1
|
Anggarani M, Lin YY, Fang SA, Wu HP, Wu CC, Jane WN, Roscoe TJ, Domergue F, Hsing YIC. Morphology and chemical composition of Taiwan oil millet (Eccoilopus formosanus) epicuticular wax. PLANTA 2024; 259:89. [PMID: 38467941 DOI: 10.1007/s00425-024-04352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
MAIN CONCLUSION Taiwan oil millet has two types of epicuticular wax: platelet wax composed primarily of octacosanol and filament wax constituted essentially by the singular compound of octacosanoic acid. Taiwan oil millet (TOM-Eccoilopus formosanus) is an orphan crop cultivated by the Taiwan indigenous people. It has conspicuous white powder covering its leaf sheath indicating abundant epicuticular waxes, that may contribute to its resilience. Here, we characterized the epicuticular wax secretion in TOM leaf blade and leaf sheath using various microscopy techniques, as well as gas chromatography to determine its composition. Two kinds of waxes, platelet and filaments, were secreted in both the leaf blades and sheaths. The platelet wax is secreted ubiquitously by epidermal cells, whereas the filament wax is secreted by a specific cell called epidermal cork cells. The newly developed filament waxes were markedly re-synthesized by the epidermal cork cells through papillae protrusions on the external periclinal cell wall. Ultrastructural images of cork cell revealed the presence of cortical endoplasmic reticulum (ER) tubules along the periphery of plasma membrane (PM) and ER-PM contact sites (EPCS). The predominant wax component was a C28 primary alcohol in leaf blade, and a C28 free fatty acid in the leaf sheath, pseudopetiole and midrib. The wax morphology present in distinct plant organs corresponds to the specific chemical composition: platelet wax composed of alcohols exists mainly in the leaf blade, whereas filament wax constituted mainly by the singular compound C28 free fatty acids is present abundantly in leaf sheath. Our study clarifies the filament wax composition in relation to a previous study in sorghum. Both platelet and filament waxes comprise a protection barrier for TOM.
Collapse
Affiliation(s)
- Marita Anggarani
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Yu-Ying Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Shao-An Fang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Chi-Chih Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan
| | - Thomas James Roscoe
- Regulations Epigenetiques et Developpement de la Graine, ERL 5300 CNRS-IRD UMR DIADE, IRD Centre de Montpellier, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Frederic Domergue
- Univ. Bordeaux, CNRS, LBM, UMR 5200, 33140, Villenave d'Ornon, France
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei, 115201, Taiwan.
| |
Collapse
|
2
|
Bhaduri S, Aguayo A, Ohno Y, Proietto M, Jung J, Wang I, Kandel R, Singh N, Ibrahim I, Fulzele A, Bennett EJ, Kihara A, Neal SE. An ERAD-independent role for rhomboid pseudoprotease Dfm1 in mediating sphingolipid homeostasis. EMBO J 2023; 42:e112275. [PMID: 36350249 PMCID: PMC9929635 DOI: 10.15252/embj.2022112275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Nearly one-third of nascent proteins are initially targeted to the endoplasmic reticulum (ER), where they are correctly folded and assembled before being delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) removes these client proteins from the ER membrane to the cytosol in a process known as retrotranslocation. Our previous work demonstrated that rhomboid pseudoprotease Dfm1 is involved in the retrotranslocation of ubiquitinated membrane integral ERAD substrates. Herein, we found that Dfm1 associates with the SPOTS complex, which is composed of serine palmitoyltransferase (SPT) enzymes and accessory components that are critical for catalyzing the first rate-limiting step of the sphingolipid biosynthesis pathway. Furthermore, Dfm1 employs an ERAD-independent role for facilitating the ER export and endosome- and Golgi-associated degradation (EGAD) of Orm2, which is a major antagonist of SPT activity. Given that the accumulation of human Orm2 homologs, ORMDLs, is associated with various pathologies, our study serves as a molecular foothold for understanding how dysregulation of sphingolipid metabolism leads to various diseases.
