1
|
Saake P, Brands M, Endeshaw AB, Stolze SC, Westhoff P, Balcke GU, Hensel G, Holton N, Zipfel C, Tissier A, Nakagami H, Zuccaro A. Ergosterol-induced immune response in barley involves phosphorylation of phosphatidylinositol phosphate metabolic enzymes and activation of diterpene biosynthesis. THE NEW PHYTOLOGIST 2025; 246:1236-1255. [PMID: 40051371 PMCID: PMC11982792 DOI: 10.1111/nph.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Lipids play crucial roles in plant-microbe interactions, functioning as structural components, signaling molecules, and microbe-associated molecular patterns (MAMPs). However, the mechanisms underlying lipid perception and signaling in plants remain largely unknown. Here, we investigate the immune responses activated in barley (Hordeum vulgare) by lipid extracts from the beneficial root endophytic fungus Serendipita indica and compare them to responses elicited by chitohexaose and the fungal sterol ergosterol. We demonstrate that S. indica lipid extract induces hallmarks of pattern-triggered immunity (PTI) in barley. Ergosterol emerged as the primary immunogenic component and was detected in the apoplastic fluid of S. indica-colonized barley roots. Notably, S. indica colonization suppresses the ergosterol-induced burst of reactive oxygen species (ROS) in barley. By employing a multi-omics approach, which integrates transcriptomics, phosphoproteomics, and metabolomics, we provide evidence for the phosphorylation of phosphatidylinositol phosphate (PIP) metabolic enzymes and activation of diterpene biosynthesis upon exposure to fungal lipids. Furthermore, we show that phosphatidic acid (PA) enhances lipid-mediated apoplastic ROS production in barley. These findings indicate that plant lipids facilitate immune responses to fungal lipids in barley, providing new insights into lipid-based signaling mechanisms in plant-microbe interactions.
Collapse
Affiliation(s)
- Pia Saake
- Institute for Plant SciencesUniversity of Cologne50674CologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
| | - Mathias Brands
- Institute for Plant SciencesUniversity of Cologne50674CologneGermany
| | | | - Sara Christina Stolze
- Max Planck Institute for Plant Breeding ResearchProtein Mass Spectrometry50829CologneGermany
| | - Philipp Westhoff
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
- Heinrich Heine University DüsseldorfInstitute for Plant Biochemistry40225DüsseldorfGermany
| | | | - Götz Hensel
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesCentre for Plant Genome Engineering40225DüsseldorfGermany
| | - Nicholas Holton
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
| | - Cyril Zipfel
- The Sainsbury LaboratoryUniversity of East AngliaNorwichNR4 7UHUK
- Institute of Plant and Microbial Biology, Zurich‐Basel Plant Science CenterUniversity of Zurich8008ZurichSwitzerland
| | - Alain Tissier
- Leibniz Institute for Plant Biochemistry06120Halle (Saale)Germany
| | - Hirofumi Nakagami
- Max Planck Institute for Plant Breeding ResearchProtein Mass Spectrometry50829CologneGermany
| | - Alga Zuccaro
- Institute for Plant SciencesUniversity of Cologne50674CologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)50674CologneGermany
| |
Collapse
|
2
|
Huang Y, Li W, Liu T, Lin X, Xia Y, Zhu W, Jin H, Cai Q. Rice extracellular vesicles send defense proteins into fungus Rhizoctonia solani to reduce disease. Dev Cell 2025; 60:1168-1181.e6. [PMID: 39755117 DOI: 10.1016/j.devcel.2024.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/18/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
The exchange of molecular information across kingdoms is crucial for the survival of both plants and their pathogens. Recent research has identified that plants transfer their small RNAs and microRNAs into fungal pathogens to suppress infection. However, whether and how plants send defense proteins into pathogens remains unknown. Here, we report that rice (Oryza sativa) plants package defense proteins into extracellular vesicles (EVs) and deliver them to the fungal pathogen Rhizoctonia solani. These EVs, enriched with host defense proteins, are internalized by the fungal cells. Reducing the transfer of host defense proteins via EVs results in increased disease susceptibility. Furthermore, the overexpression of host defense proteins in either rice plants or the fungal cells reduced the infection. Therefore, plants use EVs to send defense proteins into fungal pathogens, thereby combating infection. This mechanism represents a form of protein exchange between plants and pathogens, which contributes to reducing crop diseases.
Collapse
Affiliation(s)
- Yifan Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Wei Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Tiangu Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Xiaoli Lin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Yanhui Xia
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Wenjing Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92507, USA
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China.
| |
Collapse
|
3
|
Cong Z, Ma Y, Zeng L, Wu Y, Chen Y, Liang L, Zhu J, Li H, Nie Y, Li Y. A Novel Effector FoUpe9 Enhances the Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4 by Inhibiting Plant Immunity. J Fungi (Basel) 2025; 11:308. [PMID: 40278128 PMCID: PMC12028529 DOI: 10.3390/jof11040308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the most destructive disease of the banana. Effectors play a crucial role in Foc TR4-banana interaction; however, only a few effectors have been functionally characterized. Our previous secretome studies on Foc TR4 highlighted an uncharacterized protein without any conserved domains (named FoUpe9), which was predicted to be a candidate effector. Herein, bioinformatics analysis showed that FoUpe9 was highly conserved among Fusarium species. FoUpe9 was highly induced during the early infection stages in the banana. A yeast signal sequence trap assay showed that FoUpe9 is a secretory protein. FoUpe9 could inhibit cell death and ROS accumulation triggered by BAX through the Agrobacterium-mediated Nicotiana benthamiana expression system. Subcellular location showed that FoUpe9 was located in the nucleus and cytoplasm of N. benthamiana cells. Deletion of the FoUpe9 gene did not affect mycelial growth, conidiation, sensitivity to cell-wall integrity, or osmotic and oxidative stress, but significantly attenuated fungal virulence. FoUpe9 deletion diminished fungal colonization and induced ROS production and expression of SA-related defense genes in banana plants. These results suggest that FoUpe9 enhances Foc TR4 virulence by inhibiting host immune responses and provide new insights into the functions of the uncharacterized proteins, further enhancing our understanding of effector-mediated Foc TR4 pathogenesis.
Collapse
Affiliation(s)
- Zheng Cong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Yini Ma
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Lisha Zeng
- Dongguan Agricultural Research Centre, Dongguan 523106, China;
| | - Yaoyao Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Yaojun Chen
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Ludan Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Jie Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| | - Yanfang Nie
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China;
| | - Yunfeng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.C.); (Y.M.); (Y.W.); (L.L.); (J.Z.); (H.L.)
| |
Collapse
|
4
|
Quime BG, Ryder LS, Talbot NJ. Live cell imaging of plant infection provides new insight into the biology of pathogenesis by the rice blast fungus Magnaporthe oryzae. J Microsc 2025; 297:274-288. [PMID: 39797625 PMCID: PMC11808454 DOI: 10.1111/jmi.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium. The appressorium forms in response to the hydrophobic leaf surface and relies on multiple signalling pathways, including a MAP kinase phosphorelay and cAMP-dependent signalling, integrated with cell cycle control and autophagic cell death of the conidium. Together, these pathways regulate appressorium morphogenesis.The appressorium generates enormous turgor, applied as mechanical force to breach the rice cuticle. Re-polarisation of the appressorium requires a turgor-dependent sensor kinase which senses when a critical threshold of turgor has been reached to initiate septin-dependent re-polarisation of the appressorium and plant infection. Invasive growth then requires differential expression and secretion of a large repertoire of effector proteins secreted by distinct secretory pathways depending on their destination, which is also governed by codon usage and tRNA thiolation. Cytoplasmic effectors require an unconventional Golgi-independent secretory pathway and evidence suggests that clathrin-mediated endocytosis is necessary for their delivery into plant cells. The blast fungus then develops a transpressorium, a specific invasion structure used to move from cell-to-cell using pit field sites containing plasmodesmata, to facilitate its spread in plant tissue. This is controlled by the same MAP kinase signalling pathway as appressorium development and requires septin-dependent hyphal constriction. Recent progress in understanding the mechanisms of rice infection by this devastating pathogen using live cell imaging procedures are presented.
Collapse
|
5
|
Karki SJ, Pilo P, Lawless C, Mastrodimos N, Tiley AMM, Burke J, Feechan A. The Zymoseptoria tritici effector Zt-11 contributes to aggressiveness in wheat. PLoS One 2024; 19:e0313859. [PMID: 39561154 PMCID: PMC11575801 DOI: 10.1371/journal.pone.0313859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024] Open
Abstract
Zymoseptoria tritici is an ascomycete fungus and the causal agent of Septoria tritici leaf blotch (STB) in wheat. Z. tritici secretes an array of effector proteins that are likely to facilitate host infection, colonisation and pycnidia production. In this study we demonstrate a role for Zt-11 as a Z. tritici effector during disease progression. Zt-11 is upregulated during the transition of the pathogen from the biotrophic to necrotrophic phase of wheat infection. Deletion of Zt-11 delayed disease development in wheat, reducing the number and size of pycnidia, as well as the number of macropycnidiospores produced by Z. tritici. This delayed disease development by the ΔZt-11 mutants was accompanied by a lower induction of PR genes in wheat, when compared to infection with wildtype Z. tritici. Overall, these data suggest that Zt-11 plays a role in Z. tritici aggressiveness and STB disease progression possibly via a salicylic acid associated pathway.
