1
|
Banerjee S, Agarwal P, Choudhury SR, Roy S. MYB4, a member of R2R3-subfamily of MYB transcription factor functions as a repressor of key genes involved in flavonoid biosynthesis and repair of UV-B induced DNA double strand breaks in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108698. [PMID: 38714132 DOI: 10.1016/j.plaphy.2024.108698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/31/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Plants accumulate flavonoids as part of UV-B acclimation, while a high level of UV-B irradiation induces DNA damage and leads to genome instability. Here, we show that MYB4, a member of the R2R3-subfamily of MYB transcription factor plays important role in regulating plant response to UV-B exposure through the direct repression of the key genes involved in flavonoids biosynthesis and repair of DNA double-strand breaks (DSBs). Our results demonstrate that MYB4 inhibits seed germination and seedling establishment in Arabidopsis following UV-B exposure. Phenotype analyses of atmyb4-1 single mutant line along with uvr8-6/atmyb4-1, cop1-6/atmyb4-1, and hy5-215/atmyb4-1 double mutants indicate that MYB4 functions downstream of UVR8 mediated signaling pathway and negatively affects UV-B acclimation and cotyledon expansion. Our results indicate that MYB4 acts as transcriptional repressor of two key flavonoid biosynthesis genes, including 4CL and FLS, via directly binding to their promoter, thus reducing flavonoid accumulation. On the other hand, AtMYB4 overexpression leads to higher accumulation level of DSBs along with repressed expression of several key DSB repair genes, including AtATM, AtKU70, AtLIG4, AtXRCC4, AtBRCA1, AtSOG1, AtRAD51, and AtRAD54, respectively. Our results further suggest that MYB4 protein represses the expression of two crucial DSB repair genes, AtKU70 and AtXRCC4 through direct binding with their promoters. Together, our results indicate that MYB4 functions as an important coordinator to regulate plant response to UV-B through transcriptional regulation of key genes involved in flavonoids biosynthesis and repair of UV-B induced DNA damage.
Collapse
Affiliation(s)
- Samrat Banerjee
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India
| | - Puja Agarwal
- Constituent College in Purnea University, Purnia, 854301, Bihar, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Sujit Roy
- Department of Botany, UGC Center for Advanced Studies, The University of Burdwan, Golapbag Campus, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
2
|
Liu Q, Wang T, Ke M, Qian C, Li J, Huang X, Gao Z, Chen X, Tu T. UV-B Radiation Disrupts Membrane Lipid Organization and Suppresses Protein Mobility of GmNARK in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1536. [PMID: 38891343 PMCID: PMC11174901 DOI: 10.3390/plants13111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While it is well known that plants interpret UV-B as an environmental cue and a potential stressor influencing their growth and development, the specific effects of UV-B-induced oxidative stress on the dynamics of membrane lipids and proteins remain underexplored. Here, we demonstrate that UV-B exposure notably increases the formation of ordered lipid domains on the plasma membrane (PM) and significantly alters the behavior of the Glycine max nodule autoregulation receptor kinase (GmNARK) protein in Arabidopsis leaves. The GmNARK protein was located on the PM and accumulated as small particles in the cytoplasm. We found that UV-B irradiation interrupted the lateral diffusion of GmNARK proteins on the PM. Furthermore, UV-B light decreases the efficiency of surface molecule internalization by clathrin-mediated endocytosis (CME). In brief, UV-B irradiation increased the proportion of the ordered lipid phase and disrupted clathrin-dependent endocytosis; thus, the endocytic trafficking and lateral mobility of GmNARK protein on the plasma membrane are crucial for nodule formation tuning. Our results revealed a novel role of low-intensity UV-B stress in altering the organization of the plasma membrane and the dynamics of membrane-associated proteins.
Collapse
Affiliation(s)
- Qiulin Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianyu Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meiyu Ke
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Jiejie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China;
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (C.Q.); (X.H.)
| | - Zhen Gao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (T.W.); (M.K.); (Z.G.)
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu Chen
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianli Tu
- Horticultural Plant Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Shu P, Li M, Zhao N, Wang Y, Zhang L, Du Z. Efficacy and mechanism of retinyl palmitate against UVB-induced skin photoaging. Front Pharmacol 2023; 14:1278838. [PMID: 37927602 PMCID: PMC10622759 DOI: 10.3389/fphar.2023.1278838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/04/2023] [Indexed: 11/07/2023] Open
Abstract
Retinyl palmitate (RP) is a vitamin A derivative that has been widely used in anti-aging and skin treatment. The aim of this study is to investigate the effect of RP on UVB (Ultraviolet radiation B) induced photoaging and its potential mechanism. Immunofluorescence assay demonstrates that RP can reduce collagen degradation in skin cells by UVB radiation and reduce apoptosis of skin cells. Cell migration assay reveals that RP can increase cell migration rate, helping to repair skin damage and restore cell viability. Immunohistochemical assays indicate that RP can significantly reduce the expression of IL-6, IL-1β, TNF-α induced by UVB radiation. Moreover, metabolomics and transcriptomics results suggest that RP regulates several metabolic pathways and gene expression, particularly in inflammatory signaling pathways, collagen synthesis and apoptosis, exhibiting significant regulatory effects. Furthermore, network pharmacological analysis predicts that RP may affect UVB-induced photoaging by regulating multiple key proteins and signaling pathways. Overall, this study demonstrates that RP has significant anti-photoaging ability, acting through several pathways including inhibition of inflammatory response, promotion of collagen synthesis and inhibition of apoptosis. These results provide a scientific basis for the application of RP in skin anti-photoaging and therapy, enabling the potential usage of RP to skin care products.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Menggeng Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Yuan Wang
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xing Jiang, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Liu X, Sun W, Ma B, Song Y, Guo Q, Zhou L, Wu K, Zhang X, Zhang C. Genome-wide analysis of blueberry B-box family genes and identification of members activated by abiotic stress. BMC Genomics 2023; 24:584. [PMID: 37789264 PMCID: PMC10546702 DOI: 10.1186/s12864-023-09704-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND B-box (BBX) proteins play important roles in regulating plant growth, development, and abiotic stress responses. BBX family genes have been identified and functionally characterized in many plant species, but little is known about the BBX family in blueberry (Vaccinium corymbosum). RESULT In this study, we identified 23 VcBBX genes from the Genome Database for Vaccinium (GDV). These VcBBXs can be divided into five clades based on gene structures and conserved domains in their encoded proteins. The prediction of cis-acting elements in the upstream sequences of VcBBX genes and protein-protein interactions indicated that VcBBX proteins are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of transcriptome deep sequencing (RNA-seq) data showed that VcBBX genes exhibited organ-specific expression pattern and 11 VcBBX genes respond to ultraviolet B (UV-B) radiation. The co-expression analysis revealed that the encoded 11 VcBBX proteins act as bridges integrating UV-B and phytohormone signaling pathways in blueberry under UV-B radiation. Reverse-transcription quantitative PCR (RT-qPCR) analysis showed that most VcBBX genes respond to drought, salt, and cold stress. Among VcBBX proteins, VcBBX24 is highly expressed in all the organs, not only responds to abiotic stress, but it also interacts with proteins in UV-B and phytohormone signaling pathways, as revealed by computational analysis and co-expression analysis, and might be an important regulator integrating abiotic stress and phytohormone signaling networks. CONCLUSIONS Twenty-three VcBBX genes were identified in blueberry, in which, 11 VcBBX genes respond to UV-B radiation, and act as bridges integrating UV-B and phytohormone signaling pathways according to RNA-seq data. The expression patterns under abiotic stress suggested that the functional roles of most VcBBX genes respose to drought, salt, and cold stress. Our study provides a useful reference for functional analysis of VcBBX genes and for improving abiotic stress tolerance in blueberry.
Collapse
Affiliation(s)
- Xiaoming Liu
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Wenying Sun
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Bin Ma
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Yan Song
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Qingxun Guo
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Lianxia Zhou
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Kuishen Wu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Xinsheng Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
5
|
Abramova A, Vereshchagin M, Kulkov L, Kreslavski VD, Kuznetsov VV, Pashkovskiy P. Potential Role of Phytochromes A and B and Cryptochrome 1 in the Adaptation of Solanum lycopersicum to UV-B Radiation. Int J Mol Sci 2023; 24:13142. [PMID: 37685948 PMCID: PMC10488226 DOI: 10.3390/ijms241713142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
UV-B causes both damage to the photosynthetic apparatus (PA) and the activation of specific mechanisms that protect the PA from excess energy and trigger a cascade of regulatory interactions with different photoreceptors, including phytochromes (PHYs) and cryptochromes (CRYs). However, the role of photoreceptors in plants' responses to UV-B radiation remains undiscovered. This study explores some of these responses using tomato photoreceptor mutants (phya, phyb1, phyab2, cry1). The effects of UV-B exposure (12.3 µmol (photons) m-2 s-1) on photosynthetic rates and PSII photochemical activity, the contents of photosynthetic and UV-absorbing pigments and anthocyanins, and the nonenzymatic antioxidant capacity (TEAC) were studied. The expression of key light-signaling genes, including UV-B signaling and genes associated with the biosynthesis of chlorophylls, carotenoids, anthocyanins, and flavonoids, was also determined. Under UV-B, phyab2 and cry1 mutants demonstrated a reduction in the PSII effective quantum yield and photosynthetic rate, as well as a reduced value of TEAC. At the same time, UV-B irradiation led to a noticeable decrease in the expression of the ultraviolet-B receptor (UVR8), repressor of UV-B photomorphogenesis 2 (RUP2), cullin 4 (CUL4), anthocyanidin synthase (ANT), phenylalanine ammonia-lease (PAL), and phytochrome B2 (PHYB2) genes in phyab2 and RUP2, CUL4, ANT, PAL, and elongated hypocotyl 5 (HY5) genes in the cry1 mutant. The results indicate the mutual regulation of UVR8, PHYB2, and CRY1 photoreceptors, but not PHYB1 and PHYA, in the process of forming a response to UV-B irradiation in tomato.
