1
|
Manlulu N, Ravela R, Waing F, Gramaje L. Molecular and physiological basis of heterosis in hybrid rice performance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:49. [PMID: 40417351 PMCID: PMC12102051 DOI: 10.1007/s11032-025-01577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025]
Abstract
Heterosis is often exploited to produce high-yielding crops with better performance than their inbred counterparts. Commercial rice breeding has made use of this phenomenon as well, primarily through the use of cytoplasmic male sterility (CMS) and environment-sensitive genic male sterility (EGMS). However, a limited understanding of the molecular and physiological basis of heterosis prevents researchers from harnessing the full potential of hybrid breeding. This review examines the various explanations and mechanisms of heterosis in rice, including evidence fitting the established theories of heterosis and the use of modern omics approaches to characterizing heterosis and heterosis-related traits. Overdominance was the most frequently cited mechanism behind yield-related traits and various molecular and physiological markers associated with heterosis were identified.
Collapse
Affiliation(s)
- Nia Manlulu
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| | - Rogemae Ravela
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| | - Frodie Waing
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| | - Leonilo Gramaje
- Philippine Rice Research Institute, Maligaya, Nueva Ecija 3119 Science City of Muñoz, Philippines
| |
Collapse
|
2
|
Zhang J, Zhang W, Ding C, Zhao J, Su X, Yuan Z, Chu Y, Huang Q, Su X. Non-Additive Gene Expression in Carbon and Nitrogen Metabolism Drives Growth Heterosis in Populus deltoides. PLANT, CELL & ENVIRONMENT 2025; 48:3529-3543. [PMID: 39789702 PMCID: PMC11963483 DOI: 10.1111/pce.15371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
Growth heterosis is crucial for Populus deltoides breeding, a key industrial-timber and ecological-construction tree species in temperate regions. However, the molecular mechanisms underlying carbon (C)-nitrogen (N) metabolism coordination in regulating growth heterosis remain unclear. Herein high-hybrids of P. deltoides exhibited high-parent heterosis and mid-parent heterosis in growth traits and key enzymes of C-N metabolism. In hybrids, gene expression patterns were mainly biased toward female parent. Parental contribution to growth heterosis in P. deltoides is differentiation, rather than absolute maternal or paternal dominance contributions. Parental genes were predominantly and dynamically inherited in a non-additive manner, mainly with dominant expression patterns. A total of 44 non-additive genes associated with photosynthetic C fixation, starch and sucrose metabolism, sucrose transport, photorespiration, and nitrogen metabolism coregulated growth heterosis by coordinating C-N metabolism. Growth-regulating factors 4 interacted with DELLA genes to promote growth by enhancing this coordination. Additionally, five critical genes were identified. Briefly, the above genes in high-hybrids improved photosynthesis and N utilisation by regulating carbohydrate accumulation and enzyme activity, while reducing respiratory energy consumption, thereby providing more energy for growth and promoting growth heterosis. Our findings offer new insights and theoretical basis for deep understanding genetic and molecular regulation mechanisms of tree heterosis and its application in precision hybrid breeding.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | | | - Xuehui Su
- Jiaozuo Academy of Agriculture and Forestry SciencesJiaozuoChina
| | - Zhengsai Yuan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- State Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
3
|
Hodgins KA, Battlay P, Bock DG. The genomic secrets of invasive plants. THE NEW PHYTOLOGIST 2025; 245:1846-1863. [PMID: 39748162 DOI: 10.1111/nph.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
Genomics has revolutionised the study of invasive species, allowing evolutionary biologists to dissect mechanisms of invasion in unprecedented detail. Botanical research has played an important role in these advances, driving much of what we currently know about key determinants of invasion success (e.g. hybridisation, whole-genome duplication). Despite this, a comprehensive review of plant invasion genomics has been lacking. Here, we aim to address this gap, highlighting recent discoveries that have helped progress the field. For example, by leveraging genomics in natural and experimental populations, botanical research has confirmed the importance of large-effect standing variation during adaptation in invasive species. Further, genomic investigations of plants are increasingly revealing that large structural variants, as well as genetic changes induced by whole-genome duplication such as genomic redundancy or the breakdown of dosage-sensitive reproductive barriers, can play an important role during adaptive evolution of invaders. However, numerous questions remain, including when chromosomal inversions might help or hinder invasions, whether adaptive gene reuse is common during invasions, and whether epigenetically induced mutations can underpin the adaptive evolution of plasticity in invasive populations. We conclude by highlighting these and other outstanding questions that genomic studies of invasive plants are poised to help answer.