Collapse
Affiliation(s)
- Sujit Jung Karki
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Paola Pilo
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Colleen Lawless
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- School of Biology and Environmental Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Nikolaos Mastrodimos
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Anna M M Tiley
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- Plant Science Division Department of Agriculture, Food and the Marine, Dublin, Ireland
| | - James Burke
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Angela Feechan
- School of Agriculture & Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin, Ireland
- Institute for Life and Earth Sciences, School of Energy, Geosciences, Infrastructure and Society, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Jiang L, Zhang X, Zhao Y, Zhu H, Fu Q, Lu X, Huang W, Yang X, Zhou X, Wu L, Yang A, He X, Dong M, Peng Z, Yang J, Guo L, Wen J, Huang H, Xie Y, Zhu S, Li C, He X, Zhu Y, Friml J, Du Y. Phytoalexin sakuranetin attenuates endocytosis and enhances resistance to rice blast. Nat Commun 2024; 15:3437. [PMID: 38653755 DOI: 10.1038/s41467-024-47746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
Phytoalexin sakuranetin functions in resistance against rice blast. However, the mechanisms underlying the effects of sakuranetin remains elusive. Here, we report that rice lines expressing resistance (R) genes were found to contain high levels of sakuranetin, which correlates with attenuated endocytic trafficking of plasma membrane (PM) proteins. Exogenous and endogenous sakuranetin attenuates the endocytosis of various PM proteins and the fungal effector PWL2. Moreover, accumulation of the avirulence protein AvrCO39, resulting from uptake into rice cells by Magnaporthe oryzae, was reduced following treatment with sakuranetin. Pharmacological manipulation of clathrin-mediated endocytic (CME) suggests that this pathway is targeted by sakuranetin. Indeed, attenuation of CME by sakuranetin is sufficient to convey resistance against rice blast. Our data reveals a mechanism of rice against M. oryzae by increasing sakuranetin levels and repressing the CME of pathogen effectors, which is distinct from the action of many R genes that mainly function by modulating transcription.
Collapse
Affiliation(s)
- Lihui Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyan Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Yiting Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- Shanxi Agricultural University/Shanxi Academy of Agricultural Sciences. The Industrial Crop Institute, Fenyang, 032200, China
| | - Haiyan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Qijing Fu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinqi Lu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Wuying Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xinyue Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuan Zhou
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Lixia Wu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Ao Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Xie He
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Man Dong
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Ziai Peng
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Jing Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Liwei Guo
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming, 650201, China
| | - Huichuan Huang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yong Xie
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shusheng Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chengyun Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiahong He
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Youyong Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Yunlong Du
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
7
|
Rehneke L, Schäfer P. Symbiont effector-guided mapping of proteins in plant networks to improve crop climate stress resilience: Symbiont effectors inform highly interconnected plant protein networks and provide an untapped resource for crop climate resilience strategies. Bioessays 2024; 46:e2300172. [PMID: 38388783 DOI: 10.1002/bies.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/21/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
There is an urgent need for novel protection strategies to sustainably secure crop production under changing climates. Studying microbial effectors, defined as microbe-derived proteins that alter signalling inside plant cells, has advanced our understanding of plant immunity and microbial plant colonisation strategies. Our understanding of effectors in the establishment and beneficial outcome of plant symbioses is less well known. Combining functional and comparative interaction assays uncovered specific symbiont effector targets in highly interconnected plant signalling networks and revealed the potential of effectors in beneficially modulating plant traits. The diverse functionality of symbiont effectors differs from the paradigmatic immuno-suppressive function of pathogen effectors. These effectors provide solutions for improving crop resilience against climate stress by their evolution-driven specification in host protein targeting and modulation. Symbiont effectors represent stringent tools not only to identify genetic targets for crop breeding, but to serve as applicable agents in crop management strategies under changing environments.
Collapse
Affiliation(s)
- Laura Rehneke
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Patrick Schäfer
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| |
Collapse
|
8
|
Martins V, Teixeira A, Gerós H. A comparison of microbiota isolation methods reveals habitat preferences for fermentative yeasts and plant pathogenic fungi in the grape berry. Food Microbiol 2024; 118:104408. [PMID: 38049270 DOI: 10.1016/j.fm.2023.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 12/06/2023]
Abstract
The methodologies for profiling the grape berry microbiota have exponentially evolved in the past 25 years. Recently, concerns arose regarding the homogeneity in the protocols of grape harvesting, sequencing and bioinformatic analyses, but the bias introduced by the microbiota isolation method is still unexplored. This study followed a simple approach of comparing two most used methods of microbiota collection from grape berries (washing vs crushing), hypothesizing a significant impact in the outcome of the microbiota profiles analyzed by NGS metabarcoding. Experiments conducted in fruits of three cultivars of the Douro wine region showed that only 52 % of OTUs were common to both surface and juice microbiota, suggesting specific microbial niches. Thirteen fungal genera were abundantly detected in the fruit surface, including Alternaria, Aureobasidium, Cladosporium, Didymella and Bipolaris. Fermentative yeasts including Meyerozyma and Saccharomyces cerevisiae were exclusively detected in the juice, together with several Penicillium species. Distinct habitat preferences of species within the genera Alternaria, Sporobolomyces and Rhodotorula were also revealed. The study showed that the microbiota isolation method is crucial in the detection of certain plant pathogenic/saprophytic fungi and yeasts with biotechnological and oenological interest, adding novelty to the globally accepted assumption that S. cerevisiae in musts originates primarily from the cellar.
Collapse
Affiliation(s)
- Viviana Martins
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - António Teixeira
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
9
|
Schuster M, Schweizer G, Reißmann S, Happel P, Aßmann D, Rössel N, Güldener U, Mannhaupt G, Ludwig N, Winterberg S, Pellegrin C, Tanaka S, Vincon V, Presti LL, Wang L, Bender L, Gonzalez C, Vranes M, Kämper J, Seong K, Krasileva K, Kahmann R. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:250-263. [PMID: 38416124 DOI: 10.1094/mpmi-09-23-0139-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Independent Data Lab UG, 80937 Munich, Germany
| | - Stefanie Reißmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Ulrich Güldener
- Deutsches Herzzentrum München, Technische Universität München, 80636 München, Germany
| | - Gertrud Mannhaupt
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Ludwig
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Research & Development, Weed Control Bayer AG, Crop Science Division, 65926 Frankfurt am Main, Germany
| | - Sarah Winterberg
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Clément Pellegrin
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Shigeyuki Tanaka
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Volker Vincon
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lei Wang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lena Bender
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Pharmaceutics and Biopharmaceutics, Phillips-University Marburg, 35037 Marburg, Germany
| | - Carla Gonzalez
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
10
|
Oliveira-Garcia E, Yan X, Oses-Ruiz M, de Paula S, Talbot NJ. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2024; 241:1007-1020. [PMID: 38073141 DOI: 10.1111/nph.19446] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024]
Abstract
Rice blast, the most destructive disease of cultivated rice world-wide, is caused by the filamentous fungus Magnaporthe oryzae. To cause disease in plants, M. oryzae secretes a diverse range of effector proteins to suppress plant defense responses, modulate cellular processes, and support pathogen growth. Some effectors can be secreted by appressoria even before host penetration, while others accumulate in the apoplast, or enter living plant cells where they target specific plant subcellular compartments. During plant infection, the blast fungus induces the formation of a specialized plant structure known as the biotrophic interfacial complex (BIC), which appears to be crucial for effector delivery into plant cells. Here, we review recent advances in the cell biology of M. oryzae-host interactions and show how new breakthroughs in disease control have stemmed from an increased understanding of effector proteins of M. oryzae are deployed and delivered into plant cells to enable pathogen invasion and host susceptibility.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Miriam Oses-Ruiz
- IMAB, Public University of Navarre (UPNA), Campus Arrosadia, 31006, Pamplona, Navarra, Spain
| | - Samuel de Paula
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
11
|
Olmo R, Quijada NM, Morán-Diez ME, Hermosa R, Monte E. Identification of Tomato microRNAs in Late Response to Trichoderma atroviride. Int J Mol Sci 2024; 25:1617. [PMID: 38338899 PMCID: PMC10855890 DOI: 10.3390/ijms25031617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The tomato (Solanum lycopersicum) is an important crop worldwide and is considered a model plant to study stress responses. Small RNAs (sRNAs), 21-24 nucleotides in length, are recognized as a conserved mechanism for regulating gene expression in eukaryotes. Plant endogenous sRNAs, such as microRNA (miRNA), have been involved in disease resistance. High-throughput RNA sequencing was used to analyze the miRNA profile of the aerial part of 30-day-old tomato plants after the application of the fungus Trichoderma atroviride to the seeds at the transcriptional memory state. Compared to control plants, ten differentially expressed (DE) miRNAs were identified in those inoculated with Trichoderma, five upregulated and five downregulated, of which seven were known (miR166a, miR398-3p, miR408, miR5300, miR6024, miR6027-5p, and miR9471b-3p), and three were putatively novel (novel miR257, novel miR275, and novel miR1767). miRNA expression levels were assessed using real-time quantitative PCR analysis. A plant sRNA target analysis of the DE miRNAs predicted 945 potential target genes, most of them being downregulated (84%). The analysis of KEGG metabolic pathways showed that most of the targets harbored functions associated with plant-pathogen interaction, membrane trafficking, and protein kinases. Expression changes of tomato miRNAs caused by Trichoderma are linked to plant defense responses and appear to have long-lasting effects.