Collapse
Affiliation(s)
- Anna Abramova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Leonid Kulkov
- Department of Technologies for the Production of Vegetable, Medicinal and Essential Oils, Russian State Agrarian University, Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street 49, Moscow 127550, Russia;
| | - Vladimir D. Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino 142290, Russia
| | - Vladimir V. Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (A.A.); (M.V.); (V.V.K.); (P.P.)
| |
Collapse
|
6
|
Chen Z, Zhang Y, Wu X, Chen L, Li X, Wang G. UV-B radiation increased the sensitivity of Tibetan soil cyanobacterium Loriellopsis cavernicola to the herbicide glyphosate. CHEMOSPHERE 2023:139141. [PMID: 37285984 DOI: 10.1016/j.chemosphere.2023.139141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The high concentrations of herbicide and UV-B radiation are two stresses for Tibetan soil microorganisms, but there is limited information about the combined effects of herbicide and UV-B radiation on their levels of stress. In this study, the Tibetan soil cyanobacterium Loriellopsis cavernicola was used to investigate the combined inhibitory effect of the herbicide glyphosate and UV-B radiation on the cyanobacterial photosynthetic electron transport through an analysis of the photosynthetic activity, photosynthetic pigments, chlorophyll fluorescence and antioxidant system activity. The results demonstrated that treatment with herbicide or UV-B radiation and the combination of both stresses caused a decrease in the photosynthetic activity, interfered with the photosynthetic electron transport, and caused the accumulation of oxygen radicals and the degradation of photosynthetic pigments. In contrast, the combined treatment of glyphosate and UV-B radiation had a synergistic effect, i.e., the sensitivity of cyanobacteria to glyphosate increased in the presence of UV-B radiation, which caused the photosynthesis of cyanobacteria to have a greater impact. Since cyanobacteria are the primary producers of soil ecosystems, a high intensity of UV-B radiation in the plateau areas could enhance the inhibition of glyphosate on cyanobacteria, which could affect the ecological health and sustainable development of plateau soils.
Collapse
Affiliation(s)
- Zixu Chen
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Yixiao Zhang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China
| | - Xinguo Wu
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Lanzhou Chen
- School of Resource & Environmental Science, Wuhan University, Wuhan, 430072, China
| | - Xiaoyan Li
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China.
| | - Gaohong Wang
- Institute of Hydrobiology, Chinese of Sciences Academy, Wuhan, 430072, China; School of Science, Tibet University, Lasha, 850000, China.
| |
Collapse
|
7
|
UVB-Pretreatment-Enhanced Cadmium Absorption and Enrichment in Poplar Plants. Int J Mol Sci 2022; 24:ijms24010052. [PMID: 36613496 PMCID: PMC9820001 DOI: 10.3390/ijms24010052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The phenomenon of cross adaptation refers to the ability of plants to improve their resistance to other stress after experiencing one type of stress. However, there are limited reports on how ultraviolet radiation B (UVB) pretreatment affects the enrichment, transport, and tolerance of cadmium (Cd) in plants. Since an appropriate UVB pretreatment has been reported to change plant tolerance to stress, we hypothesized that this application could alter plant uptake and tolerance to heavy metals. In this study, a woody plant species, 84K poplar (Populus alba × Populus glandulosa), was pretreated with UVB and then subjected to Cd treatment. The RT-qPCR results indicated that the UVB-treated plants could affect the expression of Cd uptake, transport, and detoxification-related genes in plants, and that the UVB-Pretreatment induced the ability of Cd absorption in plants, which significantly enriched Cd accumulation in several plant organs, especially in the leaves and roots. The above results showed that the UVB-Pretreatment further increased the toxicity of Cd to plants in UVB-Cd group, which was shown as increased leaf malonaldehyde (MDA) and hydrogen peroxide (H2O2) content, as well as downregulated activities of antioxidant enzymes such as Superoxide Dismutase (SOD), Catalase (CAT), and Ascorbate peroxidase (APX). Therefore, poplar plants in the UVB-Cd group presented a decreased photosynthesis and leaf chlorosis. In summary, the UVB treatment improved the Cd accumulation ability of poplar plants, which could provide some guidance for the potential application of forest trees in the phytoremediation of heavy metals in the future.
Collapse
|
8
|
Lee JH, Tanaka S, Goto E. Growth and Biosynthesis of Phenolic Compounds of Canola ( Brassica napus L.) to Different Ultraviolet (UV)-B Wavelengths in a Plant Factory with Artificial Light. PLANTS (BASEL, SWITZERLAND) 2022; 11:1732. [PMID: 35807684 PMCID: PMC9268760 DOI: 10.3390/plants11131732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The application of ultraviolet-B (UV-B) irradiation to supplement visible light as an elicitor to increase bioactive compounds under controlled conditions is increasing. This study aimed to evaluate the effects of UV-B dose and wavelength region (280−300 and 300−320 nm) on the morphological, physiological, and biochemical responses of canola plants (Brassica napus L.). Canola plants (17 days after sowing) were subjected to various UV-B intensities (i.e., 0.3, 0.6, and 0.9 W m−2) and were divided into cut and non-cut treatments for each UV treatment. Plant growth parameters exhibited different trends based on the treated UV irradiation intensity. Plant growth gradually decreased as the UV irradiation intensity and exposure time increased. Despite the same UV irradiation intensity, plant response varied significantly depending on the presence or absence of a short-wavelength cut filter (<300 nm). Canola plants suffered more leaf damage in nonfilter treatments containing shorter wavelengths (280−300 nm). UV treatment effectively activates the expression of secondary metabolite biosynthetic genes, differing depending on the UV irradiation intensity. Our results suggest that both UV irradiation intensity and wavelength should be considered when enhancing antioxidant phytochemicals without inhibiting plant growth in a plant factory with artificial light.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Saki Tanaka
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
- Plant Molecular Research Center, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|
9
|
|
10
|
Zhong Z, Wang X, Yin X, Tian J, Komatsu S. Morphophysiological and Proteomic Responses on Plants of Irradiation with Electromagnetic Waves. Int J Mol Sci 2021; 22:12239. [PMID: 34830127 PMCID: PMC8618018 DOI: 10.3390/ijms222212239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/25/2023] Open
Abstract
Electromagnetic energy is the backbone of wireless communication systems, and its progressive use has resulted in impacts on a wide range of biological systems. The consequences of electromagnetic energy absorption on plants are insufficiently addressed. In the agricultural area, electromagnetic-wave irradiation has been used to develop crop varieties, manage insect pests, monitor fertilizer efficiency, and preserve agricultural produce. According to different frequencies and wavelengths, electromagnetic waves are typically divided into eight spectral bands, including audio waves, radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays. In this review, among these electromagnetic waves, effects of millimeter waves, ultraviolet, and gamma rays on plants are outlined, and their response mechanisms in plants through proteomic approaches are summarized. Furthermore, remarkable advancements of irradiating plants with electromagnetic waves, especially ultraviolet, are addressed, which shed light on future research in the electromagnetic field.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Xiaojian Yin
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing 211198, China;
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China; (Z.Z.); (J.T.)
| | - Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
11
|
Miao T, Li D, Huang Z, Huang Y, Li S, Wang Y. Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2021; 16:1966587. [PMID: 34463604 PMCID: PMC8526026 DOI: 10.1080/15592324.2021.1966587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plant response to light is a complex and diverse phenomenon. Several studies have elucidated the mechanisms via which light and hormones regulate hypocotyl growth. However, the hormone-dependent ultraviolet-B (UV-B) response in plants remains obscure. Involvement of gibberellins (GAs) in UV-B-induced hypocotyl inhibition and its mechanisms in Arabidopsis thaliana were investigated in the present research. UV-B exposure remarkably decreased the endogenous GA3 content through the UV RESISTANCE LOCUS 8 (UVR8) receptor pathway, and exogenous GA3 partially restored the hypocotyl growth. UV-B irradiation affected the expression levels of GA metabolism-related genes (GA20ox1, GA2ox1 and GA3ox1) in the hy5-215 mutant, resulting in increased GA content.ELONGATED HYPOCOTYL 5 (HY5) promoted the accumulation of DELLA proteins under UV-B radiation; HY5 appeared to regulate the abundance of DELLAs at the transcriptional level under UV-B. As a result, the GA3 content decreased, which eventually led to the shortening of the hypocotyl. To conclude, the present study provides new insight into the regulation of plant photomorphogenesis under UV-B.
Collapse
Affiliation(s)
- Tingting Miao
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Dezhi Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Ziyuan Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Yuewei Huang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
- CONTACT Shaoshan Li Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou510631, China
| | - Yan Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
- Yan Wang College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Ekwealor JTB, Mishler BD. Transcriptomic Effects of Acute Ultraviolet Radiation Exposure on Two Syntrichia Mosses. FRONTIERS IN PLANT SCIENCE 2021; 12:752913. [PMID: 34777431 PMCID: PMC8581813 DOI: 10.3389/fpls.2021.752913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Ultraviolet radiation (UVR) is a major environmental stressor for terrestrial plants. Here we investigated genetic responses to acute broadband UVR exposure in the highly desiccation-tolerant mosses Syntrichia caninervis and Syntrichia ruralis, using a comparative transcriptomics approach. We explored whether UVR protection is physiologically plastic and induced by UVR exposure, addressing the following questions: (1) What is the timeline of changes in the transcriptome with acute UVR exposure in these two species? (2) What genes are involved in the UVR response? and (3) How do the two species differ in their transcriptomic response to UVR? There were remarkable differences between the two species after 10 and 30 min of UVR exposure, including no overlap in significantly differentially abundant transcripts (DATs) after 10 min of UVR exposure and more than twice as many DATs for S. caninervis as there were for S. ruralis. Photosynthesis-related transcripts were involved in the response of S. ruralis to UVR, while membrane-related transcripts were indicated in the response of S. caninervis. In both species, transcripts involved in oxidative stress and those important for desiccation tolerance (such as late embryogenesis abundant genes and early light-inducible protein genes) were involved in response to UVR, suggesting possible roles in UVR tolerance and cross-talk with desiccation tolerance in these species. The results of this study suggest potential UVR-induced responses that may have roles outside of UVR tolerance, and that the response to URV is different in these two species, perhaps a reflection of adaptation to different environmental conditions.
