lacking. In this study, we have investigated expression patterns of members of the RbcS and Lhc gene families in Arabidopsis (Arabidopsis thaliana) at the cellular level during undisturbed development and upon controlled interference of the light environment. Members of the RbcS and Lhc gene families are expressed in specialized territories, including root tip, leaf adaxial, abaxial, and epidermal domains, and with distinct chronologies, identifying successive stages of leaf mesophyll ontogeny. Defined spatial and temporal overlap of gene expression fields suggest that the light-harvesting and photosynthetic apparatus may have a different polypeptide composition in different cells and that such composition could change over time even within the same cell.
Collapse
Affiliation(s)
- Megan G Sawchuk
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | |
Collapse
|
12
|
Nelson T, Gandotra N, Tausta SL. Plant cell types: reporting and sampling with new technologies. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:567-73. [PMID: 18653377 DOI: 10.1016/j.pbi.2008.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 05/21/2023]
Abstract
Plants have relatively few cell types, but their specialized functions and their interactions are essential for physiology, development, and defense. The contributions of individual cells have been distinguished by methods including in situ reporting, cell sampling, and cell separation, thus far mostly limited to measurement of single transcripts, proteins, or metabolites. Advances in transcriptomics, proteomics, metabolomics, and activity assays with small samples and in the modeling of these data into networks of expression, regulation, interaction, and metabolism make it possible to evaluate the roles of cell types at system levels. Recent analyses include cell types of developing roots, bundle sheath and mesophyll cells of C4-type leaves, xylem and phloem cells of vascular systems, and specialized regions of embryos and shoot apices.
Collapse
Affiliation(s)
- Timothy Nelson
- Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208104, New Haven, CT 06520-8104, USA.
| | | | | |
Collapse
|
13
|
Hölscher D, Schneider B. Application of Laser-Assisted Microdissection for Tissue and Cell-Specific Analysis of RNA, Proteins, and Metabolites. PROGRESS IN BOTANY 2008. [DOI: 10.1007/978-3-540-72954-9_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Truernit E, Hibberd JM. Immunogenic tagging of chloroplasts allows their isolation from defined cell types. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:926-32. [PMID: 17461787 DOI: 10.1111/j.1365-313x.2007.03113.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chloroplast structure varies depending on cell type. Currently it is difficult to obtain insight into how differences in chloroplast structure relate to function, as it is often not possible to isolate chloroplasts from specific cells. To address this, we have developed an approach that involves labelling chloroplasts from individual cell types by placing the foreign yellow fluorescent protein (YFP) on their outer surface, and then isolating those labelled chloroplasts immunogenically. Cell specificity is achieved through the use of enhancer trap lines. When whole leaves are homogenized, a mixture of labelled and unlabelled chloroplasts is released, but magnetic beads coated with antibodies to the green fluorescent protein (GFP) allow the labelled chloroplasts to be isolated. Chloroplasts from spongy mesophyll, vascular and epidermal cells of Arabidopsis thaliana were obtained in this way, and semi-quantitative RT-PCR showed that the abundance of various chloroplast transcripts differed between these three cell types. The approach is based on genetic logic, and so could be applied to the isolation of various organelles or subcellular compartments from transformable organisms other than A. thaliana.
Collapse
Affiliation(s)
- Elisabeth Truernit
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
15
|
Kajiyama S, Harada K, Fukusaki E, Kobayashi A. Single cell-based analysis of torenia petal pigments by a combination of ArF excimer laser micro sampling and nano-high performance liquid chromatography (HPLC)-mass spectrometry. J Biosci Bioeng 2007; 102:575-8. [PMID: 17270726 DOI: 10.1263/jbb.102.575] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 09/26/2006] [Indexed: 11/17/2022]
Abstract
The molecular constituents of the petal pigments of the Torenia plant (Torenia hybrida) were analyzed on a single-cell basis by a combination of newly developed laser-microsampling and nano-flow liquid chromatography-electro spray ionization mass spectrometry (LC-ESIMS) techniques. Our method should provide a facile method for obtaining precise metabolic profiles of each cell in a single plant tissue.