Collapse
Affiliation(s)
| | | | | | | | - Enrique Monte
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37185 Villamayor, Salamanca, Spain; (R.O.); (N.M.Q.); (M.E.M.-D.); (R.H.)
| |
Collapse
|
12
|
Peng J, Wang X, Wang H, Li X, Zhang Q, Wang M, Yan J. Advances in understanding grapevine downy mildew: From pathogen infection to disease management. MOLECULAR PLANT PATHOLOGY 2024; 25:e13401. [PMID: 37991155 PMCID: PMC10788597 DOI: 10.1111/mpp.13401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/29/2023] [Indexed: 11/23/2023]
Abstract
Plasmopara viticola is geographically widespread in grapevine-growing regions. Grapevine downy mildew disease, caused by this biotrophic pathogen, leads to considerable yield losses in viticulture annually. Because of the great significance of grapevine production and wine quality, research on this disease has been widely performed since its emergence in the 19th century. Here, we review and discuss recent understanding of this pathogen from multiple aspects, including its infection cycle, disease symptoms, genome decoding, effector biology, and management and control strategies. We highlight the identification and characterization of effector proteins with their biological roles in host-pathogen interaction, with a focus on sustainable control methods against P. viticola, especially the use of biocontrol agents and environmentally friendly compounds.
Collapse
Affiliation(s)
- Junbo Peng
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Hui Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Xinghong Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Qi Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Meng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North ChinaInstitute of Plant Protection, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| |
Collapse
|
13
|
Yan ZW, Chen FY, Zhang X, Cai WJ, Chen CY, Liu J, Wu MN, Liu NJ, Ma B, Wang MY, Chao DY, Gao CJ, Mao YB. Endocytosis-mediated entry of a caterpillar effector into plants is countered by Jasmonate. Nat Commun 2023; 14:6551. [PMID: 37848424 PMCID: PMC10582130 DOI: 10.1038/s41467-023-42226-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Insects and pathogens release effectors into plant cells to weaken the host defense or immune response. While the imports of some bacterial and fungal effectors into plants have been previously characterized, the mechanisms of how caterpillar effectors enter plant cells remain a mystery. Using live cell imaging and real-time protein tracking, we show that HARP1, an effector from the oral secretions of cotton bollworm (Helicoverpa armigera), enters plant cells via protein-mediated endocytosis. The entry of HARP1 into a plant cell depends on its interaction with vesicle trafficking components including CTL1, PATL2, and TET8. The plant defense hormone jasmonate (JA) restricts HARP1 import by inhibiting endocytosis and HARP1 loading into endosomes. Combined with the previous report that HARP1 inhibits JA signaling output in host plants, it unveils that the effector and JA establish a defense and counter-defense loop reflecting the robust arms race between plants and insects.
Collapse
Affiliation(s)
- Zi-Wei Yan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Fang-Yan Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Xian Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Wen-Juan Cai
- Core Facility Center of CEMPS/SIPPE, CAS, Shanghai, China
| | - Chun-Yu Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Jie Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Man-Ni Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of CAS, Shanghai, China
| | - Ning-Jing Liu
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Bin Ma
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Mu-Yang Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, CEMPS/SIPPE, CAS, Shanghai, China
| | - Cai-Ji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University (SCNU), Guangzhou, China
| | - Ying-Bo Mao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
| |
Collapse
|
14
|
Andika IB, Cao X, Kondo H, Sun L. The intriguing phenomenon of cross-kingdom infections of plant and insect viruses to fungi: Can other animal viruses also cross-infect fungi? PLoS Pathog 2023; 19:e1011726. [PMID: 37883353 PMCID: PMC10602238 DOI: 10.1371/journal.ppat.1011726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Fungi are highly widespread and commonly colonize multicellular organisms that live in natural environments. Notably, studies on viruses infecting plant-associated fungi have revealed the interesting phenomenon of the cross-kingdom transmission of viruses and viroids from plants to fungi. This implies that fungi, in addition to absorbing water, nutrients, and other molecules from the host, can acquire intracellular parasites that reside in the host. These findings further suggest that fungi can serve as suitable alternative hosts for certain plant viruses and viroids. Given the frequent coinfection of fungi and viruses in humans/animals, the question of whether fungi can also acquire animal viruses and serve as their hosts is very intriguing. In fact, the transmission of viruses from insects to fungi has been observed. Furthermore, the common release of animal viruses into the extracellular space (viral shedding) could potentially facilitate their acquisition by fungi. Investigations of the cross-infection of animal viruses in fungi may provide new insights into the epidemiology of viral diseases in humans and animals.
Collapse
Affiliation(s)
- Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Agricultural University, Tai’an, China
- Shouguang International Vegetable Sci-tech Fair Management Service Center, Shouguang, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Xianyang, China
| |
Collapse
|
15
|
Andika IB, Tian M, Bian R, Cao X, Luo M, Kondo H, Sun L. Cross-Kingdom Interactions Between Plant and Fungal Viruses. Annu Rev Virol 2023; 10:119-138. [PMID: 37406341 DOI: 10.1146/annurev-virology-111821-122539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The large genetic and structural divergences between plants and fungi may hinder the transmission of viruses between these two kingdoms to some extent. However, recent accumulating evidence from virus phylogenetic analyses and the discovery of naturally occurring virus cross-infection suggest the occurrence of past and current transmissions of viruses between plants and plant-associated fungi. Moreover, artificial virus inoculation experiments showed that diverse plant viruses can multiply in fungi and vice versa. Thus, virus cross-infection between plants and fungi may play an important role in the spread, emergence, and evolution of both plant and fungal viruses and facilitate the interaction between them. In this review, we summarize current knowledge related to cross-kingdom virus infection in plants and fungi and further discuss the relevance of this new virological topic in the context of understanding virus spread and transmission in nature as well as developing control strategies for crop plant diseases.
Collapse
Affiliation(s)
- Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Ming Luo
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
16
|
Stuer N, Van Damme P, Goormachtig S, Van Dingenen J. Seeking the interspecies crosswalk for filamentous microbe effectors. TRENDS IN PLANT SCIENCE 2023; 28:1045-1059. [PMID: 37062674 DOI: 10.1016/j.tplants.2023.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.
Collapse
Affiliation(s)
- Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium
| | - Petra Van Damme
- iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Karel Lodewijk Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, Vlaams Instituut voor Biotechnologie (VIB), 9052 Ghent, Belgium.
| |
Collapse
|
17
|
Yang Y, An B, Guo Y, Luo H, He C, Wang Q. A Novel Effector, FSE1, Regulates the Pathogenicity of Fusarium oxysporum f. sp. cubense Tropical Race 4 to Banana by Targeting the MYB Transcription Factor MaEFM-Like. J Fungi (Basel) 2023; 9:jof9040472. [PMID: 37108926 PMCID: PMC10144757 DOI: 10.3390/jof9040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Phytopathogenic fungi secretes a range of effectors to manipulate plant defenses. Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is a soil-borne pathogen that causes destructive banana wilt disease. Understanding the molecular mechanisms behind Foc TR4 effectors and their regulation of pathogenicity is helpful for developing disease control strategies. In the present study, we identified a novel effector, Fusarium special effector 1 (FSE1), in Foc TR4. We constructed FSE1 knock-out and overexpression mutants and investigated the functions of this effector. In vitro assays revealed that FSE1 was not required for vegetative growth and conidiation of Foc TR4. However, inoculation analysis of banana plantlets demonstrated that knock-out of FSE1 increased the disease index, while overexpression of FSE1 decreased it. Microscope analysis suggested that FSE1 was distributed in the cytoplasm and nuclei of plant cells. Furthermore, we identified an MYB transcription factor, MaEFM-like, as the target of FSE1, and the two proteins physically interacted in the nuclei of plant cells. In addition, Transient expression of MaEFM-like induced cell death in tobacco leaves. Our findings suggest that FSE1 is involved in the pathogenicity of Foc TR4 by targeting MaEFM-like.
Collapse
Affiliation(s)
- Yongbao Yang
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Bang An
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yunfeng Guo
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Hongli Luo
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chaozu He
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Qiannan Wang
- Sanya Nanfan Research Institute of Hainan University, College of Tropical Crops, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
18
|
See PT, Moffat CS. Profiling the Pyrenophora tritici-repentis secretome: The Pf2 transcription factor regulates the secretion of the effector proteins ToxA and ToxB. Mol Microbiol 2023; 119:612-629. [PMID: 37059688 DOI: 10.1111/mmi.15058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 02/13/2023] [Accepted: 03/19/2023] [Indexed: 04/16/2023]
Abstract
The global wheat disease tan spot is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) which secretes necrotrophic effectors to facilitate host plant colonization. We previously reported a role of the Zn2 Cys6 binuclear cluster transcription factor Pf2 in the regulation of the Ptr effector ToxA. Here, we show that Pf2 is also a positive regulator of ToxB, via targeted deletion of PtrPf2 which resulted in reduced ToxB expression and defects in conidiation and pathogenicity. To further investigate the function of Ptr Pf2 in regulating protein secretion, the secretome profiles of two Δptrpf2 mutants of two Ptr races (races 1 and 5) were evaluated using a SWATH-mass spectrometry (MS) quantitative approach. Analysis of the secretomes of the Δptrpf2 mutants from in vitro culture filtrate identified more than 500 secreted proteins, with 25% unique to each race. Of the identified proteins, less than 6% were significantly differentially regulated by Ptr Pf2. Among the downregulated proteins were ToxA and ToxB, specific to race 1 and race 5 respectively, demonstrating the role of Ptr Pf2 as a positive regulator of both effectors. Significant motif sequences identified in both ToxA and ToxB putative promoter regions were further explored via GFP reporter assays.