Collapse
Affiliation(s)
- Jenna T. B. Ekwealor
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Brent D. Mishler
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- The University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
13
|
Wang Y, Huang C, Zeng W, Zhang T, Zhong C, Deng S, Tang T. Epigenetic and transcriptional responses underlying mangrove adaptation to UV-B. iScience 2021; 24:103148. [PMID: 34646986 PMCID: PMC8496181 DOI: 10.1016/j.isci.2021.103148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/31/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022] Open
Abstract
Tropical plants have adapted to strong solar ultraviolet (UV) radiation. Here we compare molecular responses of two tropical mangroves Avecennia marina and Rhizophora apiculata to high-dose UV-B. Whole-genome bisulfate sequencing indicates that high UV-B induced comparable hyper- or hypo-methylation in three sequence contexts (CG, CHG, and CHH, where H refers to A, T, or C) in A. marina but mainly CHG hypomethylation in R. apiculata. RNA and small RNA sequencing reveals UV-B induced relaxation of transposable element (TE) silencing together with up-regulation of TE-adjacent genes in R. apiculata but not in A. marina. Despite conserved upregulation of flavonoid biosynthesis and downregulation of photosynthesis genes caused by high UV-B, A. marina specifically upregulated ABC transporter and ubiquinone biosynthesis genes that are known to be protective against UV-B-induced damage. Our results point to divergent responses underlying plant UV-B adaptation at both the epigenetic and transcriptional level.
Collapse
Affiliation(s)
- Yushuai Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Chenglong Huang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Weishun Zeng
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Tianyuan Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou 571100, Hainan, People’s Republic of China
| | - Shulin Deng
- CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
- Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People’s Republic of China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, People’s Republic of China
| |
Collapse
|
14
|
Pardi SA, Nusinow DA. Out of the Dark and Into the Light: A New View of Phytochrome Photobodies. FRONTIERS IN PLANT SCIENCE 2021; 12:732947. [PMID: 34531891 PMCID: PMC8438518 DOI: 10.3389/fpls.2021.732947] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/05/2021] [Indexed: 05/27/2023]
Abstract
Light is a critical environmental stimulus for plants, serving as an energy source via photosynthesis and a signal for developmental programming. Plants perceive light through various light-responsive proteins, termed photoreceptors. Phytochromes are red-light photoreceptors that are highly conserved across kingdoms. In the model plant Arabidopsis thaliana, phytochrome B serves as a light and thermal sensor, mediating physiological processes such as seedling germination and establishment, hypocotyl growth, chlorophyll biogenesis, and flowering. In response to red light, phytochromes convert to a biologically active form, translocating from the cytoplasm into the nucleus and further compartmentalizes into subnuclear compartments termed photobodies. PhyB photobodies regulate phytochrome-mediated signaling and physiological outputs. However, photobody function, composition, and biogenesis remain undefined since their discovery. Based on photobody cellular dynamics and the properties of internal components, photobodies have been suggested to undergo liquid-liquid phase separation, a process by which some membraneless compartments form. Here, we explore photobodies as environmental sensors, examine the role of their protein constituents, and outline the biophysical perspective that photobodies may be undergoing liquid-liquid phase separation. Understanding the molecular, cellular, and biophysical processes that shape how plants perceive light will help in engineering improved sunlight capture and fitness of important crops.
Collapse
Affiliation(s)
- Sarah A. Pardi
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Dmitri A. Nusinow
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
15
|
Rácz A, Hideg É. Narrow-Band 311 nm Ultraviolet-B Radiation Evokes Different Antioxidant Responses from Broad-Band Ultraviolet. PLANTS 2021; 10:plants10081570. [PMID: 34451615 PMCID: PMC8400681 DOI: 10.3390/plants10081570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022]
Abstract
Supplemental narrow-band 311 nm UV-B radiation was applied in order to study the effect of this specific wavelength on tobacco as a model plant. UV-B at photon fluxes varying between 2.9 and 9.9 μmol m−2 s−1 was applied to supplement 150 μmol m−2 s−1 photosynthetically active radiation (PAR) for four hours in the middle of the light period for four days. Narrow-band UV-B increased leaf flavonoid and phenolic acid contents. In leaves exposed to 311 nm radiation, superoxide dismutase activity increased, but phenolic peroxidase activity decreased, and the changes were proportional to the UV flux. Ascorbate peroxidase activities were not significantly affected. Narrow-band UV-B caused a dose-dependent linear decrease in the quantum efficiency of photosystem II, up to approximately 10% loss. A parallel decrease in non-regulated non-photochemical quenching indicates potential electron transfer to oxygen in UV-treated leaves. In addition to a flux-dependent increase in the imbalance between enzymatic H2O2 production and neutralization, this resulted in an approximately 50% increase in leaf H2O2 content under 2.9–6 μmol m−2 s−1 UV-B. Leaf H2O2 decreased to control levels under higher UV-B fluxes due to the onset of increased non-enzymatic H2O2- and superoxide-neutralizing capacities, which were not observed under lower fluxes. These antioxidant responses to 311 nm UV-B were different from our previous findings in plants exposed to broad-band UV-B. The results suggest that signaling pathways activated by 311 nm radiation are distinct from those stimulated by other wavelengths and support the heterogeneous regulation of plant UV responses.
Collapse
|
16
|
UV Lighting in Horticulture: A Sustainable Tool for Improving Production Quality and Food Safety. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultraviolet (UV) is a component of solar radiation that can be divided into three types defined by waveband: UV-A (315–400 nm), UV-B (280–315 nm), and UV-C (<280 nm). UV light can influence the physiological responses of plants. Wavelength, intensity, and exposure have a great impact on plant growth and quality. Interaction between plants and UV light is regulated by photoreceptors such as UV Resistance Locus 8 (UVR8) that enables acclimation to UV-B stress. Although UV in high doses is known to damage quality and production parameters, some studies show that UV in low doses may stimulate biomass accumulation and the synthesis of healthy compounds that mainly absorb UV. UV exposure is known to induce variations in plant architecture, important in ornamental crops, increasing their economic value. Abiotic stress induced by UV exposure increases resistance to insects and pathogens, and reduce postharvest quality depletion. This review highlights the role that UV may play in plant growth, quality, photomorphogenesis, and abiotic/biotic stress resistance.
Collapse
|
17
|
Fedenia L, Klein RR, Dykes L, Rooney WL, Klein PE. Phenotypic, Phytochemical, and Transcriptomic Analysis of Black Sorghum (Sorghum bicolor L. ) Pericarp in Response to Light Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9917-9929. [PMID: 32822185 DOI: 10.1021/acs.jafc.0c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black sorghum [Sorghum bicolor (L.) Moench] is characterized by the black appearance of the pericarp and production of 3-deoxyanthocyanidins (3-DOA), which are valued for their cytotoxicity to cancer cells and as natural food colorants and antioxidant additives. The black pericarp phenotype is not fully penetrant in all environments, which implicates the light spectrum and/or photoperiod as the critical factor for trait expression. In this study, black- or red-pericarp genotypes were grown under regimes of visible light, visible light supplemented with UVA or supplemented with UVA plus UVB (or dark control). Pericarp 3-DOAs and pericarp pigmentation were maximized in the black genotype exposed to a light regime supplemented with UVB. Changes in gene expression during black pericarp development revealed that ultraviolet light activates genes related to plant defense, reactive oxygen species, and secondary metabolism, suggesting that 3-DOA accumulation is associated with activation of flavonoid biosynthesis and several overlapping defense and stress signaling pathways.
Collapse
Affiliation(s)
- Lauren Fedenia
- Department of Horticultural Sciences, Texas A&M University, 2133 TAMU, College Station, Texas 77843, United States
| | - Robert R Klein
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, Texas 77845, United States
| | - Linda Dykes
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota 58102, United States
| | - William L Rooney
- Department of Soil and Crop Sciences, Texas A&M University, 2474 TAMU, College Station, Texas 77843, United States
| | - Patricia E Klein
- Department of Horticultural Sciences, Texas A&M University, 2133 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Teixeira RT. Distinct Responses to Light in Plants. PLANTS 2020; 9:plants9070894. [PMID: 32679774 PMCID: PMC7411962 DOI: 10.3390/plants9070894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
Abstract
The development of almost every living organism is, to some extent, regulated by light. When discussing light regulation on biological systems, one is referring to the sun that has long been positioned in the center of the solar system. Through light regulation, all life forms have evolved around the presence of the sun. As soon our planet started to develop an atmospheric shield against most of the detrimental solar UV rays, life invaded land, and in the presence of water, it thrived. Especially for plants, light (solar radiation) is the source of energy that controls a high number of developmental aspects of growth, a process called photomorphogenesis. Once hypocotyls reach soil′s surface, its elongation deaccelerates, and the photosynthetic apparatus is established for an autotrophic growth due to the presence of light. Plants can sense light intensities, light quality, light direction, and light duration through photoreceptors that accurately detect alterations in the spectral composition (UV-B to far-red) and are located throughout the plant. The most well-known mechanism promoted by light occurring on plants is photosynthesis, which converts light energy into carbohydrates. Plants also use light to signal the beginning/end of key developmental processes such as the transition to flowering and dormancy. These two processes are particularly important for plant´s yield, since transition to flowering reduces the duration of the vegetative stage, and for plants growing under temperate or boreal climates, dormancy leads to a complete growth arrest. Understanding how light affects these processes enables plant breeders to produce crops which are able to retard the transition to flowering and avoid dormancy, increasing the yield of the plant.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
19
|
Qian C, Chen Z, Liu Q, Mao W, Chen Y, Tian W, Liu Y, Han J, Ouyang X, Huang X. Coordinated Transcriptional Regulation by the UV-B Photoreceptor and Multiple Transcription Factors for Plant UV-B Responses. MOLECULAR PLANT 2020; 13:777-792. [PMID: 32126287 DOI: 10.1016/j.molp.2020.02.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Non-damaging ultraviolet B (UV-B) light promotes photomorphogenic development and stress acclimation through UV-B-specific signal transduction in Arabidopsis. UV-B irradiation induces monomerization and nuclear translocation of the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, it is not clear how the nuclear localization of UVR8 leads to changes in global gene expression. Here, we reveal that nuclear UVR8 governs UV-B-responsive transcriptional networks in concert with several previously known transcription factors, including ELONGATED HYPOCOTYL 5 (HY5) and PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Based on the transcriptomic analysis, we identify MYB13 as a novel positive regulator in UV-B-induced cotyledon expansion and stress acclimation. MYB13 is UV-B inducible and is predominantly expressed in the cotyledons. Our results demonstrate that MYB13 protein functions as a transcription factor to regulate the expression of genes involved in auxin response and flavonoid biosynthesis through direct binding with their promoters. In addition, photoactivated UVR8 interacts with MYB13 in a UV-B-dependent manner and differentially modulates the affinity of MYB13 with its targets. Taken together, our results elucidate the cooperative function of the UV-B photoreceptor UVR8 with various transcription factors in the nucleus to orchestrate the expression of specific sets of downstream genes and, ultimately, mediate plant responses to UV-B light.