Collapse
Affiliation(s)
- Kathryn A Hodgins
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Paul Battlay
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Vic., 3800, Australia
| | - Dan G Bock
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, Qld, 4111, Australia
| |
Collapse
|
4
|
Quan C, Zhang Q, Zhang X, Chai K, Cheng G, Ma C, Dai C. Interspecific hybridization in Brassica species leads to changes in agronomic traits through the regulation of gene expression by chromatin accessibility and DNA methylation. Gigascience 2025; 14:giaf029. [PMID: 40272880 PMCID: PMC12012897 DOI: 10.1093/gigascience/giaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/17/2025] [Accepted: 03/03/2025] [Indexed: 04/26/2025] Open
Abstract
Interspecific hybridization is a common method in plant breeding to combine traits from different species, resulting in allopolyploidization and significant genetic and epigenetic changes. However, our understanding of genome-wide chromatin and gene expression dynamics during allopolyploidization remains limited. This study generated two Brassica allotriploid hybrids via interspecific hybridization. We observed that accessible chromatin regions (ACRs) and DNA methylation interact to regulates gene expression after interspecific hybridization, ultimately influencing the agronomic traits of the hybrids. In total, 234,649 ACRs were identified in the parental lines and hybrids; the hybridization process induces changes in the distribution and abundance of their accessible chromatin regions, particularly in gene regions and their proximity. Genes associated with proximal ACRs were more highly expressed than those associated with distal and genic ACRs. More than half of novel ACRs drove transgressive gene expression in the hybrids, and the transgressive upregulated genes showed significant enrichment in metal ion binding, especially magnesium ion, calcium ion, and potassium ion binding. We also identified Bna.bZIP11 in the single-parent activation ACR, which binds to BnaA06.UF3GT to promote anthocyanin accumulation in F1 hybrids. DNA methylation plays a role in repressing gene expression, and unmethylated ACRs are more transcriptionally active. Additionally, the A-subgenome ACRs were associated with genome dosage rather than DNA methylation. The interplay among DNA methylation, transposable elements, and sRNA contributes to the dynamic landscape of ACRs during interspecific hybridization, resulting in distinct gene expression patterns on the genome.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoni Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kexin Chai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Cheng
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
5
|
Li Q, Qiao X, Li L, Gu C, Yin H, Qi K, Xie Z, Yang S, Zhao Q, Wang Z, Yang Y, Pan J, Li H, Wang J, Wang C, Rieseberg LH, Zhang S, Tao S. Haplotype-resolved T2T genome assemblies and pangenome graph of pear reveal diverse patterns of allele-specific expression and the genomic basis of fruit quality traits. PLANT COMMUNICATIONS 2024; 5:101000. [PMID: 38859586 PMCID: PMC11574287 DOI: 10.1016/j.xplc.2024.101000] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Hybrid crops often exhibit increased yield and greater resilience, yet the genomic mechanism(s) underlying hybrid vigor or heterosis remain unclear, hindering our ability to predict the expression of phenotypic traits in hybrid breeding. Here, we generated haplotype-resolved T2T genome assemblies of two pear hybrid varieties, 'Yuluxiang' (YLX) and 'Hongxiangsu' (HXS), which share the same maternal parent but differ in their paternal parents. We then used these assemblies to explore the genome-scale landscape of allele-specific expression (ASE) and create a pangenome graph for pear. ASE was observed for close to 6000 genes in both hybrid cultivars. A subset of ASE genes related to aspects of fruit quality such as sugars, organic acids, and cuticular wax were identified, suggesting their important contributions to heterosis. Specifically, Ma1, a gene regulating fruit acidity, is absent in the paternal haplotypes of HXS and YLX. A pangenome graph was built based on our assemblies and seven published pear genomes. Resequencing data for 139 cultivated pear genotypes (including 97 genotypes sequenced here) were subsequently aligned to the pangenome graph, revealing numerous structural variant hotspots and selective sweeps during pear diversification. As predicted, the Ma1 allele was found to be absent in varieties with low organic acid content, and this association was functionally validated by Ma1 overexpression in pear fruit and calli. Overall, these results reveal the contributions of ASE to fruit-quality heterosis and provide a robust pangenome reference for high-resolution allele discovery and association mapping.