Collapse
Affiliation(s)
- Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australian, 6102, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australian, 6102, Australia
| |
Collapse
|
19
|
Hadimani S, De Britto S, Udayashankar AC, Geetha N, Nayaka CS, Ali D, Alarifi S, Ito SI, Jogaiah S. Genome-Wide Characterization of Effector Protein-Encoding Genes in Sclerospora graminicola and Its Validation in Response to Pearl Millet Downy Mildew Disease Stress. J Fungi (Basel) 2023; 9:jof9040431. [PMID: 37108886 PMCID: PMC10142805 DOI: 10.3390/jof9040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the essential food crop for over ninety million people living in drier parts of India and South Africa. Pearl millet crop production is harshly hindered by numerous biotic stresses. Sclerospora graminicola causes downy mildew disease in pearl millet. Effectors are the proteins secreted by several fungi and bacteria that manipulate the host cell structure and function. This current study aims to identify genes encoding effector proteins from the S. graminicola genome and validate them through molecular techniques. In silico analyses were employed for candidate effector prediction. A total of 845 secretory transmembrane proteins were predicted, out of which 35 proteins carrying LxLFLAK (Leucine–any amino acid–Phenylalanine–Leucine–Alanine–Lysine) motif were crinkler, 52 RxLR (Arginine, any amino acid, Leucine, Arginine), and 17 RxLR-dEER putative effector proteins. Gene validation analysis of 17 RxLR-dEER effector protein-producing genes was carried out, of which 5genes were amplified on the gel. These novel gene sequences were submitted to NCBI. This study is the first report on the identification and characterization of effector genes in Sclerospora graminicola. This dataset will aid in the integration of effector classes that act independently, paving the way to investigate how pearl millet responds to effector protein interactions. These results will assist in identifying functional effector proteins involving the omic approach using newer bioinformatics tools to protect pearl millet plants against downy mildew stress. Considered together, the identified effector protein-encoding functional genes can be utilized in screening oomycetes downy mildew diseases in other crops across the globe.
Collapse
Affiliation(s)
- Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Arakere C. Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Nagaraj Geetha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Chandra S. Nayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shin-ichi Ito
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) 671316, Kasaragod (DT), Kerala, India
- Correspondence: ; Tel.: +91-836-2779533; Fax: +91-836-2747884
| |
Collapse
|
20
|
Oliveira-Garcia E, Tamang TM, Park J, Dalby M, Martin-Urdiroz M, Rodriguez Herrero C, Vu AH, Park S, Talbot NJ, Valent B. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. THE PLANT CELL 2023:koad094. [PMID: 36976907 DOI: 10.1093/plcell/koad094] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Fungi and oomycetes deliver effectors into living plant cells to suppress defenses and control plant processes needed for infection. Little is known about the mechanism by which these pathogens translocate effector proteins across the plasma membrane into the plant cytoplasm. The blast fungus Magnaporthe oryzae secretes cytoplasmic effectors into a specialized biotrophic interfacial complex (BIC) before translocation. Here we show that cytoplasmic effectors within BICs are packaged into punctate membranous effector compartments that are occasionally observed in the host cytoplasm. Live cell imaging with fluorescently labeled proteins in rice (Oryza sativa) showed that these effector puncta colocalize with the plant plasma membrane and with CLATHRIN LIGHT CHAIN 1, a component of clathrin-mediated endocytosis (CME). Inhibiting CME using virus-induced gene silencing and chemical treatments resulted in cytoplasmic effectors in swollen BICs lacking effector puncta. By contrast, fluorescent marker co-localization, gene silencing and chemical inhibitor studies failed to support a major role for clathrin-independent endocytosis in effector translocation. Effector localization patterns indicated that cytoplasmic effector translocation occurs underneath appressoria before invasive hyphal growth. Taken together, this study provides evidence that cytoplasmic effector translocation is mediated by clathrin-mediated endocytosis in BICs and suggests a role for M. oryzae effectors in co-opting plant endocytosis.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Tej Man Tamang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Jungeun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Clara Rodriguez Herrero
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - An Hong Vu
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sunghun Park
- Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Wilson RA, McDowell JM. Recent advances in understanding of fungal and oomycete effectors. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102228. [PMID: 35605341 DOI: 10.1016/j.pbi.2022.102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Fungal and oomycete pathogens secrete complex arrays of proteins and small RNAs to interface with plant-host targets and manipulate plant regulatory networks to the microbes' advantage. Research on these important virulence factors has been accelerated by improved genome sequences, refined bioinformatic prediction tools, and exploitation of efficient platforms for understanding effector gene expression and function. Recent studies have validated the expectation that oomycetes and fungi target many of the same sectors in immune signaling networks, but the specific host plant targets and modes of action are diverse. Effector research has also contributed to deeper understanding of the mechanisms of effector-triggered immunity.
Collapse
Affiliation(s)
- Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
22
|
Dahhan DA, Bednarek SY. Advances in structural, spatial, and temporal mechanics of plant endocytosis. FEBS Lett 2022; 596:2269-2287. [PMID: 35674447 DOI: 10.1002/1873-3468.14420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/06/2022]
Abstract
Endocytic trafficking underlies processes essential for plant growth and development, including the perception of and response to abiotic and extracellular stimuli, post-Golgi and exocytic trafficking, and cytokinesis. Protein adaptors and regulatory factors of clathrin-mediated endocytosis that contribute to the formation of endocytic clathrin-coated vesicles are evolutionarily conserved. Yet, work of the last ten years has identified differences between the endocytic mechanisms of plants and Opisthokonts involving the endocytic adaptor TPLATE complex, the requirement of actin during CME, and the function of clathrin-independent endocytosis in the uptake of plant-specific plasma membrane proteins. Here, we review clathrin-mediated and -independent pathways in plants and describe recent advances enabled by new proteomic and imaging methods, and conditional perturbation of endocytosis. In addition, we summarize the formation and trafficking of clathrin-coated vesicles based on temporal and structural data garnered from high-resolution quantitative imaging studies. Finally, new information about the cross-talk between endocytosis and other endomembrane trafficking pathways and organelles will also be discussed.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, WI, USA
| | | |
Collapse
|
23
|
Xiao F, Xu W, Hong N, Wang L, Zhang Y, Wang G. A Secreted Lignin Peroxidase Required for Fungal Growth and Virulence and Related to Plant Immune Response. Int J Mol Sci 2022; 23:6066. [PMID: 35682745 PMCID: PMC9181491 DOI: 10.3390/ijms23116066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Botryosphaeria spp. are important phytopathogenic fungi that infect a wide range of woody plants, resulting in big losses worldwide each year. However, their pathogenetic mechanisms and the related virulence factors are rarely addressed. In this study, seven lignin peroxidase (LiP) paralogs were detected in Botryosphaeria kuwatsukai, named BkLiP1 to BkLiP7, respectively, while only BkLiP1 was identified as responsible for the vegetative growth and virulence of B. kuwatsukai as assessed in combination with knock-out, complementation, and overexpression approaches. Moreover, BkLiP1, with the aid of a signal peptide (SP), is translocated onto the cell wall of B. kuwatsukai and secreted into the apoplast space of plant cells as expressed in the leaves of Nicotiana benthamiana, which can behave as a microbe-associated molecular pattern (MAMP) to trigger the defense response of plants, including cell death, reactive oxygen species (ROS) burst, callose deposition, and immunity-related genes up-regulated. It supports the conclusion that BkLiP1 plays an important role in the virulence and vegetative growth of B. kuwatsukai and alternatively behaves as an MAMP to induce plant cell death used for the fungal version, which contributes to a better understanding of the pathogenetic mechanism of Botryosphaeria fungi.
Collapse
Affiliation(s)
- Feng Xiao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenxing Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ni Hong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongle Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (F.X.); (W.X.); (N.H.); (L.W.); (Y.Z.)
- Key Laboratory of Plant Pathology of Hubei Province, Wuhan 430070, China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology, and Germplasm Creation of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Zhu MC, Li XM, Zhao N, Yang L, Zhang KQ, Yang JK. Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi. J Fungi (Basel) 2022; 8:jof8040406. [PMID: 35448637 PMCID: PMC9031305 DOI: 10.3390/jof8040406] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023] Open
Abstract
Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called “traps” to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle. With the development of gene knockout and multiple omics such as genomics, transcriptomics, and metabolomics, increasing studies have tried to investigate the regulation mechanism of trap formation in NT fungi. This review summarizes the potential regulatory mechanism of trap formation in NT fungi based on the latest findings in this field. Signaling pathways have been confirmed to play an especially vital role in trap formation based on phenotypes of various mutants and multi-omics analysis, and the involvement of small molecule compounds, woronin body, peroxisome, autophagy, and pH-sensing receptors in the formation of traps are also discussed. In addition, we also highlight the research focus for elucidating the mechanism underlying trap formation of NT fungi in the future.