Collapse
Affiliation(s)
- Satarupa Bhaduri
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Analine Aguayo
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Yusuke Ohno
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Marco Proietto
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Jasmine Jung
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Isabel Wang
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Rachel Kandel
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Narinderbir Singh
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Ikran Ibrahim
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Amit Fulzele
- Present address:
Institute of Molecular BiologyMainzGermany
| | - Eric J Bennett
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical SciencesHokkaido UniversitySapporoJapan
| | - Sonya E Neal
- Department of Cell and Developmental Biology, School of Biological SciencesUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
3
|
Diamond A, Barnabé S, Desgagné‐Penix I. Is a spice missing from the recipe? The intra-cellular localization of vanillin biosynthesis needs further investigations. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:3-7. [PMID: 36066305 PMCID: PMC10087407 DOI: 10.1111/plb.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Vanillin is the most popular flavor compound in the world. Substantial effort were made in the last decades to completely elucidate the metabolic pathway that leads to vanillin in plants, with some controversy reported. In V. planifolia, vanillin biosynthesis occurs in plastids or in redifferentiated-plastids termed ''phenyloplasts''. More recently, it was shown that all enzymes required for the conversion of [14 C]-phenylalanine to [14 C]-vanillin-glucoside are confined within that organelle. However, knowing that some of these enzymes are cytosolic or ER-membrane bound in most plant species, it raises questions on the interpretation of data obtained from the technique used and on the true localization of the biosynthetic enzymes in V.planifolia. In addition, intense debate has emerged about the real participation of last enzyme of the pathway involving vanillin synthase (VpVAN) in the direct conversion of ferulic acid to vanillin. With the discovery of another enzyme capable of this conversion and the lack of activity of VpVAN in vitro, further disagreement emerged. One additional challenge to VpVAN being necessary and sufficient is that the transcript for this protein is abundant invarious non-vanillin-producing tissues of the vanilla plant. In this viewpoint, we discuss the findings surrounding the cellular-localization and activity of enzymes of vanillin biosynthesis. This will help to further understand the pathway and urge for additional research study to resolve the debate.
Collapse
Affiliation(s)
- A. Diamond
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
| | - S. Barnabé
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
| | - I. Desgagné‐Penix
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
- Groupe de Recherche en Biologie Végétale (GRBV)Trois‐RivièresQuébecCanada
| |
Collapse
|
4
|
Santana I, Jeon SJ, Kim HI, Islam MR, Castillo C, Garcia GFH, Newkirk GM, Giraldo JP. Targeted Carbon Nanostructures for Chemical and Gene Delivery to Plant Chloroplasts. ACS NANO 2022; 16:12156-12173. [PMID: 35943045 DOI: 10.1021/acsnano.2c02714] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanotechnology approaches for improving the delivery efficiency of chemicals and molecular cargoes in plants through plant biorecognition mechanisms remain relatively unexplored. We developed targeted carbon-based nanomaterials as tools for precise chemical delivery (carbon dots, CDs) and gene delivery platforms (single-walled carbon nanotubes, SWCNTs) to chloroplasts, key organelles involved in efforts to improve plant photosynthesis, assimilation of nutrients, and delivery of agrochemicals. A biorecognition approach of coating the nanomaterials with a rationally designed chloroplast targeting peptide improved the delivery of CDs with molecular baskets (TP-β-CD) for delivery of agrochemicals and of plasmid DNA coated SWCNT (TP-pATV1-SWCNT) from 47% to 70% and from 39% to 57% of chloroplasts in leaves, respectively. Plants treated with TP-β-CD (20 mg/L) and TP-pATV1-SWCNT (2 mg/L) had a low percentage of dead cells, 6% and 8%, respectively, similar to controls without nanoparticles, and no permanent cell and chloroplast membrane damage after 5 days of exposure. However, targeted nanomaterials transiently increased leaf H2O2 (0.3225 μmol gFW-1) above control plant levels (0.03441 μmol gFW-1) but within the normal range reported in land plants. The increase in leaf H2O2 levels was associated with oxidative damage in whole plant cell DNA, a transient effect on chloroplast DNA, and a decrease in leaf chlorophyll content (-17%) and carbon assimilation rates at saturation light levels (-32%) with no impact on photosystem II quantum yield. This work provides targeted delivery approaches for carbon-based nanomaterials mediated by biorecognition and a comprehensive understanding of their impact on plant cell and molecular biology for engineering safer and efficient agrochemical and biomolecule delivery tools.