Collapse
Affiliation(s)
- Chongzhen Qian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhiren Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qing Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei Mao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yanling Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wei Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Yan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiupan Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xinhao Ouyang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xi Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
20
|
Lyu G, Li D, Li S, Hu H. STO and GA negatively regulate UV-B-induced Arabidopsis root growth inhibition. PLANT SIGNALING & BEHAVIOR 2019; 14:1675471. [PMID: 31595819 PMCID: PMC6866680 DOI: 10.1080/15592324.2019.1675471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 05/03/2023]
Abstract
Studies on UV-B-induced plant photomorphogenesis mainly focus on Arabidopsis shoots (hypocotyl, leaf, petiole, and stem) but less on roots. In the present research, the low-level UV-B (0.2 W·m-2) induced a decrease in the number of root cells in the meristem zone and an inhibition of the cell length in the maturation zone of roots in Arabidopsis thaliana L.Heynh (Col-0). UV-B-induced root growth inhibition was recovered by the addition of GA3 to culture media. GA3 played an important role in UV-B-induced inhibition of root growth. The cop1-4 mutant with more meristem cell and longer mature cells exhibited longer root length under low-level UV-B. COP1 acted as a positive regulator of root growth under UV-B, through regulation of cell division and elongation. The sto mutant exhibited a shorter root length under UV-B with similar cell length but fewer meristem cells compared with wild type (Col-0). STO only regulated cell division, but cell expansion was not affected. UV-B radiation also inhibited the root growth of uvr8 mutant, and the degree of inhibition was greater than for wild type (Ler). UV-B inhibited the growth of Arabidopsis root, possibly because it changes the GA signal and inhibited cell division and cell elongation, which be related to COP1 and STO genes.
Collapse
Affiliation(s)
- Guizhen Lyu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Dongbing Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Shaoshan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| | - Hongpeng Hu
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
21
|
O'Hara A, Headland LR, Díaz-Ramos LA, Morales LO, Strid Å, Jenkins GI. Regulation of Arabidopsis gene expression by low fluence rate UV-B independently of UVR8 and stress signaling. Photochem Photobiol Sci 2019; 18:1675-1684. [PMID: 31218318 DOI: 10.1039/c9pp00151d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UV-B exposure of plants regulates expression of numerous genes concerned with various responses. Sudden exposure of non-acclimated plants to high fluence rate, short wavelength UV-B induces expression via stress-related signaling pathways that are not specific to the UV-B stimulus, whereas low fluence rates of UV-B can regulate expression via the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8). However, there is little information about whether non-stressful, low fluence rate UV-B treatments can activate gene expression independently of UVR8. Here, transcriptomic analysis of wild-type and uvr8 mutant Arabidopsis exposed to low fluence rate UV-B showed that numerous genes were regulated independently of UVR8. Moreover, nearly all of these genes were distinct to those induced by stress treatments. A small number of genes were expressed at all UV-B fluence rates employed and may be concerned with activation of eustress responses that facilitate acclimation to changing conditions. Expression of the gene encoding the transcription factor ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN 13 (ANAC13) was studied to characterise a low fluence rate, UVR8-independent response. ANAC13 is induced by as little as 0.1 μmol m-2 s-1 UV-B and its regulation is independent of components of the canonical UVR8 signaling pathway COP1 and HY5/HYH. Furthermore, UV-B induced expression of ANAC13 is independent of the photoreceptors CRY1, CRY2, PHOT1 and PHOT2 and phytochromes A, B, D and E. ANAC13 expression is induced over a range of UV-B wavelengths at low doses, with maximum response at 310 nm. This study provides a basis for further investigation of UVR8 and stress independent, low fluence rate UV-B signaling pathway(s).
Collapse
Affiliation(s)
- Andrew O'Hara
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden and Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Lauren R Headland
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - L Aranzazú Díaz-Ramos
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Luis O Morales
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Åke Strid
- Örebro Life Science Center, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
22
|
Fang H, Dong Y, Yue X, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. PLANT, CELL & ENVIRONMENT 2019; 42:2090-2104. [PMID: 30919454 DOI: 10.1111/pce.13552] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation and low temperature promote the accumulation of anthocyanins, which give apple skins their red colour. Although many transcription regulators have been characterized in the UV-B and low-temperature pathways, their interregulation and synergistic effects are not well understood. Here, a B-box transcription factor gene, MdBBX20, was characterized in apple and identified to promote anthocyanin biosynthesis under UV-B conditions in field experiments and when overexpressed in transgenic apple calli. The transcript level of MdBBX20 was significantly induced by UV-B. Specific G-box elements in the promoters of target genes were identified as interaction sites for MdBBX20. Further experimental interrogation of the UV-B signalling pathways showed that MdBBX20 could interact with MdHY5 in vitro and in vivo and that this interaction was required to significantly enhance the promoter activity of MdMYB1. MdBBX20 also responded to low temperature (14°C) with the participation of MdbHLH3, which directly bound a low temperature-response cis elements in the MdBBX20 promoter. These findings demonstrate the molecular mechanism by which MdBBX20 integrates low-temperature- and UV-B-induced anthocyanin accumulation in apple skin.
Collapse
Affiliation(s)
- Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhui Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuanxuan Yue
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiafei Hu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
23
|
Kondou Y, Miyagi Y, Morito T, Fujihira K, Miyauchi W, Moriyama A, Terasawa T, Ishida S, Iwabuchi K, Kubo H, Nishihama R, Ishizaki K, Kohchi T. Physiological function of photoreceptor UVR8 in UV-B tolerance in the liverwort Marchantia polymorpha. PLANTA 2019; 249:1349-1364. [PMID: 30840176 DOI: 10.1007/s00425-019-03090-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/04/2019] [Indexed: 05/08/2023]
Abstract
The physiological importance of MpUVR8 in UV-B resistance and translocation in a UV-B-dependent manner from the cytosol into the nucleus is characterized in Marchantia polymorpha. UV RESISTANCE LOCUS 8 (UVR8) is an ultraviolet-B (UV-B) light receptor functioning for UV-B sensing and tolerance in Arabidopsis thaliana and other species. It is unclear whether UVR8 physiologically functions in UV-B-induced defense responses in Marchantia polymorpha, which belongs to the earliest diverging group of embryophyte lineages. Here, we demonstrate that UVR8 has a physiological function in UV-B tolerance and that there is a UVR8-dependent pathway involved. In addition, a UVR8-independent pathway is revealed. We examine the tissue-specific expression pattern of M. polymorpha UVR8 (MpUVR8), showing that it is highly expressed in the apical notch in thalli and gametangiophores, as well as in antheridial and archegonial heads. Furthermore, Mpuvr8KO plant transformants, in which the MpUVR8 locus was disrupted, were produced and analyzed to understand the physiological and molecular function of MpUVR8. Analysis using these plants indicates the important roles of MpUVR8 and MpUVR8-regulated genes, and of MpUVR8-independent pathways in UV-B tolerance. Subcellular localization of Citrine-fused MpUVR8 in M. polymorpha cells was also investigated. It was found to translocate from the cytosol into the nucleus in response to UV-B irradiation. Our findings indicate strong conservation of the physiological function of UVR8 and the molecular mechanisms for UVR8-dependent signal transduction through regulation of gene expression in embryophytes.
Collapse
Affiliation(s)
- Youichi Kondou
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan.
| | - Yuta Miyagi
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takeshi Morito
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Kenta Fujihira
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Wataru Miyauchi
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Asami Moriyama
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takuya Terasawa
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Kosei Iwabuchi
- Faculty of Science and Engineering, Konan University, Kobe, 658-8501, Japan
| | - Hiroyoshi Kubo
- Department of Biology, Faculty of Science, Shinshu University, Matsumoto, 390-8621, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
24
|
Xu H, Wang Y, Diao L, Wang X, Zhang Y, Zhu J, Liu J, Yao J, Liu Z, Li Y, He F, Wang Z, Liu Y, Li D. UVGD 1.0: a gene-centric database bridging ultraviolet radiation and molecular biology effects in organisms. Int J Radiat Biol 2019; 95:1172-1177. [PMID: 31021279 DOI: 10.1080/09553002.2019.1609127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objectives: Exposing to ultraviolet for a certain time will trigger some significant molecular biology effects in an organism. In the past few decades, varied ultraviolet-associated biological effects as well as their related genes, have been discovered under biologists' efforts. However, information about ultraviolet-related genes is dispersed in thousands of scientific papers, and there is still no study emphasizing on the systematic collection of ultraviolet-related genes. Methods: We collected ultraviolet-related genes and built this gene-centric database UVGD based on literature mining and manual curation. Literature mining was based on the ultraviolet-related abstracts downloaded from PubMed, and we obtained sentences in which ultraviolet keywords and genes co-occur at single-sentence level by using bio-entity recognizer. After that, manual curation was implemented in order to identify whether the genes are related to ultraviolet or not. Results: We built the ultraviolet-related knowledge base UVGD 1.0 (URL: http://biokb.ncpsb.org/UVGD/ ), which contains 663 ultraviolet-related genes, together with 17 associated biological processes, 117 associated phenotypes, and 2628 MeSH terms. Conclusion: UVGD is helpful to understand the ultraviolet-related biological processes in organisms and we believe it would be useful for biologists to study the responding mechanisms to ultraviolet.