Collapse
Affiliation(s)
- Qionghou Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xin Qiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lanqing Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Gu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hao Yin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaijie Qi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhihua Xie
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Yang
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Qifeng Zhao
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zewen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuhang Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jiahui Pan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hongxiang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chao Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Shaoling Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shutian Tao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Sanya Institute of Nanjing Agricultural University, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
6
|
Huang Q, Wen C, Gu S, Jie Y, Li G, Yan Y, Tian C, Wu G, Yang N. Synergy of gut microbiota and host genome in driving heterosis expression of chickens. J Genet Genomics 2024; 51:1121-1134. [PMID: 38950856 DOI: 10.1016/j.jgg.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Heterosis has been widely utilized in agricultural production. Despite over a century of extensive research, the underlying mechanisms of heterosis remain elusive. Most hypotheses and research have focused on the genetic basis of heterosis. However, the potential role of gut microbiota in heterosis has been largely ignored. Here, we carefully design a crossbreeding experiment with two distinct broiler breeds and conduct 16S rRNA amplicon and transcriptome sequencing to investigate the synergistic role of gut microbiota and host genes in driving heterosis. We find that the breast muscle weight of hybrids exhibits a high heterosis, 6.28% higher than the mid-parent value. A notable difference is observed in the composition and potential function of cecal microbiota between hybrids and their parents. Over 90% of differentially colonized microbiota and differentially expressed genes exhibit nonadditive patterns. Integrative analyses uncover associations between nonadditive genes and nonadditive microbiota, including a connection between the expression of cellular signaling pathways and metabolism-related genes and the abundance of Odoribacter, Oscillibacter, and Alistipes in hybrids. Moreover, higher abundances of these microbiota are related to better meat yield. In summary, these findings highlight the importance of gut microbiota in heterosis, serving as crucial factors that modulate heterosis expression in chickens.
Collapse
Affiliation(s)
- Qiang Huang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoliang Wen
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| | - Shuang Gu
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuchen Jie
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangqi Li
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Yiyuan Yan
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Chuanyao Tian
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Guiqin Wu
- Beijing Huadu Yukou Poultry Industry Co. Ltd., Beijing 101206, China
| | - Ning Yang
- State Key Laboratory of Animal Biotech Breeding and Frontier Science Center for Molecular Design Breeding, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Hainan 572025, China.
| |
Collapse
|
7
|
Wang F, Xi Z, Wang M, Wang L, Wang J. Genome-wide chromatin accessibility reveals transcriptional regulation of heterosis in inter-subspecific hybrid rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2331-2348. [PMID: 38976378 DOI: 10.1111/tpj.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The utilization of rice heterosis is essential for ensuring global food security; however, its molecular mechanism remains unclear. In this study, comprehensive analyses of accessible chromatin regions (ACRs), DNA methylation, and gene expression in inter-subspecific hybrid and its parents were performed to determine the potential role of chromatin accessibility in rice heterosis. The hybrid exhibited abundant ACRs, in which the gene ACRs and proximal ACRs were directly related to transcriptional activation rather than the distal ACRs. Regarding the dynamic accessibility contribution of the parents, paternal ZHF1015 transmitted a greater number of ACRs to the hybrid. Accessible genotype-specific target genes were enriched with overrepresented transcription factors, indicating a unique regulatory network of genes in the hybrid. Compared with its parents, the differentially accessible chromatin regions with upregulated chromatin accessibility were much greater than those with downregulated chromatin accessibility, reflecting a stronger regulation in the hybrid. Furthermore, DNA methylation levels were negatively correlated with ACR intensity, and genes were strongly affected by CHH methylation in the hybrid. Chromatin accessibility positively regulated the overall expression level of each genotype. ACR-related genes with maternal Z04A-bias allele-specific expression tended to be enriched during carotenoid biosynthesis, whereas paternal ZHF1015-bias genes were more active in carbohydrate metabolism. Our findings provide a new perspective on the mechanism of heterosis based on chromatin accessibility in inter-subspecific hybrid rice.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zengde Xi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengyao Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Linyou Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Crop and Nuclear Technology Utilization, Hangzhou, 310021, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