Collapse
Affiliation(s)
- Israel Santana
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Su-Ji Jeon
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Hye-In Kim
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Md Reyazul Islam
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Christopher Castillo
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Gail F H Garcia
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| | - Gregory M Newkirk
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California 92521, United States
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
5
|
Shi Q, Chen J, Zou X, Tang X. Intracellular Cholesterol Synthesis and Transport. Front Cell Dev Biol 2022; 10:819281. [PMID: 35386193 PMCID: PMC8978673 DOI: 10.3389/fcell.2022.819281] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/01/2022] [Indexed: 12/18/2022] Open
Abstract
Cholesterol homeostasis is related to multiple diseases in humans, including cardiovascular disease, cancer, and neurodegenerative and hepatic diseases. The cholesterol levels in cells are balanced dynamically by uptake, biosynthesis, transport, distribution, esterification, and export. In this review, we focus on de novo cholesterol synthesis, cholesterol synthesis regulation, and intracellular cholesterol trafficking. In addition, the progression of lipid transfer proteins (LTPs) at multiple contact sites between organelles is considered.
Collapse
Affiliation(s)
- Qingyang Shi
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, The First Hospital, Jilin University, Changchun, China
| | - Jiahuan Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaodong Zou
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaochun Tang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute of Jilin University, Chongqing, China
| |
Collapse
|
6
|
Xiong E, Cao D, Qu C, Zhao P, Wu Z, Yin D, Zhao Q, Gong F. Multilocation proteins in organelle communication: Based on protein-protein interactions. PLANT DIRECT 2022; 6:e386. [PMID: 35229068 PMCID: PMC8861329 DOI: 10.1002/pld3.386] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/17/2021] [Accepted: 01/18/2022] [Indexed: 05/25/2023]
Abstract
Protein-protein interaction (PPI) plays a crucial role in most biological processes, including signal transduction and cell apoptosis. Importantly, the knowledge of PPIs can be useful for identification of multimeric protein complexes and elucidation of uncharacterized protein functions. Arabidopsis thaliana, the best-characterized dicotyledonous plant, the steadily increasing amount of information on the levels of its proteome and signaling pathways is progressively enabling more researchers to construct models for cellular processes for the plant, which in turn encourages more experimental data to be generated. In this study, we performed an overview analysis of the 10 major organelles and their associated proteins of the dicotyledonous model plant Arabidopsis thaliana via PPI network, and found that PPI may play an important role in organelle communication. Further, multilocation proteins, especially phosphorylation-related multilocation proteins, can function as a "needle and thread" via PPIs and play an important role in organelle communication. Similar results were obtained in a monocotyledonous model crop, rice. Furthermore, we provide a research strategy for multilocation proteins by LOPIT technique, proteomics, and bioinformatics analysis and also describe their potential role in the field of plant science. The results provide a new view that the phosphorylation-related multilocation proteins play an important role in organelle communication and provide new insight into PPIs and novel directions for proteomic research. The research of phosphorylation-related multilocation proteins may promote the development of organelle communication and provide an important theoretical basis for plant responses to external stress.