Collapse
Affiliation(s)
- Hao Xu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Yan Wang
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Lihong Diao
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Xun Wang
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Yi Zhang
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Jiarun Zhu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Jinying Liu
- b School of Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing , China
| | - Jingwen Yao
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Zhongyang Liu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Yang Li
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Fuchu He
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Zhidong Wang
- c Beijing Institute of Radiation Medicine , Beijing , China
| | - Yuan Liu
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| | - Dong Li
- a State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics , Beijing , China
| |
Collapse
|
25
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
26
|
Jansen MAK, Bilger W, Hideg É, Strid Å, Urban O. Editorial: Interactive effects of UV-B radiation in a complex environment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:1-8. [PMID: 30385007 DOI: 10.1016/j.plaphy.2018.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Marcel A K Jansen
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland; Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic
| | - Wolfgang Bilger
- Botanisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Éva Hideg
- Institute of Biology, University of Pécs, Ifjusag u. 6, H-7624, Pécs, Hungary
| | - Åke Strid
- School of Science & Technology, Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden
| | - Otmar Urban
- Global Change Research Institute CAS, Bělidla 986/4a, CZ-603 00, Brno, Czech Republic.
| |
Collapse
|
27
|
Li C, Liu S, Zhang W, Chen K, Zhang P. Transcriptional profiling and physiological analysis reveal the critical roles of ROS-scavenging system in the Antarctic moss Pohlia nutans under Ultraviolet-B radiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:113-122. [PMID: 30448024 DOI: 10.1016/j.plaphy.2018.10.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 10/30/2018] [Indexed: 05/21/2023]
Abstract
Organisms suffer more harmful ultraviolet radiation in the Antarctica due to the ozone layer destruction. Bryophytes are the dominant flora in the Antarctic continent. However, the molecular mechanism of Antarctic moss adaptation to UV-B radiation remains unclear. In the research, the transcriptional profiling of the Antarctic moss Pohlia nutans under UV-B radiation was conducted by Illumina HiSeq2500 platform. Totally, 72,922 unigenes with N50 length of 1434 bp were generated. Differential expression analysis demonstrated that 581 unigenes were markedly up-regulated and 249 unigenes were significantly down-regulated. The gene clustering analysis showed that these differentially expressed genes (DEGs) includes several transcription factors, photolyases, antioxidant enzymes, and flavonoid biosynthesis-related genes. Further analyses suggested that the content of malondialdehyde (MDA), the activities of several antioxidant enzymes (i.e., catalase, peroxidase, and glutathione reductase) were significantly enhanced upon UV-B treatment. Furthermore, the content of flavonoids and the gene expression levels of their synthesis-related enzymes were also markedly increased when plants were exposed to UV-B light. Therefore, these results suggested that the pathways of antioxidant enzymes, flavonoid synthesis and photolyases were the main defense systems that contributed to the adaption of Pohlia nutans to the enhanced UV-B radiation in Antarctica.
Collapse
Affiliation(s)
- Chengcheng Li
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Shenghao Liu
- Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
| | - Wei Zhang
- School of Environment, Qingdao University, Qingdao, 266061, China
| | - Kaoshan Chen
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
28
|
Fraikin GY, Belenikina NS, Rubin AB. Damaging and Defense Processes Induced in Plant Cells by UVB Radiation. BIOL BULL+ 2018. [DOI: 10.1134/s1062359018060031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Fraikin GY. Signaling Mechanisms Regulating Diverse Plant Cell Responses to UVB Radiation. BIOCHEMISTRY (MOSCOW) 2018; 83:787-794. [PMID: 30200863 DOI: 10.1134/s0006297918070027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UVB radiation (290-320 nm) causes diverse effects in plant cells that vary with the fluence rate of exposure. High fluence rates of UVB radiation cause damage to DNA and formation of reactive oxygen species in mitochondria and chloroplasts, which lead to oxidation of membrane proteins and lipids and inhibition of cellular functions. In response to oxidative stress, mitochondrial transmembrane potential dissipates, resulting in cytochrome c release and activation of metacaspases. This leads to the apoptosis-like cell death. The signaling mechanism based on UVB DNA damage includes checkpoint activation, cell-cycle arrest, and finally programmed cell death with characteristic DNA fragmentation and morphological hallmarks typical of apoptotic cells. Recently, it was shown that among the components of this signaling mechanism the transcriptional factor SOG1 (suppressor of gamma response 1) plays a key role in regulation of programmed cell death in plants. In contrast to its damaging effects, UVB radiation at low fluence rates can act as a regulatory signal that is specifically perceived by plants to promote acclimation and survival in sunlight. The protective action of UVB is based on expression of various genes, including those encoding flavonoid synthesis enzymes that provide a UVB-absorbing sunscreen in epidermal tissues and DNA photorepair enzymes. These processes are mediated by the UVB photoreceptor UVR8, which has been recently characterized at the molecular level. Now progress is made in uncovering the UVR8-mediated signaling pathway mechanism in the context of UVB photon perception and revealing the biochemical components of the early stages of light signal transduction. In this review, attention is focused on the achievements in studying these UVB-induced signaling processes.
Collapse
Affiliation(s)
- G Ya Fraikin
- Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
30
|
Chang SX, Pu C, Guan RZ, Pu M, Xu ZG. Transcriptional and translational responses of rapeseed leaves to red and blue lights at the rosette stage. J Zhejiang Univ Sci B 2018; 19:581-595. [PMID: 30070082 DOI: 10.1631/jzus.b1700408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Under different red (R):blue (B) photon flux ratios, the growth performance of rapeseed (Brassica napus L.) is significantly different. Rapeseed under high R ratios shows shade response, while under high B ratios it shows sun-type morphology. Rapeseed under monochromatic red or blue light is seriously stressed. Transcriptomic and proteomic methods were used to analyze the metabolic pathway change of rapeseed (cv. "Zhongshuang 11") leaves under different R:B photon flux ratios (including 100R:0B%, 75R:25B%, 25R:75B%, and 0R:100B%), based on digital gene expression (DGE) and two-dimensional gel electrophoresis (2-DE). For DGE analysis, 2054 differentially expressed transcripts (|log2(fold change)|≥1, q<0.005) were detected among the treatments. High R ratios (100R:0B% and 75R:25B%) enhanced the expression of cellular structural components, mainly the cell wall and cell membrane. These components participated in plant epidermis development and anatomical structure morphogenesis. This might be related to the shade response induced by red light. High B ratios (25R:75B% and 0R:100B%) promoted the expression of chloroplast-related components, which might be involved in the formation of sun-type chloroplast induced by blue light. For 2-DE analysis, 37 protein spots showed more than a 2-fold difference in expression among the treatments. Monochromatic light (ML; 100R:0B% and 0R:100B%) stimulated accumulation of proteins associated with antioxidation, photosystem II (PSII), DNA and ribosome repairs, while compound light (CL; 75R:25B% and 25R:75B%) accelerated accumulation of proteins associated with carbohydrate, nucleic acid, amino acid, vitamin, and xanthophyll metabolisms. These findings can be useful in understanding the response mechanisms of rapeseed leaves to different R:B photon flux ratios.
Collapse
Affiliation(s)
- Sheng-Xin Chang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chu Pu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong-Zhan Guan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Pu
- Lumlux Corp., Suzhou 215143, China
| | - Zhi-Gang Xu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Díaz-Ramos LA, O'Hara A, Kanagarajan S, Farkas D, Strid Å, Jenkins GI. Difference in the action spectra for UVR8 monomerisation and HY5 transcript accumulation in Arabidopsis. Photochem Photobiol Sci 2018; 17:1108-1117. [DOI: 10.1039/c8pp00138c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The action spectrum for monomerisation of the plant UV-B photoreceptor UVR8 peaks at a shorter wavelength than that for HY5 transcript accumulation, mediated by UVR8, in the same tissue.
Collapse
Affiliation(s)
- L. Aranzazú Díaz-Ramos
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- Bower Building
| | - Andrew O'Hara
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- Bower Building
| | - Selvaraju Kanagarajan
- School of Science & Technology
- Örebro Life Science Center
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Daniel Farkas
- School of Science & Technology
- Örebro Life Science Center
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Åke Strid
- School of Science & Technology
- Örebro Life Science Center
- Örebro University
- SE-70182 Örebro
- Sweden
| | - Gareth I. Jenkins
- Institute of Molecular
- Cell and Systems Biology
- College of Medical
- Veterinary and Life Sciences
- Bower Building
| |
Collapse
|
32
|
Soriano G, Cloix C, Heilmann M, Núñez-Olivera E, Martínez-Abaigar J, Jenkins GI. Evolutionary conservation of structure and function of the UVR8 photoreceptor from the liverwort Marchantia polymorpha and the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2018; 217:151-162. [PMID: 28892172 DOI: 10.1111/nph.14767] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/29/2017] [Indexed: 05/21/2023]
Abstract
The ultraviolet-B (UV-B) photoreceptor UV RESISTANCE LOCUS 8 (UVR8) mediates photomorphogenic responses to UV-B in Arabidopsis through differential gene expression, but little is known about UVR8 in other species. Bryophyte lineages were the earliest diverging embryophytes, thus being the first plants facing the UV-B regime typical of land. We therefore examined whether liverwort and moss species have functional UVR8 proteins and whether they are regulated similarly to Arabidopsis UVR8. We examined the expression, dimer/monomer status, cellular localisation and function of Marchantia polymorpha and Physcomitrella patens UVR8 in experiments with bryophyte tissue and expression of green fluorescent protein (GFP)-UVR8 fusions in Nicotiana leaves and transgenic Arabidopsis. P. patens expresses two UVR8 genes that encode functional proteins, whereas the single M. polymorpha UVR8 gene expresses two transcripts by alternative splicing that encode functional UVR8 variants. P. patens UVR8 proteins form dimers that monomerise and accumulate in the nucleus following UV-B exposure, similar to Arabidopsis UVR8, but M. polymorpha UVR8 has weaker dimers and the proteins appear more constitutively nuclear. We conclude that liverwort and moss species produce functional UVR8 proteins. Although there are differences in expression and regulation of P. patens and M. polymorpha UVR8, the mechanism of UVR8 action is strongly conserved in evolution.