8
|
Huang C, Cheng Y, Hu Y, Zhang X, Chen J, Zhao T, Si Z, Cao Y, Li Y, Fang L, Guan X, Zhang T. Impacts of parental genomic divergence in non-syntenic regions on cotton heterosis. J Adv Res 2024:S2090-1232(24)00331-X. [PMID: 39111623 DOI: 10.1016/j.jare.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
INTRODUCTION Heterosis has revolutionized crop breeding, enhancing global agricultural production. However, the mechanisms underlying heterosis remain obscure. Xiangzamian 2# (XZM2), a super hybrid upland cotton (Gossypium hirsutum L.) characterized by high-yield heterosis, has been developed and extensively planted in China. OBJECTIVES We conducted a systematic analysis of CRI12 and J8891, two parents of XZM2. We aimed to reveal the precise genetic information and the role of non-syntenic divergence in shaping heterosis, laying a foundation for advancing understanding of heterosis. METHODS We de novo assembled high-quality genomes of CRI12 and J8891, and further uncovered abundant genetic variations and non-syntenic regions between the parents. Whole-genome comparison, association analysis, transcriptomic analysis and relative identity-by-descent (rIBD) estimation were conducted to identify structural variations (SVs) and introgressions within non-syntenic blocks and to analyze their impacts on promoting heterosis. RESULTS Parental genetic divergence increased in non-syntenic regions. Furthermore, these regions, accounting for only 16.71% of the total genome, contained more loci with significantly higher heterotic effects, far exceeding the syntenic background. SVs covered 97.26% of non-syntenic sequences and caused widespread gene expression differences in these regions, driving dynamic complementation of gene expression in the hybrid. A set of SVs were responsible for trait improvement and had positive effects on heterosis, contributing larger heritability than short variations. We characterized numerous parental-specific introgressions from G. barbadense. Specifically, a functional introgression segment within non-syntenic blocks introduced an elite haplotype, which significantly increased lint yield and enhanced heterosis. CONCLUSION Our study clarified non-syntenic regions to harbor more loci with higher heterotic effects, revealed their importance in promoting heterosis and supported the crucial role of genetic complementation in heterosis. SVs and introgressions were identified as key factors responsible for non-syntenic divergence between the parents. They had important effects on gene expression and trait improvement, positively contributing to heterosis.
Collapse
Affiliation(s)
- Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Cheng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xuemei Zhang
- Annoroad Gene Technology (Beijing) Co., Ltd., Beijing 100176, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yiqian Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
9
|
Huang C, Cheng Y, Hu Y, Fang L, Si Z, Chen J, Cao Y, Guan X, Zhang T. Dynamic patterns of gene expressional and regulatory variations in cotton heterosis. FRONTIERS IN PLANT SCIENCE 2024; 15:1450963. [PMID: 39166253 PMCID: PMC11333441 DOI: 10.3389/fpls.2024.1450963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024]
Abstract
Purpose Although the application of heterosis has significantly increased crop yield over the past century, the mechanisms underlying this phenomenon still remain obscure. Here, we applied transcriptome sequencing to unravel the impacts of parental expression differences and transcriptomic reprogramming in cotton heterosis. Methods A high-quality transcriptomic atlas covering 15 developmental stages and tissues was constructed for XZM2, an elite hybrid of upland cotton (Gossypium hirsutum L.), and its parental lines, CRI12 and J8891. This atlas allowed us to identify gene expression differences between the parents and to characterize the transcriptomic reprogramming that occurs in the hybrid. Results Our analysis revealed abundant gene expression differences between the parents, with pronounced tissue specificity; a total of 1,112 genes exhibited single-parent expression in at least one tissue. It also illuminated transcriptomic reprogramming in the hybrid XZM2, which included both additive and non-additive expression patterns. Coexpression networks between parents and hybrid constructed via weighted gene coexpression network analysis identified modules closely associated with fiber development. In particular, key regulatory hub genes involved in fiber development showed high-parent dominant or over dominant patterns in the hybrid, potentially driving the emergence of heterosis. Finally, high-depth resequencing data was generated and allele-specific expression patterns examined in the hybrid, enabling the dissection of cis- and trans-regulation contributions to the observed expression differences. Conclusion Parental transcriptional differences and transcriptomic reprogramming in the hybrid, especially the non-additive upregulation of key genes, play an important role in shaping heterosis. Collectively, these findings provide new insights into the molecular basis of heterosis in cotton.