Collapse
Affiliation(s)
- Erhui Xiong
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Di Cao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Chengxin Qu
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Pengfei Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Zhaokun Wu
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Dongmei Yin
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Quanzhi Zhao
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| | - Fangping Gong
- College of AgronomyHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
7
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Boccaccio A, Picco C, Di Zanni E, Scholz-Starke J. Phospholipid scrambling by a TMEM16 homolog of Arabidopsis thaliana. FEBS J 2021; 289:2578-2592. [PMID: 34775680 PMCID: PMC9299152 DOI: 10.1111/febs.16279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Membrane asymmetry is important for cellular physiology and established by energy‐dependent unidirectional lipid translocases, which have diverse physiological functions in plants. By contrast, the role of phospholipid scrambling (PLS), the passive bidirectional lipid transfer leading to the break‐down of membrane asymmetry, is currently still unexplored. The Arabidopsis thaliana genome contains a single gene (At1g73020) with homology to the eukaryotic TMEM16 family of Ca2+‐activated phospholipid scramblases. Here, we investigated the protein function of this Arabidopsis homolog. Fluorescent AtTMEM16 fusions localized to the ER both in transiently expressing Arabidopsis protoplasts and HEK293 cells. A putative scrambling domain (SCRD) was identified on the basis of sequence conservation and conferred PLS to transfected HEK293 cells, when grafted into the backbone of the non‐scrambling plasma membrane‐localized TMEM16A chloride channel. Finally, AtTMEM16 ‘gain‐of‐function’ variants gave rise to cellular phenotypes typical of aberrant scramblase activity, which were reversed by the additional introduction of a ‘loss‐of‐function’ mutation into the SCRD. In conclusion, our data suggest AtTMEM16 works as an ER‐resident lipid scramblase in Arabidopsis.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Cristiana Picco
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Eleonora Di Zanni
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | | |
Collapse
|
9
|
Nejatfard A, Wauer N, Bhaduri S, Conn A, Gourkanti S, Singh N, Kuo T, Kandel R, Amaro RE, Neal SE. Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates. Cell Rep 2021; 37:109840. [PMID: 34686332 PMCID: PMC8641752 DOI: 10.1016/j.celrep.2021.109840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 01/13/2023] Open
Abstract
Nearly one-third of proteins are initially targeted to the endoplasmic reticulum (ER) membrane, where they are correctly folded and then delivered to their final cellular destinations. To prevent the accumulation of misfolded membrane proteins, ER-associated degradation (ERAD) moves these clients from the ER membrane to the cytosol, a process known as retrotranslocation. Our recent work in Saccharomyces cerevisiae reveals a derlin rhomboid pseudoprotease, Dfm1, is involved in the retrotranslocation of ubiquitinated ERAD membrane substrates. In this study, we identify conserved residues of Dfm1 that are critical for retrotranslocation. We find several retrotranslocation-deficient Loop 1 mutants that display impaired binding to membrane substrates. Furthermore, Dfm1 possesses lipid thinning function to facilitate in the removal of ER membrane substrates, and this feature is conserved in its human homolog, Derlin-1, further implicating that derlin-mediated retrotranslocation is a well-conserved process.
Collapse
Affiliation(s)
- Anahita Nejatfard
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wauer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Satarupa Bhaduri
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Adam Conn
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Saroj Gourkanti
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Narinderbir Singh
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Tiffany Kuo
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rachel Kandel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sonya E Neal
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
11
|
Madec AM, Perrier J, Panthu B, Dingreville F. Role of mitochondria-associated endoplasmic reticulum membrane (MAMs) interactions and calcium exchange in the development of type 2 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:169-202. [PMID: 34392929 DOI: 10.1016/bs.ircmb.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glucotoxicity-induced β-cell dysfunction in type 2 diabetes is associated with alterations of mitochondria and the endoplasmic reticulum (ER). Mitochondria and ER form a network in cells that controls cell function and fate. Mitochondria of the pancreatic β cell play a central role in the secretion of insulin in response to glucose through their ability to produce ATP. Both organelles interact at contact sites, defined as mitochondria-associated membranes (MAMs), which were recently implicated in the regulation of glucose homeostasis. Here, we review MAM functions in the cell and we focus on the crosstalk between the ER and Mitochondria in the context of T2D, highlighting the pivotal role played by MAMs especially in β cells through inter-organelle calcium exchange and glucotoxicity-associated β cell dysfunction.