Collapse
|
25
|
Kahmann R. My Personal Journey from the Fascination for Phages to a Tumor-Inducing Fungal Pathogen of Corn. Annu Rev Microbiol 2022; 76:1-19. [PMID: 35395169 DOI: 10.1146/annurev-micro-121721-111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My path in science began with a fascination for microbiology and phages and later involved a switch of subjects to the fungus Ustilago maydis and how it causes disease in maize. I will not provide a review of my work but rather focus on decisive findings, serendipitous, lucky moments when major advances made the U. maydis-maize system what it is now-a well-established model for biotrophic fungi. I also want to share with you the joy of finding the needle in a haystack at the very end of my scientific career, a fungal structure likely used for effector delivery, and how we were able to translate this into a potential application in agriculture. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany;
| |
Collapse
|
26
|
Fang Y, Wang Z, Liu X, Tyler BM. Biogenesis and Biological Functions of Extracellular Vesicles in Cellular and Organismal Communication With Microbes. Front Microbiol 2022; 13:817844. [PMID: 35250933 PMCID: PMC8895202 DOI: 10.3389/fmicb.2022.817844] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) represent a prominent mechanism of transport and interaction between cells, especially microbes. Increasing evidence indicates that EVs play a key role in the physiological and pathological processes of pathogens and other symbionts. Recent research has focused on the specific functions of these vesicles during pathogen-host interactions, including trans-kingdom delivery of small RNAs, proteins and metabolites. Much current research on the function of EVs is focused on immunity and the interactions of microbes with human cells, while the roles of EVs during plant-microbe interactions have recently emerged in importance. In this review, we summarize recent research on the biogenesis of these vesicles and their functions in biology and pathology. Many key questions remain unclear, including the full structural and functional diversity of EVs, the roles of EVs in communication among microbes within microbiomes, how specific cargoes are targeted to EVs, whether EVs are targeted to specific destinations, and the full scope of EVs' transport of virulence effectors and of RNA and DNA molecules.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Zhiwen Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Brett M. Tyler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
27
|
Sperschneider J, Dodds PN. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:146-156. [PMID: 34698534 DOI: 10.1094/mpmi-08-21-0201-r] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Many fungi and oomycete species are devasting plant pathogens. These eukaryotic filamentous pathogens secrete effector proteins to facilitate plant infection. Fungi and oomycete pathogens have diverse infection strategies and their effectors generally do not share sequence homology. However, they occupy similar host environments, either the plant apoplast or plant cytoplasm, and, therefore, may share some unifying properties based on the requirements of these host compartments. Here, we exploit these biological signals and present the first classifier (EffectorP 3.0) that uses two machine-learning models: one trained on apoplastic effectors and one trained on cytoplasmic effectors. EffectorP 3.0 accurately predicts known apoplastic and cytoplasmic effectors in fungal and oomycete secretomes with low estimated false-positive rates of 3 and 8%, respectively. Cytoplasmic effectors have a higher proportion of positively charged amino acids, whereas apoplastic effectors are enriched for cysteine residues. The combination of fungal and oomycete effectors in training leads to a higher number of predicted cytoplasmic effectors in biotrophic fungi. EffectorP 3.0 expands predicted effector repertoires beyond small, cysteine-rich secreted proteins in fungi and RxLR-motif containing secreted proteins in oomycetes. We show that signal peptide prediction is essential for accurate effector prediction, because EffectorP 3.0 recognizes a cytoplasmic signal also in intracellular, nonsecreted proteins.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, Australia
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australia
| |
Collapse
|
28
|
Oberti H, Spangenberg G, Cogan N, Reyno R, Feijoo M, Murchio S, Dalla-Rizza M. Genome-wide analysis of Claviceps paspali: insights into the secretome of the main species causing ergot disease in Paspalum spp. BMC Genomics 2021; 22:766. [PMID: 34702162 PMCID: PMC8549174 DOI: 10.1186/s12864-021-08077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The phytopatogen Claviceps paspali is the causal agent of Ergot disease in Paspalum spp., which includes highly productive forage grasses such as P. dilatatum. This disease impacts dairy and beef production by affecting seed quality and producing mycotoxins that can affect performance in feeding animals. The molecular basis of pathogenicity of C. paspali remains unknown, which makes it more difficult to find solutions for this problem. Secreted proteins are related to fungi virulence and can manipulate plant immunity acting on different subcellular localizations. Therefore, identifying and characterizing secreted proteins in phytopathogenic fungi will provide a better understanding of how they overcome host defense and cause disease. The aim of this work is to analyze the whole genome sequences of three C. paspali isolates to obtain a comparative genome characterization based on possible secreted proteins and pathogenicity factors present in their genome. In planta RNA-seq analysis at an early stage of the interaction of C. paspali with P. dilatatum stigmas was also conducted in order to determine possible secreted proteins expressed in the infection process. RESULTS C. paspali isolates had compact genomes and secretome which accounted for 4.6-4.9% of the predicted proteomes. More than 50% of the predicted secretome had no homology to known proteins. RNA-Seq revealed that three protein-coding genes predicted as secreted have mayor expression changes during 1 dpi vs 4 dpi. Also, three of the first 10 highly expressed genes in both time points were predicted as effector-like. CAZyme-like proteins were found in the predicted secretome and the most abundant family could be associated to pectine degradation. Based on this, pectine could be a main component affected by the cell wall degrading enzymes of C. paspali. CONCLUSIONS Based on predictions from DNA sequence and RNA-seq, unique probable secreted proteins and probable pathogenicity factors were identified in C. paspali isolates. This information opens new avenues in the study of the biology of this fungus and how it modulates the interaction with its host. Knowledge of the diversity of the secretome and putative pathogenicity genes should facilitate future research in disease management of Claviceps spp.
Collapse
Affiliation(s)
- H Oberti
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay
| | - G Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - N Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia
- School of Applied Systems Biology, La Trobe University, 5 Ring Road, Bundoora, VIC, 3083, Australia
| | - R Reyno
- Instituto Nacional de Investigación Agropecuaria (INIA). Programa Pasturas y Forrajes. Estación Experimental INIA Tacuarembó, Ruta 5 km, 386, Tacuarembó, Uruguay
| | - M Feijoo
- Centro Universitario Regional del Este (CURE), Polo de Desarrollo Universitario: Patogenicidad, toxicidad y genética en los ecosistemas pastoriles de la región Este de Uruguay, Ruta 8 km, 281, Treinta y Tres, Uruguay
| | - S Murchio
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay
| | - M Dalla-Rizza
- Instituto Nacional de Investigación Agropecuaria (INIA). Unidad de Biotecnología. Estación Experimental INIA Las Brujas, Ruta 48 km, 10, Canelones, Uruguay.
| |
Collapse
|
29
|
Figueroa M, Ortiz D, Henningsen EC. Tactics of host manipulation by intracellular effectors from plant pathogenic fungi. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102054. [PMID: 33992840 DOI: 10.1016/j.pbi.2021.102054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Fungal pathogens can secrete hundreds of effectors, some of which are known to promote host susceptibility. This biological complexity, together with the lack of genetic tools in some fungi, presents a substantial challenge to develop a broad picture of the mechanisms these pathogens use for host manipulation. Nevertheless, recent advances in understanding individual effector functions are beginning to flesh out our view of fungal pathogenesis. This review discusses some of the latest findings that illustrate how effectors from diverse species use similar strategies to modulate plant physiology to their advantage. We also summarize recent breakthroughs in the identification of effectors from challenging systems, like obligate biotrophs, and emerging concepts such as the 'iceberg model' to explain how the activation of plant immunity can be turned off by effectors with suppressive activity.
Collapse
Affiliation(s)
- Melania Figueroa
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, ACT 2601, Australia.
| | - Diana Ortiz
- National Research Institute for Agriculture, Food and Environment, Unit of Genetics and Breeding of Fruit and Vegetables, Domaine St Maurice, CS 60094, F-84143 Montfavet, France
| | - Eva C Henningsen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
30
|
Jones K, Zhu J, Jenkinson CB, Kim DW, Pfeifer MA, Khang CH. Disruption of the Interfacial Membrane Leads to Magnaporthe oryzae Effector Re-location and Lifestyle Switch During Rice Blast Disease. Front Cell Dev Biol 2021; 9:681734. [PMID: 34222251 PMCID: PMC8248803 DOI: 10.3389/fcell.2021.681734] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
To cause the devastating rice blast disease, the hemibiotrophic fungus Magnaporthe oryzae produces invasive hyphae (IH) that are enclosed in a plant-derived interfacial membrane, known as the extra-invasive hyphal membrane (EIHM), in living rice cells. Little is known about when the EIHM is disrupted and how the disruption contributes to blast disease. Here we show that the disruption of the EIHM correlates with the hyphal growth stage in first-invaded susceptible rice cells. Our approach utilized GFP that was secreted from IH as an EIHM integrity reporter. Secreted GFP (sec-GFP) accumulated in the EIHM compartment but appeared in the host cytoplasm when the integrity of the EIHM was compromised. Live-cell imaging coupled with sec-GFP and various fluorescent reporters revealed that the loss of EIHM integrity preceded shrinkage and eventual rupture of the rice vacuole. The vacuole rupture coincided with host cell death, which was limited to the invaded cell with presumed closure of plasmodesmata. We report that EIHM disruption and host cell death are landmarks that delineate three distinct infection phases (early biotrophic, late biotrophic, and transient necrotrophic phases) within the first-invaded cell before reestablishment of biotrophy in second-invaded cells. M. oryzae effectors exhibited infection phase-specific localizations, including entry of the apoplastic effector Bas4 into the host cytoplasm through the disrupted EIHM during the late biotrophic phase. Understanding how infection phase-specific cellular dynamics are regulated and linked to host susceptibility will offer potential targets that can be exploited to control blast disease.