Collapse
Affiliation(s)
- Chujun Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Cheng
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinwen Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiwen Cao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
10
|
Liu Z, Chen B, Zou Z, Li D, Zhu J, Yu J, Xiao W, Yang H. Multiple trait comparison and global intestine transcriptional provide new insights into bases of heterosis in hybrid tilapia (Oreochromis niloticus × Oreochromis aureus). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101236. [PMID: 38688047 DOI: 10.1016/j.cbd.2024.101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Heterosis has been utilized in aquaculture for many years, yet its molecular basis remains elusive. Therefore, a comprehensive analysis of heterosis was conducted by comparing growth, digestion and biochemistry indices, as well as the intestinal gene expression profiles of Nile tilapia, blue tilapia and their hybrids. The results revealed that hybrid tilapia demonstrated an enhanced growth traits and elevated digestive enzyme activity compared to Nile and blue tilapia. Additionally, the hybrid tilapia displayed superior antioxidants and non-specific immune levels, with increased levels of catalase (CAT), alkaline phosphatase (AKP), acid phosphatase (ACP), glutathione (GSH), superoxide dismutase (SOD), total antioxidant capacity (TAOC), lysozyme, and immunoglobulin M (IgM) relative to Nile and blue tilapia. Moreover, 3392, 2470 and 1261 differentially expressed genes (DEGs) were identified in the intestinal tissues when comparing Nile tilapia to blue tilapia, hybrid tilapia to blue tilapia, and hybrid tilapia to Nile tilapia. Upon classifying the differentially expressed genes (DEGs), non-additively expressed DEGs accounted for 68.1 % of the total DEGs, with dominant and over-dominant expressed DEGs comprising 63.7 % and 4.4 % in the intestines, respectively. These non-additively expressed DEGs were primarily associated with metabolic, digestive, growth, and developmental pathways. This enrichment enhances our comprehension of the molecular underpinnings of growth heterosis in aquatic species.
Collapse
Affiliation(s)
- Zihui Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Dayu Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wei Xiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hong Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214128, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
11
|
Zhan W, Cui L, Yang S, Zhang K, Zhang Y, Yang J. Natural variations of heterosis-related allele-specific expression genes in promoter regions lead to allele-specific expression in maize. BMC Genomics 2024; 25:476. [PMID: 38745122 PMCID: PMC11092226 DOI: 10.1186/s12864-024-10395-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.
Collapse
Affiliation(s)
- Weimin Zhan
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lianhua Cui
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shuling Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kangni Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanpei Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jianping Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Zhang X, Wu Q, Lan L, Peng D, Guan H, Luo K, Bao M, Bendahmane M, Fu X, Wu Z. Haplotype-resolved genome assembly of the diploid Rosa chinensis provides insight into the mechanisms underlying key ornamental traits. MOLECULAR HORTICULTURE 2024; 4:14. [PMID: 38622744 PMCID: PMC11020927 DOI: 10.1186/s43897-024-00088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Roses are consistently ranked at the forefront in cut flower production. Increasing demands of market and changing climate conditions have resulted in the need to further improve the diversity and quality of traits. However, frequent hybridization leads to highly heterozygous nature, including the allelic variants. Therefore, the absence of comprehensive genomic information leads to them making it challenging to molecular breeding. Here, two haplotype-resolved chromosome genomes for Rosa chinensis 'Chilong Hanzhu' (2n = 14) which is high heterozygous diploid old Chinese rose are generated. An amount of genetic variation (1,605,616 SNPs, 209,575 indels) is identified. 13,971 allelic genes show differential expression patterns between two haplotypes. Importantly, these differences hold valuable insights into regulatory mechanisms of traits. RcMYB114b can influence cyanidin-3-glucoside accumulation and the allelic variation in its promoter leads to differences in promoter activity, which as a factor control petal color. Moreover, gene family expansion may contribute to the abundance of terpenes in floral scents. Additionally, RcANT1, RcDA1, RcAG1 and RcSVP1 genes are involved in regulation of petal number and size under heat stress treatment. This study provides a foundation for molecular breeding to improve important characteristics of roses.