Collapse
Affiliation(s)
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRA U1397, Lyon, France
| | | | | |
Collapse
|
12
|
Welchen E, Canal MV, Gras DE, Gonzalez DH. Cross-talk between mitochondrial function, growth, and stress signalling pathways in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4102-4118. [PMID: 33369668 DOI: 10.1093/jxb/eraa608] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/22/2020] [Indexed: 05/16/2023]
Abstract
Plant mitochondria harbour complex metabolic routes that are interconnected with those of other cell compartments, and changes in mitochondrial function remotely influence processes in different parts of the cell. This implies the existence of signals that convey information about mitochondrial function to the rest of the cell. Increasing evidence indicates that metabolic and redox signals are important for this process, but changes in ion fluxes, protein relocalization, and physical contacts with other organelles are probably also involved. Besides possible direct effects of these signalling molecules on cellular functions, changes in mitochondrial physiology also affect the activity of different signalling pathways that modulate plant growth and stress responses. As a consequence, mitochondria influence the responses to internal and external factors that modify the activity of these pathways and associated biological processes. Acting through the activity of hormonal signalling pathways, mitochondria may also exert remote control over distant organs or plant tissues. In addition, an intimate cross-talk of mitochondria with energy signalling pathways, such as those represented by TARGET OF RAPAMYCIN and SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASE 1, can be envisaged. This review discusses available evidence on the role of mitochondria in shaping plant growth and stress responses through various signalling pathways.
Collapse
Affiliation(s)
- Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - María Victoria Canal
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Diana E Gras
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
13
|
Hewlett B, Singh NP, Vannier C, Galli T. ER-PM Contact Sites - SNARING Actors in Emerging Functions. Front Cell Dev Biol 2021; 9:635518. [PMID: 33681218 PMCID: PMC7928305 DOI: 10.3389/fcell.2021.635518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The compartmentalisation achieved by confining cytoplasm into membrane-enclosed organelles in eukaryotic cells is essential for maintaining vital functions including ATP production, synthetic and degradative pathways. While intracellular organelles are highly specialised in these functions, the restricting membranes also impede exchange of molecules responsible for the synchronised and responsive cellular activities. The initial identification of contact sites between the ER and plasma membrane (PM) provided a potential candidate structure for communication between organelles without mixing by fusion. Over the past decades, research has revealed a far broader picture of the events. Membrane contact sites (MCSs) have been recognized as increasingly important actors in cell differentiation, plasticity and maintenance, and, upon dysfunction, responsible for pathological conditions such as cancer and neurodegenerative diseases. Present in multiple organelles and cell types, MCSs promote transport of lipids and Ca2+ homoeostasis, with a range of associated protein families. Interestingly, each MCS displays a unique molecular signature, adapted to organelle functions. This review will explore the literature describing the molecular components and interactions taking place at ER-PM contact sites, their functions, and implications in eukaryotic cells, particularly neurons, with emphasis on lipid transfer proteins and emerging function of SNAREs.
Collapse
Affiliation(s)
- Bailey Hewlett
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Neha Pratap Singh
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Christian Vannier
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France
| | - Thierry Galli
- INSERM U1266, Institut de Psychiatrie et Neurosciences de Paris, Université de Paris, Paris, France.,GHU PARIS Psychiatrie and Neurosciences, Paris, France
| |
Collapse
|
14
|
Gao G, Sheng Y, Yang H, Chua BT, Xu L. DFCP1 associates with lipid droplets. Cell Biol Int 2019; 43:1492-1504. [PMID: 31293035 DOI: 10.1002/cbin.11199] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/07/2019] [Indexed: 01/24/2023]
Abstract
Double FYVE-containing protein 1 (DFCP1) is ubiquitously expressed, participates in intracellular membrane trafficking and labels omegasomes through specific interactions with phosphatidylinositol-3-phosphate (PI3P). Previous studies showed that subcellular DFCP1 proteins display multi-organelle localization, including in the endoplasmic reticulum (ER), Golgi apparatus and mitochondria. However, its localization and function on lipid droplets (LDs) remain unclear. Here, we demonstrate that DFCP1 localizes to the LD upon oleic acid incubation. The ER-targeted domain of DFCP1 is indispensable for its LD localization, which is further enhanced by double FYVE domains. Inhibition of PI3P binding at the FYVE domain through wortmannin treatment or double mutation at C654S and C770S have no effect on DFCP1's LD localization. These show that the mechanisms for DFCP1 targeting the omegasome and LDs are different. DFCP1 deficiency in MEF cells causes an increase in LD number and reduces LD size. Interestingly, DFCP1 interacts with GTP-bound Rab18, an LD-associated protein. Taken together, our work demonstrates the dynamic localization of DFCP1 is regulated by nutritional status in response to cellular metabolism.