Collapse
Affiliation(s)
- Gonzalo Soriano
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | - Catherine Cloix
- Institute of Molecular Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Monika Heilmann
- Institute of Molecular Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Encarnación Núñez-Olivera
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | - Javier Martínez-Abaigar
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | - Gareth I Jenkins
- Institute of Molecular Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
33
|
Li S, Shao Z, Fu X, Xiao W, Li L, Chen M, Sun M, Li D, Gao D. Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing. BMC Genomics 2017; 18:938. [PMID: 29197334 PMCID: PMC5712094 DOI: 10.1186/s12864-017-4347-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression of target mRNAs involved in plant growth, development, and abiotic stress. As one of the most important model plants, peach (Prunus persica) has high agricultural significance and nutritional values. It is well adapted to be cultivated in greenhouse in which some auxiliary conditions like temperature, humidity, and UVB etc. are needed to ensure the fruit quality. However, little is known about the genomic information of P. persica under UVB supplement. Transcriptome and expression profiling data for this species are therefore important resources to better understand the biological mechanism of seed development, formation and plant adaptation to environmental change. Using a high-throughput miRNA sequencing, followed by qRT-PCR tests and physiological properties determination, we identified the responsive-miRNAs under low-dose UVB treatment and described the expression pattern and putative function of related miRNAs and target genes in chlorophyll and carbohydrate metabolism. Results A total of 164 known peach miRNAs belonging to 59 miRNA families and 109 putative novel miRNAs were identified. Some of these miRNAs were highly conserved in at least four other plant species. In total, 1794 and 1983 target genes for known and novel miRNAs were predicted, respectively. The differential expression profiles of miRNAs between the control and UVB-supplement group showed that UVB-responsive miRNAs were mainly involved in carbohydrate metabolism and signal transduction. UVB supplement stimulated peach to synthesize more chlorophyll and sugars, which was verified by qRT-PCR tests of related target genes and metabolites’ content measurement. Conclusion The high-throughput sequencing data provided the most comprehensive miRNAs resource available for peach study. Our results identified a series of differentially expressed miRNAs/target genes that were predicted to be low-dose UVB-responsive. The correlation between transcriptional profiles and metabolites contents in UVB supplement groups gave novel clues for the regulatory mechanism of miRNAs in Prunus. Low-dose UVB supplement could increase the chlorophyll and sugar (sorbitol) contents via miRNA-target genes and therefore improve the fruit quality in protected cultivation of peaches. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4347-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaoxuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Zhanru Shao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, People's Republic of China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, People's Republic of China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Ming Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Mingyue Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China. .,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
34
|
Jenkins GI. Photomorphogenic responses to ultraviolet-B light. PLANT, CELL & ENVIRONMENT 2017; 40:2544-2557. [PMID: 28183154 DOI: 10.1111/pce.12934] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 05/18/2023]
Abstract
Exposure to ultraviolet B (UV-B) light regulates numerous aspects of plant metabolism, morphology and physiology through the differential expression of hundreds of genes. Photomorphogenic responses to UV-B are mediated by the photoreceptor UV RESISTANCE LOCUS8 (UVR8). Considerable progress has been made in understanding UVR8 action: the structural basis of photoreceptor function, how interaction with CONSTITUTIVELY PHOTOMORPHOGENIC 1 initiates signaling and how REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins negatively regulate UVR8 action. In addition, recent research shows that UVR8 mediates several responses through interaction with other signaling pathways, in particular auxin signaling. Nevertheless, many aspects of UVR8 action remain poorly understood. Most research to date has been undertaken with Arabidopsis, and it is important to explore the functions and regulation of UVR8 in diverse plant species. Furthermore, it is essential to understand how UVR8, and UV-B signaling in general, regulates processes under natural growth conditions. Ultraviolet B regulates the expression of many genes through UVR8-independent pathways, but the activity and importance of these pathways in plants growing in sunlight are poorly understood.
Collapse
Affiliation(s)
- Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
35
|
Kim JY, Song JT, Seo HS. COP1 regulates plant growth and development in response to light at the post-translational level. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4737-4748. [PMID: 28992300 DOI: 10.1093/jxb/erx312] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoreceptors perceive different wavelengths of light and transduce light signals downstream via a range of proteins. COP1, an E3 ubiquitin ligase, regulates light signaling by mediating the ubiquitination and subsequent proteasomal degradation of photoreceptors such as phytochromes and cryptochromes, as well as various development-related proteins including other light-responsive proteins. COP1 is itself regulated by direct interactions with several signaling molecules that modulate its activity. The control of photomorphogenesis by COP1 is also regulated by its localization to the cytoplasm in response to light. COP1 thus acts as a tightly regulated switch that determines whether development is skotomorphogenic or photomorphogenic. In this review, we discuss the effects of COP1 on the abundance and activity of various development-related proteins, including photoreceptors, and summarize the regulatory mechanisms that influence COP1 activity and stability in plants.
Collapse
Affiliation(s)
- Joo Yong Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu 702-701, Korea
| | - Hak Soo Seo
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea
| |
Collapse
|
36
|
Swathy PS, Rupal G, Prabhu V, Mahato KK, Muthusamy A. In vitro culture responses, callus growth and organogenetic potential of brinjal ( Solanum melongena L.) to He-Ne laser irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 174:333-341. [DOI: 10.1016/j.jphotobiol.2017.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/23/2023]
|
37
|
Pascual J, Cañal MJ, Escandón M, Meijón M, Weckwerth W, Valledor L. Integrated Physiological, Proteomic, and Metabolomic Analysis of Ultra Violet (UV) Stress Responses and Adaptation Mechanisms in Pinus radiata. Mol Cell Proteomics 2017; 16:485-501. [PMID: 28096192 DOI: 10.1074/mcp.m116.059436] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
Globally expected changes in environmental conditions, especially the increase of UV irradiation, necessitate extending our knowledge of the mechanisms mediating tree species adaptation to this stress. This is crucial for designing new strategies to maintain future forest productivity. Studies focused on environmentally realistic dosages of UV irradiation in forest species are scarce. Pinus spp. are commercially relevant trees and not much is known about their adaptation to UV. In this work, UV treatment and recovery of Pinus radiata plants with dosages mimicking future scenarios, based on current models of UV radiation, were performed in a time-dependent manner. The combined metabolome and proteome analysis were complemented with measurements of + physiological parameters and gene expression. Sparse PLS analysis revealed complex molecular interaction networks of molecular and physiological data. Early responses prevented phototoxicity by reducing photosystem activity and the electron transfer chain together with the accumulation of photoprotectors and photorespiration. Apart from the reduction in photosynthesis as consequence of the direct UV damage on the photosystems, the primary metabolism was rearranged to deal with the oxidative stress while minimizing ROS production. New protein kinases and proteases related to signaling, coordination, and regulation of UV stress responses were revealed. All these processes demonstrate a complex molecular interaction network extending the current knowledge on UV-stress adaptation in pine.
Collapse
Affiliation(s)
- Jesús Pascual
- From the ‡Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- From the ‡Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Escandón
- From the ‡Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mónica Meijón
- From the ‡Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Wolfram Weckwerth
- §Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,¶Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Luis Valledor
- From the ‡Plant Physiology Lab, Organisms and Systems Biology, Faculty of Biology, University of Oviedo, Oviedo, Asturias, Spain;
| |
Collapse
|
38
|
Yoon MY, Kim MY, Shim S, Kim KD, Ha J, Shin JH, Kang S, Lee SH. Transcriptomic Profiling of Soybean in Response to High-Intensity UV-B Irradiation Reveals Stress Defense Signaling. FRONTIERS IN PLANT SCIENCE 2016; 7:1917. [PMID: 28066473 PMCID: PMC5165247 DOI: 10.3389/fpls.2016.01917] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/02/2016] [Indexed: 06/03/2023]
Abstract
The depletion of the ozone layer in the stratosphere has led to a dramatic spike in ultraviolet B (UV-B) intensity and increased UV-B light levels. The direct absorption of high-intensity UV-B induces complex abiotic stresses in plants, including excessive light exposure, heat, and dehydration. However, UV-B stress signaling mechanisms in plants including soybean (Glycine max [L.]) remain poorly understood. Here, we surveyed the overall transcriptional responses of two soybean genotypes, UV-B-sensitive Cheongja 3 and UV-B-resistant Buseok, to continuous UV-B irradiation for 0 (control), 0.5, and 6 h using RNA-seq analysis. Homology analysis using UV-B-related genes from Arabidopsis thaliana revealed differentially expressed genes (DEGs) likely involved in UV-B stress responses. Functional classification of the DEGs showed that the categories of immune response, stress defense signaling, and reactive oxygen species (ROS) metabolism were over-represented. UV-B-resistant Buseok utilized phosphatidic acid-dependent signaling pathways (based on subsequent reactions of phospholipase C and diacylglycerol kinase) rather than phospholipase D in response to UV-B exposure at high fluence rates, and genes involved in its downstream pathways, such as ABA signaling, mitogen-activated protein kinase cascades, and ROS overproduction, were upregulated in this genotype. In addition, the DEGs for TIR-NBS-LRR and heat shock proteins are positively activated. These results suggest that defense mechanisms against UV-B stress at high fluence rates are separate from the photomorphogenic responses utilized by plants to adapt to low-level UV light. Our study provides valuable information for deep understanding of UV-B stress defense mechanisms and for the development of resistant soybean genotypes that survive under high-intensity UV-B stress.