Collapse
Affiliation(s)
- Kiersun Jones
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Jie Zhu
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Cory B Jenkinson
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Dong Won Kim
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Mariel A Pfeifer
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Chang Hyun Khang
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
31
|
Tini F, Beccari G, Marconi G, Porceddu A, Sulyok M, Gardiner DM, Albertini E, Covarelli L. Identification of Putative Virulence Genes by DNA Methylation Studies in the Cereal Pathogen Fusarium graminearum. Cells 2021; 10:cells10051192. [PMID: 34068122 PMCID: PMC8152758 DOI: 10.3390/cells10051192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 01/17/2023] Open
Abstract
DNA methylation mediates organisms’ adaptations to environmental changes in a wide range of species. We investigated if a such a strategy is also adopted by Fusarium graminearum in regulating virulence toward its natural hosts. A virulent strain of this fungus was consecutively sub-cultured for 50 times (once a week) on potato dextrose agar. To assess the effect of subculturing on virulence, wheat seedlings and heads (cv. A416) were inoculated with subcultures (SC) 1, 23, and 50. SC50 was also used to re-infect (three times) wheat heads (SC50×3) to restore virulence. In vitro conidia production, colonies growth and secondary metabolites production were also determined for SC1, SC23, SC50, and SC50×3. Seedling stem base and head assays revealed a virulence decline of all subcultures, whereas virulence was restored in SC50×3. The same trend was observed in conidia production. The DNA isolated from SC50 and SC50×3 was subject to a methylation content-sensitive enzyme and double-digest, restriction-site-associated DNA technique (ddRAD-MCSeEd). DNA methylation analysis indicated 1024 genes, whose methylation levels changed in response to the inoculation on a healthy host after subculturing. Several of these genes are already known to be involved in virulence by functional analysis. These results demonstrate that the physiological shifts following sub-culturing have an impact on genomic DNA methylation levels and suggest that the ddRAD-MCSeEd approach can be an important tool for detecting genes potentially related to fungal virulence.
Collapse
Affiliation(s)
- Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
- Correspondence:
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Micheal Sulyok
- Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Applied Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse, 20, A-3430 Tulln, Austria;
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, 306 Carmody Road, St Lucia, QLD 4067, Australia;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy; (F.T.); (G.B.); (E.A.); (L.C.)
| |
Collapse
|
32
|
Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, Sanz AB, Arroyo J, Zhu W, Masrati G, Sharon A. The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nat Commun 2021; 12:2166. [PMID: 33846308 PMCID: PMC8042016 DOI: 10.1038/s41467-021-22436-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Crh proteins catalyze crosslinking of chitin and glucan polymers in fungal cell walls. Here, we show that the BcCrh1 protein from the phytopathogenic fungus Botrytis cinerea acts as a cytoplasmic effector and elicitor of plant defense. BcCrh1 is localized in vacuoles and the endoplasmic reticulum during saprophytic growth. However, upon plant infection, the protein accumulates in infection cushions; it is then secreted to the apoplast and translocated into plant cells, where it induces cell death and defense responses. Two regions of 53 and 35 amino acids are sufficient for protein uptake and cell death induction, respectively. BcCrh1 mutant variants that are unable to dimerize lack transglycosylation activity, but are still able to induce plant cell death. Furthermore, Arabidopsis lines expressing the bccrh1 gene exhibit reduced sensitivity to B. cinerea, suggesting a potential use of the BcCrh1 protein in plant immunization against this necrotrophic pathogen.
Collapse
Affiliation(s)
- Kai Bi
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Loredana Scalschi
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Plant Physiology Area, Biochemistry and Biotechnology Group, Department CAMN, University Jaume I, Castellón, Spain
| | - Namrata Jaiswal
- Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, College of Agriculture, Purdue University, West Lafayette, IN, USA
| | - Renana Fried
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ana Belén Sanz
- Dpto. Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, IRYCIS, Madrid, Spain
| | - Javier Arroyo
- Dpto. Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense, IRYCIS, Madrid, Spain
| | - Wenjun Zhu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan City, Hubei Province, China
| | - Gal Masrati
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amir Sharon
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
33
|
Ivashuta S, Iandolino A, Watson G. Exogenous RNA as a Regulatory Signal during a Plant's Interaction with the Biotic Environment: An Evolutionary Perspective and Future Applications in Agriculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:532. [PMID: 33808982 PMCID: PMC8000970 DOI: 10.3390/plants10030532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a responsive organism by exogenous RNA. While exogenous RNA transfer between organisms of different kingdoms of life have been unambiguously identified in nature, our understanding of the biological significance of this phenomenon remains obscure, particularly within an evolutionary context. During the last decade multiple reports utilizing various mechanisms of natural eRNAi phenomena have been attempted to develop new agricultural traits and products including weed, disease and insect control. Although these attempts yielded mixed results, this concept remains extremely attractive for many agricultural applications. To better utilize eRNAi for practical applications, we would like to emphasize the necessity of understanding the biological significance of this phenomenon within an evolutionary context and learn from nature by developing advanced tools to identify and study new cases of exogeneous RNA transfer and eRNAi. In this opinion article we would like to look at the exogeneous RNA transfer from an evolutionary perspective, propose that new cases of exogeneous RNA transfer still remain to be identified in nature, and address a knowledge gap in understanding the biological function and significance of RNA transfer. We believe such approach may eventually result in a more successful use of this phenomenon for practical applications in agriculture.
Collapse
|
34
|
van der Linde K, Göhre V. How Do Smut Fungi Use Plant Signals to Spatiotemporally Orientate on and In Planta? J Fungi (Basel) 2021; 7:107. [PMID: 33540708 PMCID: PMC7913117 DOI: 10.3390/jof7020107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
Smut fungi represent a large group of biotrophic plant pathogens that cause extensive yield loss and are also model organisms for studying plant-pathogen interactions. In recent years, they have become biotechnological tools. After initial penetration of the plant epidermis, smut fungi grow intra-and intercellularly without disrupting the plant-plasma membrane. Following the colonialization step, teliospores are formed and later released. While some smuts only invade the tissues around the initial penetration site, others colonize in multiple plant organs resulting in spore formation distal from the original infection site. The intimate contact zone between fungal hyphae and the host is termed the biotrophic interaction zone and enables exchange of signals and nutrient uptake. Obviously, all steps of on and in planta growth require fine sensing of host conditions as well as reprogramming of the host by the smut fungus. In this review, we highlight selected examples of smut fungal colonization styles, directional growth in planta, induction of spore formation, and the signals required, pointing to excellent reviews for details, to draw attention to some of the open questions in this important research field.
Collapse
Affiliation(s)
- Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Vera Göhre
- Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Lv Z, He Z, Hao L, Kang X, Ma B, Li H, Luo Y, Yuan J, He N. Genome Sequencing Analysis of Scleromitrula shiraiana, a Causal Agent of Mulberry Sclerotial Disease With Narrow Host Range. Front Microbiol 2021; 11:603927. [PMID: 33519746 PMCID: PMC7840784 DOI: 10.3389/fmicb.2020.603927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Scleromitrula shiraiana is a necrotrophic fungus with a narrow host range, and is one of the main causal pathogens of mulberry sclerotial disease. However, its molecular mechanisms and pathogenesis are unclear. Here, we report a 39.0 Mb high-quality genome sequence for S. shiraiana strain SX-001. The S. shiraiana genome contains 11,327 protein-coding genes. The number of genes and genome size of S. shiraiana are similar to most other Ascomycetes. The cross-similarities and differences of S. shiraiana with the closely related Sclerotinia sclerotiorum and Botrytis cinerea indicated that S. shiraiana differentiated earlier from their common ancestor. A comparative genomic analysis showed that S. shiraiana has fewer genes encoding cell wall-degrading enzymes (CWDEs) and effector proteins than that of S. sclerotiorum and B. cinerea, as well as many other Ascomycetes. This is probably a key factor in the weaker aggressiveness of S. shiraiana to other plants. S. shiraiana has many species-specific genes encoding secondary metabolism core enzymes. The diversity of secondary metabolites may be related to the adaptation of these pathogens to specific ecological niches. However, melanin and oxalic acid are conserved metabolites among many Sclerotiniaceae fungi, and may be essential for survival and infection. Our results provide insights into the narrow host range of S. shiraiana and its adaptation to mulberries.