Collapse
Affiliation(s)
- Guangang Gao
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yuanyuan Sheng
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 New South Wales, Sydney, Australia
| | - Boon Tin Chua
- The Institute of Metabolism and Integrative Biology, Fudan University, 200438, Shanghai, China
| | - Li Xu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
15
|
Kariyawasam T, Joo S, Lee J, Toor D, Gao AF, Noh KC, Lee JH. TALE homeobox heterodimer GSM1/GSP1 is a molecular switch that prevents unwarranted genetic recombination in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:938-953. [PMID: 31368133 DOI: 10.1111/tpj.14486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic sexual life cycles alternate between haploid and diploid stages, the transitions between which are delineated by cell fusion and meiotic division. Transcription factors in the TALE-class homeobox family, GSM1 and GSP1, predominantly control gene expression for the haploid-to-diploid transition during sexual reproduction in the unicellular green alga, Chlamydomonas reinhardtii. To understand the roles that GSM1 and GSP1 play in zygote development, we used gsm1 and gsp1 mutants and examined fused gametes that normally undergo the multiple organellar fusions required for the genetic unity of the zygotes. In gsm1 and gsp1 zygotes, no fusion was observed for the nucleus and chloroplast. Surprisingly, mitochondria and endoplasmic reticulum, which undergo dynamic autologous fusion/fission, did not undergo heterologous fusions in gsm1 or gsp1 zygotes. Furthermore, the mutants failed to resorb their flagella, an event that normally renders the zygotes immotile. When gsm1 and gsp1 zygotes resumed the mitotic cycle, their two nuclei fused prior to mitosis, but neither chloroplastic nor mitochondrial fusion took place, suggesting that these fusions are specifically turned on by GSM1/GSP1. Taken together, this study shows that organellar restructuring during zygotic diploidization does not occur by default but is triggered by a combinatorial switch, the GSM1/GSP1 dyad. This switch may represent an ancient mechanism that evolved to restrict genetic recombination during sexual development.
Collapse
Affiliation(s)
| | - Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ally F Gao
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Kyung-Chul Noh
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
16
|
Falz AL, Müller-Schüssele SJ. Physcomitrella as a model system for plant cell biology and organelle-organelle communication. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:7-13. [PMID: 31254720 DOI: 10.1016/j.pbi.2019.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
In multicellular eukaryotic cells, metabolism and growth are sustained by the cooperative functioning of organelles in combination with cell-to-cell communication at the organism level. In land plants, multiple strategies have evolved to adapt to life outside water. As basal land plant, the moss Physcomitrella patens is used for comparative genomics, allowing to study lineage-specific features, as well as to track the evolution of fundamental parameters of plant cell organisation and physiology. P. patens is a versatile model for cell biology research, especially to investigate adaptive growth, stress biology as well as organelle dynamics and interactions. Recent advances include the use of genetically encoded biosensors for in vivo imaging of physiological parameters.
Collapse
Affiliation(s)
- Anna-Lena Falz
- INRES - Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | | |
Collapse
|
17
|
Liu L, Li J. Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:749. [PMID: 31249578 PMCID: PMC6582665 DOI: 10.3389/fpls.2019.00749] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
To adapt to constantly changing environmental conditions, plants have evolved sophisticated tolerance mechanisms to integrate various stress signals and to coordinate plant growth and development. It is well known that inter-organellar communications play important roles in maintaining cellular homeostasis in response to environmental stresses. The endoplasmic reticulum (ER), extending throughout the cytoplasm of eukaryotic cells, is a central organelle involved in lipid metabolism, Ca2+ homeostasis, and synthesis and folding of secretory and transmembrane proteins crucial to perceive and transduce environmental signals. The ER communicates with the nucleus via the highly conserved unfolded protein response pathway to mitigate ER stress. Importantly, recent studies have revealed that the dynamic ER network physically interacts with other intracellular organelles and endomembrane compartments, such as the Golgi complex, mitochondria, chloroplast, peroxisome, vacuole, and the plasma membrane, through multiple membrane contact sites between closely apposed organelles. In this review, we will discuss the signaling and metabolite exchanges between the ER and other organelles during abiotic stress responses in plants as well as the ER-organelle membrane contact sites and their associated tethering complexes.
Collapse
Affiliation(s)
- Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|