Collapse
Affiliation(s)
- Xiaoni Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Quanshu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Murdoch, WA, 6150, Australia
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Huilin Guan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiqing Luo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China
| | - Manzhu Bao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohammed Bendahmane
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
- Laboratoire Reproduction Et Development Des Plantes, INRA-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, 520074, Lyon, France.
| | - Xiaopeng Fu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan, 528200, China.
| |
Collapse
|
13
|
Liu C, Mao B, Zhang Y, Tian L, Ma B, Chen Z, Wei Z, Li A, Shao Y, Cheng G, Li L, Li W, Zhang D, Ding X, Peng J, Peng Y, He J, Ye N, Yuan D, Chu C, Duan M. The OsWRKY72-OsAAT30/OsGSTU26 module mediates reactive oxygen species scavenging to drive heterosis for salt tolerance in hybrid rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:709-730. [PMID: 38483018 DOI: 10.1111/jipb.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
Hybrid rice (Oryza sativa) generally outperforms its inbred parents in yield and stress tolerance, a phenomenon termed heterosis, but the underlying mechanism is not completely understood. Here, we combined transcriptome, proteome, physiological, and heterosis analyses to examine the salt response of super hybrid rice Chaoyou1000 (CY1000). In addition to surpassing the mean values for its two parents (mid-parent heterosis), CY1000 exhibited a higher reactive oxygen species scavenging ability than both its parents (over-parent heterosis or heterobeltiosis). Nonadditive expression and allele-specific gene expression assays showed that the glutathione S-transferase gene OsGSTU26 and the amino acid transporter gene OsAAT30 may have major roles in heterosis for salt tolerance, acting in an overdominant fashion in CY1000. Furthermore, we identified OsWRKY72 as a common transcription factor that binds and regulates OsGSTU26 and OsAAT30. The salt-sensitive phenotypes were associated with the OsWRKY72paternal genotype or the OsAAT30maternal genotype in core rice germplasm varieties. OsWRKY72paternal specifically repressed the expression of OsGSTU26 under salt stress, leading to salinity sensitivity, while OsWRKY72maternal specifically repressed OsAAT30, resulting in salinity tolerance. These results suggest that the OsWRKY72-OsAAT30/OsGSTU26 module may play an important role in heterosis for salt tolerance in an overdominant fashion in CY1000 hybrid rice, providing valuable clues to elucidate the mechanism of heterosis for salinity tolerance in hybrid rice.
Collapse
Affiliation(s)
- Citao Liu
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Yanxia Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Tian
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Biao Ma
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuo Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongwei Wei
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Aifu Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Gongye Cheng
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Lingling Li
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Wenyu Li
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Di Zhang
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Xiaoping Ding
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | | | - Yulin Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Jiwai He
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Nenghui Ye
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Chengcai Chu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Meijuan Duan
- Hunan Provincial Key Laboratory of Stress Biology, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
14
|
Prai-anun K, Jirakiattikul Y, Suriharn K, Harakotr B. The Combining Ability and Heterosis Analysis of Sweet-Waxy Corn Hybrids for Yield-Related Traits and Carotenoids. PLANTS (BASEL, SWITZERLAND) 2024; 13:296. [PMID: 38256849 PMCID: PMC10819934 DOI: 10.3390/plants13020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Improving sweet-waxy corn hybrids enriched in carotenoids via a hybrid breeding approach may provide an alternative cash crop for growers and provide health benefits for consumers. This study estimates the combining ability and heterosis of sweet-waxy corn hybrids for yield-related traits and carotenoids. Eight super sweet corn and three waxy corn lines were crossed to generate 24 F1 hybrids according to the North Carolina Design II scheme, and these hybrids were evaluated across two seasons of 2021/22. The results showed that both additive and non-additive genetic effects were involved in expressing the traits, but the additive genetic effect was more predominant. Most observed traits exhibited moderate to high narrow-sense heritability. Three parental lines, namely the ILS2 and ILS7 females and the ILW1 male, showed the highest positive GCA effects on yield-related traits, making them desirable for developing high-yielding hybrids. Meanwhile, five parental lines, namely the ILS3, ILS5, and ILS7 females and the ILW1 and ILW2 males, were favorable general combiners for high carotenoids. A tested hybrid, ILS2 × ILW1, was a candidate biofortified sweet-waxy corn hybrid possessing high yields and carotenoids. Heterosis and per se performance were more positively correlated with GCAsum than SCA, indicating that GCAsum can predict heterosis for improving biofortified sweet-waxy corn hybrid enriched in carotenoids. The breeding strategies of biofortified sweet-waxy corn hybrids with high yield and carotenoid content are discussed.