Collapse
Affiliation(s)
- Zhiyuan Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ziwen He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Lijuan Hao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xin Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hongshun Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jianglian Yuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
36
|
Wang J, Dhroso A, Liu X, Baum TJ, Hussey RS, Davis EL, Wang X, Korkin D, Mitchum MG. Phytonematode peptide effectors exploit a host post-translational trafficking mechanism to the ER using a novel translocation signal. THE NEW PHYTOLOGIST 2021; 229:563-574. [PMID: 32569394 DOI: 10.1111/nph.16765] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/02/2020] [Indexed: 05/26/2023]
Abstract
Cyst nematodes induce a multicellular feeding site within roots called a syncytium. It remains unknown how root cells are primed for incorporation into the developing syncytium. Furthermore, it is unclear how CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide effectors secreted into the cytoplasm of the initial feeding cell could have an effect on plant cells so distant from where the nematode is feeding as the syncytium expands. Here we describe a novel translocation signal within nematode CLE effectors that is recognized by plant cell secretory machinery to redirect these peptides from the cytoplasm to the apoplast of plant cells. We show that the translocation signal is functionally conserved across CLE effectors identified in nematode species spanning three genera and multiple plant species, operative across plant cell types, and can traffic other unrelated small peptides from the cytoplasm to the apoplast of host cells via a previously unknown post-translational mechanism of endoplasmic reticulum (ER) translocation. Our results uncover a mechanism of effector trafficking that is unprecedented in any plant pathogen to date, andthey illustrate how phytonematodes can deliver effector proteins into host cells and then hijack plant cellular processes for their export back out of the cell to function as external signaling molecules to distant cells.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Xunliang Liu
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Richard S Hussey
- Department of Plant Pathology, University of Georgia, Athens, GA, 30602, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Xiaohong Wang
- Robert W. Holley Center for Agriculture and Health, US Department of Agriculture, Agricultural Research Service and School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
37
|
Ludwig N, Reissmann S, Schipper K, Gonzalez C, Assmann D, Glatter T, Moretti M, Ma LS, Rexer KH, Snetselaar K, Kahmann R. A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis. Nat Microbiol 2021; 6:722-730. [PMID: 33941900 PMCID: PMC8159752 DOI: 10.1038/s41564-021-00896-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Plant pathogenic fungi colonizing living plant tissue secrete a cocktail of effector proteins to suppress plant immunity and reprogramme host cells. Although many of these effectors function inside host cells, delivery systems used by pathogenic bacteria to translocate effectors into host cells have not been detected in fungi. Here, we show that five unrelated effectors and two membrane proteins from Ustilago maydis, a biotrophic fungus causing smut disease in corn, form a stable protein complex. All seven genes appear co-regulated and are only expressed during colonization. Single mutants arrest in the epidermal layer, fail to suppress host defence responses and fail to induce non-host resistance, two reactions that likely depend on translocated effectors. The complex is anchored in the fungal membrane, protrudes into host cells and likely contacts channel-forming plant plasma membrane proteins. Constitutive expression of all seven complex members resulted in a surface-exposed form in cultured U. maydis cells. As orthologues of the complex-forming proteins are conserved in smut fungi, the complex may become an interesting fungicide target.
Collapse
Affiliation(s)
- Nicole Ludwig
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stefanie Reissmann
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kerstin Schipper
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany ,grid.411327.20000 0001 2176 9917Present Address: Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Carla Gonzalez
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniela Assmann
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- grid.419554.80000 0004 0491 8361Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Marino Moretti
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lay-Sun Ma
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany ,grid.28665.3f0000 0001 2287 1366Present Address: Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Karl-Heinz Rexer
- grid.10253.350000 0004 1936 9756Department of Evolutionary Ecology of Plants, Philipps-Universität Marburg, Marburg, Germany
| | - Karen Snetselaar
- grid.262952.80000 0001 0699 5924Department of Biology, Saint Joseph’s University, Philadelphia, PA USA
| | - Regine Kahmann
- grid.419554.80000 0004 0491 8361Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
38
|
Valero-Jiménez CA, Steentjes MBF, Slot JC, Shi-Kunne X, Scholten OE, van Kan JAL. Dynamics in Secondary Metabolite Gene Clusters in Otherwise Highly Syntenic and Stable Genomes in the Fungal Genus Botrytis. Genome Biol Evol 2020; 12:2491-2507. [PMID: 33283866 PMCID: PMC7719232 DOI: 10.1093/gbe/evaa218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2020] [Indexed: 02/05/2023] Open
Abstract
Fungi of the genus Botrytis infect >1,400 plant species and cause losses in many crops. Besides the broad host range pathogen Botrytis cinerea, most other species are restricted to a single host. Long-read technology was used to sequence genomes of eight Botrytis species, mostly pathogenic on Allium species, and the related onion white rot fungus, Sclerotium cepivorum. Most assemblies contained <100 contigs, with the Botrytis aclada genome assembled in 16 gapless chromosomes. The core genome and pan-genome of 16 Botrytis species were defined and the secretome, effector, and secondary metabolite repertoires analyzed. Among those genes, none is shared among all Allium pathogens and absent from non-Allium pathogens. The genome of each of the Allium pathogens contains 8-39 predicted effector genes that are unique for that single species, none stood out as potential determinant for host specificity. Chromosome configurations of common ancestors of the genus Botrytis and family Sclerotiniaceae were reconstructed. The genomes of B. cinerea and B. aclada were highly syntenic with only 19 rearrangements between them. Genomes of Allium pathogens were compared with ten other Botrytis species (nonpathogenic on Allium) and with 25 Leotiomycetes for their repertoire of secondary metabolite gene clusters. The pattern was complex, with several clusters displaying patchy distribution. Two clusters involved in the synthesis of phytotoxic metabolites are at distinct genomic locations in different Botrytis species. We provide evidence that the clusters for botcinic acid production in B. cinerea and Botrytis sinoallii were acquired by horizontal transfer from taxa within the same genus.
Collapse
Affiliation(s)
| | | | - Jason C Slot
- Department of Plant Pathology, The Ohio State University
| | | | - Olga E Scholten
- Plant Breeding, Wageningen University & Research, The Netherlands
| | - Jan A L van Kan
- Laboratory of Phytopathology, Wageningen University, The Netherlands
| |
Collapse
|
39
|
Iberahim NA, Sood N, Pradhan PK, van den Boom J, van West P, Trusch F. The chaperone Lhs1 contributes to the virulence of the fish-pathogenic oomycete Aphanomyces invadans. Fungal Biol 2020; 124:1024-1031. [PMID: 33213782 DOI: 10.1016/j.funbio.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022]
Abstract
Oomycetes are fungal-like eukaryotes and many of them are pathogens that threaten natural ecosystems and cause huge financial losses for the aqua- and agriculture industry. Amongst them, Aphanomyces invadans causes Epizootic Ulcerative Syndrome (EUS) in fish which can be responsible for up to 100% mortality in aquaculture. As other eukaryotic pathogens, in order to establish and promote an infection, A. invadans secretes proteins, which are predicted to overcome host defence mechanisms and interfere with other processes inside the host. We investigated the role of Lhs1 which is part of an ER-resident complex that generally promotes the translocation of proteins from the cytoplasm into the ER for further processing and secretion. Interestingly, proteomic studies reveal that only a subset of virulence factors are affected by the silencing of AiLhs1 in A. invadans indicating various secretion pathways for different proteins. Importantly, changes in the secretome upon silencing of AiLhs1 significantly reduces the virulence of A. invadans in the infection model Galleriamellonella. Furthermore, we show that AiLhs1 is important for the production of zoospores and their cluster formation. This renders proteins required for protein ER translocation as interesting targets for the potential development of alternative disease control strategies in agri- and aquaculture.
Collapse
Affiliation(s)
- Nurul Aqilah Iberahim
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom; Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030, Malaysia
| | - Neeraj Sood
- Fish Health Management Division, National Bureau of Fish Genetic Resources, 226002, Lucknow, India
| | - Pravata Kumar Pradhan
- Fish Health Management Division, National Bureau of Fish Genetic Resources, 226002, Lucknow, India
| | - Johannes van den Boom
- Molecular Biology I, Centre for Medical Biotechnology, University of Duisburg-Essen, 45141, Essen, Germany
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom.
| | - Franziska Trusch
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United Kingdom; International Centre for Aquaculture Research and Development (ICARD), University of Aberdeen, Scotland, United Kingdom.
| |
Collapse
|
40
|
Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nat Commun 2020; 11:5845. [PMID: 33203871 PMCID: PMC7672089 DOI: 10.1038/s41467-020-19624-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/20/2020] [Indexed: 02/04/2023] Open
Abstract
Pathogens utilize multiple types of effectors to modulate plant immunity. Although many apoplastic and cytoplasmic effectors have been reported, nuclear effectors have not been well characterized in fungal pathogens. Here, we characterize two nuclear effectors of the rice blast pathogen Magnaporthe oryzae. Both nuclear effectors are secreted via the biotrophic interfacial complex, translocated into the nuclei of initially penetrated and surrounding cells, and reprogram the expression of immunity-associated genes by binding on effector binding elements in rice. Their expression in transgenic rice causes ambivalent immunity: increased susceptibility to M. oryzae and Xanthomonas oryzae pv. oryzae, hemibiotrophic pathogens, but enhanced resistance to Cochliobolus miyabeanus, a necrotrophic pathogen. Our findings help remedy a significant knowledge deficiency in the mechanism of M. oryzae–rice interactions and underscore how effector-mediated manipulation of plant immunity by one pathogen may also affect the disease severity by other pathogens. Plant pathogens secrete various effectors to manipulate host immunity. Here, Kim et al. describe two Magnaporthe oryzae effectors that translocate into the nuclei of infected rice cells and reprogram expression of immunity-associated genes, increasing susceptibility to hemibiotrophic pathogens.