Collapse
Affiliation(s)
- Min Young Yoon
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
| | - Sangrae Shim
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of GeorgiaAthens, GA, USA
| | - Jungmin Ha
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
| | - Jin Hee Shin
- Center for Applied Genetic Technologies, University of GeorgiaAthens, GA, USA
| | - Sungtaeg Kang
- Department of Crop Science and Biotechnology, Dankook UniversityCheonan, South Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
39
|
Heilmann M, Velanis CN, Cloix C, Smith BO, Christie JM, Jenkins GI. Dimer/monomer status and in vivo function of salt-bridge mutants of the plant UV-B photoreceptor UVR8. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:71-81. [PMID: 27385642 PMCID: PMC5091643 DOI: 10.1111/tpj.13260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 06/24/2016] [Accepted: 06/30/2016] [Indexed: 05/05/2023]
Abstract
UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor for ultraviolet-B (UV-B) light that initiates photomorphogenic responses in plants. UV-B photoreception causes rapid dissociation of dimeric UVR8 into monomers that interact with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1) to initiate signal transduction. Experiments with purified UVR8 show that the dimer is maintained by salt-bridge interactions between specific charged amino acids across the dimer interface. However, little is known about the importance of these charged amino acids in determining dimer/monomer status and UVR8 function in plants. Here we evaluate the use of different methods to examine dimer/monomer status of UVR8 and show that mutations of several salt-bridge amino acids affect dimer/monomer status, interaction with COP1 and photoreceptor function of UVR8 in vivo. In particular, the salt-bridges formed between arginine 286 and aspartates 96 and 107 are key to dimer formation. Mutation of arginine 286 to alanine impairs dimer formation, interaction with COP1 and function in vivo, whereas mutation to lysine gives a weakened dimer that is functional in vivo, indicating the importance of the positive charge of the arginine/lysine residue for dimer formation. Notably, a UVR8 mutant in which aspartates 96 and 107 are conservatively mutated to asparagine is strongly impaired in dimer formation but mediates UV-B responses in vivo with a similar dose-response relationship to wild-type. The UV-B responsiveness of this mutant does not correlate with dimer formation and monomerisation, indicating that monomeric UVR8 has the potential for UV-B photoreception, initiating signal transduction and responses in plants.
Collapse
Affiliation(s)
- Monika Heilmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Christos N Velanis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Catherine Cloix
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - John M Christie
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK.
| |
Collapse
|
40
|
Ma X, Ou YB, Gao YF, Lutts S, Li TT, Wang Y, Chen YF, Sun YF, Yao YA. Moderate salt treatment alleviates ultraviolet-B radiation caused impairment in poplar plants. Sci Rep 2016; 6:32890. [PMID: 27597726 PMCID: PMC5011775 DOI: 10.1038/srep32890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022] Open
Abstract
The effects of moderate salinity on the responses of woody plants to UV-B radiation were investigated using two Populus species (Populus alba and Populus russkii). Under UV-B radiation, moderate salinity reduced the oxidation pressure in both species, as indicated by lower levels of cellular H2O2 and membrane peroxidation, and weakened the inhibition of photochemical efficiency expressed by O-J-I-P changes. UV-B-induced DNA lesions in chloroplast and nucleus were alleviated by salinity, which could be explained by the higher expression levels of DNA repair system genes under UV-B&salt condition, such as the PHR, DDB2, and MutSα genes. The salt-induced increase in organic osmolytes proline and glycine betaine, afforded more efficient protection against UV-B radiation. Therefore moderate salinity induced cross-tolerance to UV-B stress in poplar plants. It is thus suggested that woody plants growing in moderate salted condition would be less affected by enhanced UV-B radiation than plants growing in the absence of salt. Our results also showed that UV-B signal genes in poplar plants PaCOP1, PaSTO and PaSTH2 were quickly responding to UV-B radiation, but not to salt. The transcripts of PaHY5 and its downstream pathway genes (PaCHS1, PaCHS4, PaFLS1 and PaFLS2) were differently up-regulated by these treatments, but the flavonoid compounds were not involved in the cross-tolerance since their concentration increased to the same extent in both UV-B and combined stresses.
Collapse
Affiliation(s)
- Xuan Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Bin Ou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Feng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute–Agronomy (ELI-A), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Tao-Tao Li
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yong-Fu Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yu-Fang Sun
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yin-An Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| |
Collapse
|
41
|
Vanhaelewyn L, Prinsen E, Van Der Straeten D, Vandenbussche F. Hormone-controlled UV-B responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4469-82. [PMID: 27401912 DOI: 10.1093/jxb/erw261] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultraviolet B (UV-B) light is a portion of solar radiation that has significant effects on the development and metabolism of plants. Effects of UV-B on plants can be classified into photomorphogenic effects and stress effects. These effects largely rely on the control of, and interactions with, hormonal pathways. The fairly recent discovery of the UV-B-specific photoreceptor UV RESISTANCE LOCUS 8 (UVR8) allowed evaluation of the role of downstream hormones, leading to the identification of connections with auxin and gibberellin. Moreover, a substantial overlap between UVR8 and phytochrome responses has been shown, suggesting that part of the responses caused by UVR8 are under PHYTOCHROME INTERACTING FACTOR control. UV-B effects can also be independent of UVR8, and affect different hormonal pathways. UV-B affects hormonal pathways in various ways: photochemically, affecting biosynthesis, transport, and/or signaling. This review concludes that the effects of UV-B on hormonal regulation can be roughly divided in two: inhibition of growth-promoting hormones; and the enhancement of environmental stress-induced defense hormones.
Collapse
Affiliation(s)
- Lucas Vanhaelewyn
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | - Filip Vandenbussche
- Laboratory for Functional Plant Biology, Ghent University, KL Ledeganckstraat 35, B-9000 Gent, Belgium
| |
Collapse
|
42
|
Findlay KMW, Jenkins GI. Regulation of UVR8 photoreceptor dimer/monomer photo-equilibrium in Arabidopsis plants grown under photoperiodic conditions. PLANT, CELL & ENVIRONMENT 2016; 39:1706-14. [PMID: 26864532 PMCID: PMC5103188 DOI: 10.1111/pce.12724] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/30/2016] [Indexed: 05/09/2023]
Abstract
The UV RESISTANCE LOCUS 8 (UVR8) photoreceptor specifically mediates photomorphogenic responses to UV-B. Photoreception induces dissociation of dimeric UVR8 into monomers to initiate responses. However, the regulation of dimer/monomer status in plants growing under photoperiodic conditions has not been examined. Here we show that UVR8 establishes a dimer/monomer photo-equilibrium in plants growing in diurnal photoperiods in both controlled environments and natural daylight. The photo-equilibrium is determined by the relative rates of photoreception and dark-reversion to the dimer. Experiments with mutants in REPRESSOR OF UV-B PHOTOMORPHOGENESIS 1 (RUP1) and RUP2 show that these proteins are crucial in regulating the photo-equilibrium because they promote reversion to the dimer. In plants growing in daylight, the UVR8 photo-equilibrium is most strongly correlated with low ambient fluence rates of UV-B (up to 1.5 μmol m(-2) s(-1) ), rather than higher fluence rates or the amount of photosynthetically active radiation. In addition, the rate of reversion of monomer to dimer is reduced at lower temperatures, promoting an increase in the relative level of monomer at approximately 8-10 °C. Thus, UVR8 does not behave like a simple UV-B switch under photoperiodic growth conditions but establishes a dimer/monomer photo-equilibrium that is regulated by UV-B and also influenced by temperature.
Collapse
Affiliation(s)
- Kirsten M W Findlay
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Gareth I Jenkins
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
43
|
Yin X, Singer SD, Qiao H, Liu Y, Jiao C, Wang H, Li Z, Fei Z, Wang Y, Fan C, Wang X. Insights into the Mechanisms Underlying Ultraviolet-C Induced Resveratrol Metabolism in Grapevine (V. amurensis Rupr.) cv. "Tonghua-3". FRONTIERS IN PLANT SCIENCE 2016; 7:503. [PMID: 27148326 PMCID: PMC4835806 DOI: 10.3389/fpls.2016.00503] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/29/2016] [Indexed: 05/19/2023]
Abstract
Stilbene compounds belong to a family of secondary metabolites that are derived from the phenylpropanoid pathway. Production of the stilbene phytoalexin, resveratrol, in grape (Vitis spp.) berries is known to be induced by ultraviolet-C radiation (UV-C), which has numerous regulatory effects on plant physiology. While previous studies have described changes in gene expression caused by UV-C light in several plant species, such information has yet to be reported for grapevine. We investigated both the resveratrol content and gene expression responses of berries from V. amurensis cv. Tonghua-3 following UV-C treatment, to accelerate research into resveratrol metabolism. Comparative RNA-Seq profiling of UV-C treated and untreated grape berries resulted in the identification of a large number of differentially expressed genes. Gene ontology (GO) term classification and biochemical pathway analyses suggested that UV-C treatment caused changes in various cellular processes, as well as in both hormone and secondary metabolism. The data further indicate that UV-C induced increases in resveratrol may be related to the transcriptional regulation of genes involved in the production of secondary metabolites and signaling, as well as several transcription factors. We also observed that following UV-C treatment, 22 stilbene synthase (STS) genes exhibited increases in their expression levels and a VaSTS promoter drove the expression of the GUS reporter gene when expressed in tobacco. We therefore propose that UV-C induction of VaSTS expression is an important factor in promoting resveratrol accumulation. This transcriptome data set provides new insight into the response of grape berries to UV-C treatment, and suggests candidate genes, or promoter activity of related genes, that could be used in future functional and molecular biological studies of resveratrol metabolism.