Collapse
Affiliation(s)
- Shin'ichiro Kajiyama
- Department of Biotechnology, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
16
|
Ohtsu K, Takahashi H, Schnable PS, Nakazono M. Cell type-specific gene expression profiling in plants by using a combination of laser microdissection and high-throughput technologies. PLANT & CELL PHYSIOLOGY 2007; 48:3-7. [PMID: 17148694 DOI: 10.1093/pcp/pcl049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Laser microdissection (LM) allows for the isolation of specific cells of interest from heterogeneous tissues under direct microscopic visualization with the assistance of a laser beam. By permitting global analyses of gene expression and metabolites in the selected cells, it is a powerful tool for understanding the biological processes in individual cell types during development or in response to various stimuli. Recently, LM technology has been successfully applied to the separation of individual plant cell types. Here, we provide an overview of applications of LM combined with high-throughput technologies including transcript analyses [microarrays, serial analysis of gene expression (SAGE) and 454-sequencing], proteomic analyses and metabolomic profiling, for cell type-specific gene expression analyses in plants.
Collapse
Affiliation(s)
- Kazuhiro Ohtsu
- Department of Agronomy, Iowa State University, Ames, IA 50011-3650, USA
| | | | | | | |
Collapse
|
17
|
Cai S, Lashbrook CC. Laser capture microdissection of plant cells from tape-transferred paraffin sections promotes recovery of structurally intact RNA for global gene profiling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:628-37. [PMID: 17026538 DOI: 10.1111/j.1365-313x.2006.02886.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Laser capture microdissection and related technologies permit the harvest of individual cells and cell types. Isolation of either nucleic acids or proteins from laser-captured cells supports such downstream applications as the construction of cell-specific cDNA libraries and the profiling of expressed genes and proteins. The success of these endeavors is dependent upon the yield, purity and structural integrity of the macromolecules derived from harvested cells. Here, we report protocols that promote the isolation of structurally intact RNA from laser-captured cells of paraffin-embedded tissues. The use of a tape transfer system that obviates the need to wet paraffin sections prior to slide mounting significantly increases RNA structural quality. Integrity is assessed directly via electrophoretic separation of picogram-nanogram levels of total RNA isolated from multiple cell types, including those comprising Arabidopsis ovules, replums and stamen abscission zones. RNA prepared from specialized cells within siliques provided targets for profiling the Arabidopsis genome during replum cell development. Digital northern analysis of transcripts expressed near the threshold of the system's ability to score signal presence suggests that low-abundance transcripts representing as little as approximately 0.002% of total mRNA can be reliably detected. Microarray data reveal a significant shift from primary cell-wall metabolism to lignin biosynthesis in replum tissues during fruit maturation.
Collapse
Affiliation(s)
- Suqin Cai
- Department of Horticulture, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
18
|
Nelson T, Tausta SL, Gandotra N, Liu T. Laser microdissection of plant tissue: what you see is what you get. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:181-201. [PMID: 16669760 DOI: 10.1146/annurev.arplant.56.032604.144138] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Laser microdissection (LM) utilizes a cutting or harvesting laser to isolate specific cells from histological sections; the process is guided by microscopy. This provides a means of removing selected cells from complex tissues, based only on their identification by microscopic appearance, location, or staining properties (e.g., immunohistochemistry, reporter gene expression, etc.). Cells isolated by LM can be a source of cell-specific DNA, RNA, protein or metabolites for subsequent evaluation of DNA modifications, transcript/protein/metabolite profiling, or other cell-specific properties that would be averaged with those of neighboring cell types during analysis of undissected complex tissues. Plants are particularly amenable to the application of LM; the highly regular tissue organization and stable cell walls of plants facilitate the visual identification of most cell types even in unstained tissue sections. Plant cells isolated by LM have been the starting point for a variety of genomic and metabolite studies of specific cell types.
Collapse
Affiliation(s)
- Timothy Nelson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | | | | | |
Collapse
|
19
|
Galbraith DW, Birnbaum K. Global studies of cell type-specific gene expression in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:451-75. [PMID: 16669770 DOI: 10.1146/annurev.arplant.57.032905.105302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Technological advances in expression profiling and in the ability to collect minute quantities of tissues have come together to allow a growing number of global transcriptional studies at the cell level in plants. Microarray technology, with a choice of cDNA or oligo-based slides, is now well established, with commercial full-genome platforms for rice and Arabidopsis and extensive expressed sequence tag (EST)-based designs for many other species. Microdissection and cell sorting are two established methodologies that have been used in conjunction with microarrays to provide an early glimpse of the transcriptional landscape at the level of individual cell types. The results indicate that much of the transcriptome is compartmentalized. A minor but consistent percentage of transcripts appear to be unique to specific cell types. Functional analyses of cell-specific patterns of gene expression are providing important clues to cell-specific functions. The spatial dissection of the transcriptome has also yielded insights into the localized mediators of hormone inputs and promises to provide detail on cell-specific effects of microRNAs.
Collapse
Affiliation(s)
- David W Galbraith
- Department of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|