Collapse
|
41
|
Mukhi N, Gorenkin D, Banfield MJ. Exploring folds, evolution and host interactions: understanding effector structure/function in disease and immunity. THE NEW PHYTOLOGIST 2020; 227:326-333. [PMID: 32239533 DOI: 10.1111/nph.16563] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
Over the past decade, tremendous progress has been made in plant pathology, broadening our understanding of how pathogens colonize their hosts. To manipulate host cell physiology and subvert plant immune responses, pathogens secrete an array of effector proteins. A co-evolutionary arms-race drives the pathogen to constantly reinvent its effector repertoire to undermine plant immunity. In turn, hosts develop novel immune receptors to maintain effector recognition and mount defences. Understanding how effectors promote disease and how they are perceived by the plant's defence network persist as major subjects in the study of plant-pathogen interactions. Here, we focus on recent advances (over roughly the last two years) in understanding structure/function relationships in effectors from bacteria and filamentous plant pathogens. Structure/function studies of bacterial effectors frequently uncover diverse catalytic activities, while structure-informed similarity searches have enabled cataloguing of filamentous pathogen effectors. We also suggest how such advances have informed the study of plant-pathogen interactions.
Collapse
Affiliation(s)
- Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
42
|
Li Y, Han Y, Qu M, Chen J, Chen X, Geng X, Wang Z, Chen S. Apoplastic Cell Death-Inducing Proteins of Filamentous Plant Pathogens: Roles in Plant-Pathogen Interactions. Front Genet 2020; 11:661. [PMID: 32676100 PMCID: PMC7333776 DOI: 10.3389/fgene.2020.00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a remarkable diversity of apoplastic effector proteins to facilitate infection, many of which are able to induce cell death in plants. Over the past decades, over 177 apoplastic cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and fungi. An emerging number of studies have demonstrated the role of many apoplastic CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been documented to be recognized by plant cells as pathogen-associated molecular patterns (PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our understanding of how plants detect them and mount a defense response. This review summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic oomycetes and fungi, and our current understanding of the dual roles of apoplastic CDIPs in plant-filamentous pathogen interactions.
Collapse
Affiliation(s)
- Ya Li
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
43
|
Feldman D, Yarden O, Hadar Y. Seeking the Roles for Fungal Small-Secreted Proteins in Affecting Saprophytic Lifestyles. Front Microbiol 2020; 11:455. [PMID: 32265881 PMCID: PMC7105643 DOI: 10.3389/fmicb.2020.00455] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/03/2020] [Indexed: 11/24/2022] Open
Abstract
Small secreted proteins (SSPs) comprise 40–60% of the total fungal secretome and are present in fungi of all phylogenetic groups, representing the entire spectrum of lifestyles. They are characteristically shorter than 300 amino acids in length and have a signal peptide. The majority of SSPs are coded by orphan genes, which lack known domains or similarities to known protein sequences. Effectors are a group of SSPs that have been investigated extensively in fungi that interact with living hosts, either pathogens or mutualistic systems. They are involved in suppressing the host defense response and altering its physiology. Here, we aim to delineate some of the potential roles of SSPs in saprotrophic fungi, that have been bioinformatically predicted as effectors, and termed in this mini-review as “effector-like” proteins. The effector-like Ssp1 from the white-rot fungus Pleurotus ostreatus is presented as a case study, and its potential role in regulating the ligninolytic system, secondary metabolism, development, and fruiting body initiation are discussed. We propose that deciphering the nature of effector-like SSPs will contribute to our understanding of development and communication in saprophytic fungi, as well as help, to elucidate the origin, regulation, and mechanisms of fungal-host, fungal-fungal, and fungal-bacterial interactions.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
44
|
The Pattern and Function of DNA Methylation in Fungal Plant Pathogens. Microorganisms 2020; 8:microorganisms8020227. [PMID: 32046339 PMCID: PMC7074731 DOI: 10.3390/microorganisms8020227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 01/05/2023] Open
Abstract
To successfully infect plants and trigger disease, fungal plant pathogens use various strategies that are dependent on characteristics of their biology and genomes. Although pathogenic fungi are different from animals and plants in the genomic heritability, sequence feature, and epigenetic modification, an increasing number of phytopathogenic fungi have been demonstrated to share DNA methyltransferases (MTases) responsible for DNA methylation with animals and plants. Fungal plant pathogens predominantly possess four types of DNA MTase homologs, including DIM-2, DNMT1, DNMT5, and RID. Numerous studies have indicated that DNA methylation in phytopathogenic fungi mainly distributes in transposable elements (TEs), gene promoter regions, and the repetitive DNA sequences. As an important and heritable epigenetic modification, DNA methylation is associated with silencing of gene expression and transposon, and it is responsible for a wide range of biological phenomena in fungi. This review highlights the relevant reports and insights into the important roles of DNA methylation in the modulation of development, pathogenicity, and secondary metabolism of fungal plant pathogens. Recent evidences prove that there are massive links between DNA and histone methylation in fungi, and they commonly regulate fungal development and mycotoxin biosynthesis.
Collapse
|
45
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
46
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
47
|
Cai Q, He B, Jin H. A safe ride in extracellular vesicles - small RNA trafficking between plant hosts and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:140-148. [PMID: 31654843 DOI: 10.1016/j.pbi.2019.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 05/20/2023]
Abstract
Communication between plants and pathogens requires the transport of regulatory molecules across cellular boundaries, which is essential for host defense and pathogen virulence. Previous research has largely focused on protein transport, but, which other molecules function in communication, and how they are transported remains under explored. Recent studies discovered that small RNAs (sRNAs) are transported between plants and pathogens, which can silence target genes in the interacting organisms and regulate host immunity and pathogen infection, a mechanism called 'cross-kingdom RNA interference (RNAi)'. Further studies indicate that plant extracellular vesicles (EVs) are essential for sRNA trafficking and host-pathogen communication. This review will focus on the latest advances in our understanding of plant EVs and their roles in transporting regulatory molecules, especially sRNAs, between hosts and pathogens.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Baoye He
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
48
|
Ekanayake G, LaMontagne ED, Heese A. Never Walk Alone: Clathrin-Coated Vesicle (CCV) Components in Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:387-409. [PMID: 31386597 DOI: 10.1146/annurev-phyto-080417-045841] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the host-pathogen interface, the protein composition of the plasma membrane (PM) has important implications for how a plant cell perceives and responds to invading microbial pathogens. A plant's ability to modulate its PM composition is critical for regulating the strength, duration, and integration of immune responses. One mechanism by which plant cells reprogram their cell surface is vesicular trafficking, including secretion and endocytosis. These trafficking processes add or remove cargo proteins (such as pattern-recognition receptors, transporters, and other proteins with immune functions) to or from the PM via small, membrane-bound vesicles. Clathrin-coated vesicles (CCVs) that form at the PM and trans-Golgi network/early endosomes have emerged as the prominent vesicle type in the regulation of plant immune responses. In this review, we discuss the roles of the CCV core, adaptors, and accessory components in plant defense signaling and immunity against various microbial pathogens.
Collapse
Affiliation(s)
- Gayani Ekanayake
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Erica D LaMontagne
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA; ,
| |
Collapse
|
49
|
Clarke CR, Timko MP, Yoder JI, Axtell MJ, Westwood JH. Molecular Dialog Between Parasitic Plants and Their Hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:279-299. [PMID: 31226021 DOI: 10.1146/annurev-phyto-082718-100043] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Parasitic plants steal sugars, water, and other nutrients from host plants through a haustorial connection. Several species of parasitic plants such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.) are major biotic constraints to agricultural production. Parasitic plants are understudied compared with other major classes of plant pathogens, but the recent availability of genomic and transcriptomic data has accelerated the rate of discovery of the molecular mechanisms underpinning plant parasitism. Here, we review the current body of knowledge of how parasitic plants sense host plants, germinate, form parasitic haustorial connections, and suppress host plant immune responses. Additionally, we assess whether parasitic plants fit within the current paradigms used to understand the molecular mechanisms of microbial plant-pathogen interactions. Finally, we discuss challenges facing parasitic plant research and propose the most urgent questions that need to be answered to advance our understanding of plant parasitism.
Collapse
Affiliation(s)
- Christopher R Clarke
- Genetic Improvement for Fruits and Vegetables Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - John I Yoder
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Michael J Axtell
- Department of Biology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - James H Westwood
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA;
| |
Collapse
|
50
|
Zhang P, Jia Y, Shi J, Chen C, Ye W, Wang Y, Ma W, Qiao Y. The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. THE NEW PHYTOLOGIST 2019; 223:839-852. [PMID: 30963588 DOI: 10.1111/nph.15836] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 05/27/2023]
Abstract
Phytophthora pathogens manipulate host innate immunity by secreting numerous RxLR effectors, thereby facilitating pathogen colonization. Predicted single and tandem repeats of WY domains are the most prominent C-terminal motifs conserved across the Phytophthora RxLR superfamily. However, the functions of individual WY domains in effectors remain poorly understood. The Phytophthora sojae effector PSR1 promotes infection by suppressing small RNA biogenesis in plant hosts. We identified one single WY domain following the RxLR motif in PSR1. This domain was required for RNA silencing suppression activity and infection in Nicotiana benthamiana, Arabidopsis and soybean. Mutations of the conserved residues in the WY domain did not affect the subcellular localization of PSR1 but abolished its effect on plant development and resistance to viral and Phytophthora pathogens. This is at least in part due to decreased protein stability of the PSR1 mutants in planta. The identification of the WY domain in PSR1 allows predicts that a family of PSR1-like effectors also possess RNA silencing suppression activity. Mutation of the conserved residues in two members of this family, PpPSR1L from P. parasitica and PcPSR1L from P. capsici, perturbed their biological functions, indicating that the WY domain is critical in Phytophthora PSR1 and PSR1-like effectors.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yijuan Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chen Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|