Collapse
Affiliation(s)
- Xiangjing Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Stacy D. Singer
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Hengbo Qiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Yajun Liu
- College of Veterinary Medicine, Shaanxi Center for Stem Cell Engineering and Technology, Northwest A&F UniversityShaanxi, China
| | - Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell UniversityIthaca, NY, USA
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
| | - Chonghui Fan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- *Correspondence: Chonghui Fan
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F UniversityYangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F UniversityYangling, China
- Xiping Wang
| |
Collapse
|
44
|
Li N, Teranishi M, Yamaguchi H, Matsushita T, Watahiki MK, Tsuge T, Li SS, Hidema J. UV-B-Induced CPD Photolyase Gene Expression is Regulated by UVR8-Dependent and -Independent Pathways in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:2014-23. [PMID: 26272552 DOI: 10.1093/pcp/pcv121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/09/2015] [Indexed: 05/21/2023]
Abstract
Plants have evolved various mechanisms that protect against the harmful effects of UV-B radiation (280-315 nm) on growth and development. Cyclobutane pyrimidine dimer (CPD) photolyase, the repair enzyme for UV-B-induced CPDs, is essential for protecting cells from UV-B radiation. Expression of the CPD photolyase gene (PHR) is controlled by light with various wavelengths including UV-B, but the mechanisms of this regulation remain poorly understood. In this study, we investigated the regulation of PHR expression by light with various wavelengths, in particular low-fluence UV-B radiation (280 nm, 0.2 µmol m(-2) s(-1)), in Arabidopsis thaliana seedlings grown under light-dark cycles for 7 d and then adapted to the dark for 3 d. Low-fluence UV-B radiation induced CPDs but not reactive oxygen species. AtPHR expression was effectively induced by UV-B, UV-A (375 nm) and blue light. Expression induced by UV-A and blue light was predominantly regulated by the cryptochrome-dependent pathway, whereas phytochromes A and B played a minor but noticeable role. Expression induced by UV-B was predominantly regulated by the UVR8-dependent pathway. AtPHR expression was also mediated by a UVR8-independent pathway, which is correlated with CPD accumulation induced by UV-B radiation. These results indicate that Arabidopsis has evolved diverse mechanisms to regulate CPD photolyase expression by multiple photoreceptor signaling pathways, including UVR8-dependent and -independent pathways, as protection against harmful effects of UV-B radiation.
Collapse
Affiliation(s)
- Nan Li
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Mika Teranishi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Hiroko Yamaguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Tomonao Matsushita
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan PRESTO, JST, Saitama, 332-0012 Japan
| | - Masaaki K Watahiki
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji, 611-0011 Japan
| | - Shao-Shan Li
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| |
Collapse
|
45
|
Wang H, Wang H. Multifaceted roles of FHY3 and FAR1 in light signaling and beyond. TRENDS IN PLANT SCIENCE 2015; 20:453-61. [PMID: 25956482 DOI: 10.1016/j.tplants.2015.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 05/03/2023]
Abstract
FAR-RED ELONGATED HYPOCOTYLS3 (FHY3) and FAR-RED-IMPAIRED RESPONSE1 (FAR1), initially identified as crucial components of phytochrome A (phyA)-mediated far-red (FR) light signaling in Arabidopsis thaliana, are the founding members of the FAR1-related sequence (FRS) family of transcription factors present in most angiosperms. These proteins share extensive similarity with the Mutator-like transposases, indicative of their evolutionary history of 'molecular domestication'. Here we review emerging multifaceted roles of FHY3/FAR1 in diverse developmental and physiological processes, including UV-B signaling, circadian clock entrainment, flowering, chloroplast biogenesis, chlorophyll biosynthesis, programmed cell death, reactive oxygen species (ROS) homeostasis, abscisic acid (ABA) signaling, and branching. The domestication of FHY3/FAR1 may enable angiosperms to better integrate various endogenous and exogenous signals for coordinated regulation of growth and development, thus enhancing their fitness and adaptation.
Collapse
Affiliation(s)
- Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
46
|
Structure and function of the UV-B photoreceptor UVR8. Curr Opin Struct Biol 2014; 29:52-7. [DOI: 10.1016/j.sbi.2014.09.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/01/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
|
47
|
Missirian V, Conklin PA, Culligan KM, Huefner ND, Britt AB. High atomic weight, high-energy radiation (HZE) induces transcriptional responses shared with conventional stresses in addition to a core "DSB" response specific to clastogenic treatments. FRONTIERS IN PLANT SCIENCE 2014; 5:364. [PMID: 25136344 PMCID: PMC4117989 DOI: 10.3389/fpls.2014.00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 07/08/2014] [Indexed: 05/19/2023]
Abstract
Plants exhibit a robust transcriptional response to gamma radiation which includes the induction of transcripts required for homologous recombination and the suppression of transcripts that promote cell cycle progression. Various DNA damaging agents induce different spectra of DNA damage as well as "collateral" damage to other cellular components and therefore are not expected to provoke identical responses by the cell. Here we study the effects of two different types of ionizing radiation (IR) treatment, HZE (1 GeV Fe(26+) high mass, high charge, and high energy relativistic particles) and gamma photons, on the transcriptome of Arabidopsis thaliana seedlings. Both types of IR induce small clusters of radicals that can result in the formation of double strand breaks (DSBs), but HZE also produces linear arrays of extremely clustered damage. We performed these experiments across a range of time points (1.5-24 h after irradiation) in both wild-type plants and in mutants defective in the DSB-sensing protein kinase ATM. The two types of IR exhibit a shared double strand break-repair-related damage response, although they differ slightly in the timing, degree, and ATM-dependence of the response. The ATM-dependent, DNA metabolism-related transcripts of the "DSB response" were also induced by other DNA damaging agents, but were not induced by conventional stresses. Both Gamma and HZE irradiation induced, at 24 h post-irradiation, ATM-dependent transcripts associated with a variety of conventional stresses; these were overrepresented for pathogen response, rather than DNA metabolism. In contrast, only HZE-irradiated plants, at 1.5 h after irradiation, exhibited an additional and very extensive transcriptional response, shared with plants experiencing "extended night." This response was not apparent in gamma-irradiated plants.
Collapse
Affiliation(s)
- Victor Missirian
- Department of Plant Biology, University of California DavisDavis, CA, USA
| | - Phillip A. Conklin
- Department of Plant Biology, University of California DavisDavis, CA, USA
| | - Kevin M. Culligan
- Department of Molecular, Cellular, and Biomedical Sciences, University of New HampshireDurham, NH, USA
| | - Neil D. Huefner
- Department of Plant Biology, University of California DavisDavis, CA, USA
| | - Anne B. Britt
- Department of Plant Biology, University of California DavisDavis, CA, USA
| |
Collapse
|
48
|
Coordinated photomorphogenic UV-B signaling network captured by mathematical modeling. Proc Natl Acad Sci U S A 2014; 111:11539-44. [PMID: 25049395 DOI: 10.1073/pnas.1412050111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-wavelength and low-fluence UV-B light is an informational signal known to induce photomorphogenic development in plants. Using the model plant Arabidopsis thaliana, a variety of factors involved in UV-B-specific signaling have been experimentally characterized over the past decade, including the UV-B light receptor UV resistance locus 8; the positive regulators constitutive photomorphogenesis 1 and elongated hypocotyl 5; and the negative regulators cullin4, repressor of UV-B photomorphogenesis 1 (RUP1), and RUP2. Individual genetic and molecular studies have revealed that these proteins function in either positive or negative regulatory capacities for the sufficient and balanced transduction of photomorphogenic UV-B signal. Less is known, however, regarding how these signaling events are systematically linked. In our study, we use a systems biology approach to investigate the dynamic behaviors and correlations of multiple signaling components involved in Arabidopsis UV-B-induced photomorphogenesis. We define a mathematical representation of photomorphogenic UV-B signaling at a temporal scale. Supplemented with experimental validation, our computational modeling demonstrates the functional interaction that occurs among different protein complexes in early and prolonged response to photomorphogenic UV-B.
Collapse
|
49
|
Fasano R, Gonzalez N, Tosco A, Dal Piaz F, Docimo T, Serrano R, Grillo S, Leone A, Inzé D. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B. MOLECULAR PLANT 2014; 7:773-91. [PMID: 24413416 DOI: 10.1093/mp/ssu002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In high-light environments, plants are exposed to different types of stresses, such as an excess of UV-B, but also drought stress which triggers a common morphogenic adaptive response resulting in a general reduction of plant growth. Here, we report that the Arabidopsis thaliana UV RESISTANCE LOCUS 8 (UVR8) gene, a known regulator of the UV-B morphogenic response, was able to complement a Saccharomyces cerevisiae osmo-sensitive mutant and its expression was induced after osmotic or salt stress in Arabidopsis plants. Under low levels of UV-B, plants overexpressing UVR8 are dwarfed with a reduced root development and accumulate more flavonoids compared to control plants. The growth defects are mainly due to the inhibition of cell expansion. The growth inhibition triggered by UVR8 overexpression in plants under low levels of UV-B was exacerbated by mannitol-induced osmotic stress, but it was not significantly affected by ionic stress. In contrast, uvr8-6 mutant plants do not differ from wild-type plants under standard conditions, but they show an increased shoot growth under high-salt stress. Our data suggest that UVR8-mediated accumulation of flavonoid and possibly changes in auxin homeostasis are the underlying mechanism of the observed growth phenotypes and that UVR8 might have an important role for integrating plant growth and stress signals.
Collapse
Affiliation(s)
- Rossella Fasano
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Singh S, Agrawal SB, Agrawal M. UVR8 mediated plant protective responses under low UV-B radiation leading to photosynthetic acclimation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:67-76. [PMID: 24780386 DOI: 10.1016/j.jphotobiol.2014.03.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 11/27/2022]
Abstract
The UV-B photoreceptor UVR8 regulates the expression of several genes leading to acclimation responses in plants. Direct role of UVR8 in maintaining the photosynthesis is not defined but it is known to increase the expression of some chloroplastic proteins like SIG5 and ELIP. It provides indirect protection to photosynthesis by regulating the synthesis of secondary metabolites and photomorphogenesis. Signaling cascades controlled by UVR8 mediate many protective responses thus promotes plant acclimation against stress and secures its survival.
Collapse
Affiliation(s)
- Suruchi Singh
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|