Collapse
Affiliation(s)
- Kanyarat Prai-anun
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (K.P.-a.); (Y.J.)
| | - Yaowapha Jirakiattikul
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (K.P.-a.); (Y.J.)
| | - Khundej Suriharn
- Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Bhornchai Harakotr
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand; (K.P.-a.); (Y.J.)
| |
Collapse
|
15
|
Liu W, Ren D, Yang W, Xu M, Zhang Y, Wang X, He G, Deng XW. Genetic and molecular regulation of increased photosynthetic cell number contributes to leaf size heterosis in Arabidopsis. iScience 2023; 26:107366. [PMID: 37539024 PMCID: PMC10393828 DOI: 10.1016/j.isci.2023.107366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Heterosis is an important genetic phenomenon that has been observed and widely utilized in agriculture. However, the genetic and molecular bases of heterosis are unclear. Through transcriptome-wide association studies (TWAS) and expression quantitative trait locus (eQTL) analysis to integrate genome, transcriptome, and heterotic phenotype of a half-sibling Arabidopsis hybrid population, we report that the genetic and molecular bases of variations in leaf growth heterosis can be explained by the varied expression levels of growth-regulating genes resulting from distinct sets of heterozygous eQTLs carried by the half-sibling hybrids. In F1 versus parent, the degree of up-regulated gene expression in the cell cycle pathway in the shoot apex and the photosynthesis pathway in true leaf positively correlates with true leaf area heterosis level, and this is affected by the accumulation of superior heterozygous eQTLs. This was further corroborated by the major contribution of increased photosynthetic cell number to leaf area heterosis.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Diqiu Ren
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Wenyi Yang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Miqi Xu
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yi Zhang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xingwei Wang
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Guangming He
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
16
|
Chen T, Wang Z, Wang J, Liu J, Zhang R, Jia X, Yu C, Yin Y, Creech D. Transcriptomic and metabolomic analyses unveil the growth advantage mechanism conferred by heterosis of Michelia 'Zhongshanhanxiao'. TREE PHYSIOLOGY 2023; 43:1454-1466. [PMID: 37099801 DOI: 10.1093/treephys/tpad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Michelia compressa (Maxim.) Sarg. is one of the important timber trees in Taiwan province, P. R. China. Michelia 'Zhongshanhanxiao' is a group of variants found among the progeny of M. compressa that exhibit higher growth rates compared with normal individuals, with a significantly increased stem diameter and height, as well as enlarged leaves and flowers. However, the molecular mechanisms fostering the growth advantage and morphological variations are unknown and deserve further study. Through analysing the transcriptome, metabolome and physiological processes of leaves, we identified remarkable differences in gene expression and metabolic profiles between Michelia 'Zhongshanhanxiao' and both the maternal M. compressa and its normal progeny. These differences were widely associated with a plant-pathogen interaction, phenylpropanoid biosynthesis, cyanoamino acid metabolism, carbon fixation in photosynthetic organisms and plant hormone signal transduction. Additionally, physiological measurements showed that Michelia 'Zhongshanhanxiao' possesses stronger photosynthetic capacity and higher plant hormone content. These results suggest that the heterosis of Michelia 'Zhongshanhanxiao' is regulated by candidates related to cell division, resistance to pathogens and the accumulation of organic compounds. The findings of this study provide crucial information on the molecular mechanisms underlying the growth advantages conferred by heterosis in trees.
Collapse
Affiliation(s)
- Tingting Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - Junjie Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - Jiaqi Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - Rui Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - Xiaoyu Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, No. 1, Qianhu Village, Zhongshan Gate, Nanjing 210014, China
| | - David Creech
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75962, USA
| |
Collapse
|
17
|
Wang J, Yuan Z, Li D, Cai M, Liang Z, Chen Q, Du X, Wang J, Gu R, Li L. Transcriptome Analysis Revealed the Potential Molecular Mechanism of Anthocyanidins' Improved Salt Tolerance in Maize Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:2793. [PMID: 37570948 PMCID: PMC10421157 DOI: 10.3390/plants12152793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Anthocyanin, a kind of flavonoid, plays a crucial role in plant resistance to abiotic stress. Salt stress is a kind of abiotic stress that can damage the growth and development of plant seedlings. However, limited research has been conducted on the involvement of maize seedlings in salt stress resistance via anthocyanin accumulation, and its potential molecular mechanism is still unclear. Therefore, it is of great significance for the normal growth and development of maize seedlings to explore the potential molecular mechanism of anthocyanin improving salt tolerance of seedlings via transcriptome analysis. In this study, we identified two W22 inbred lines (tolerant line pur-W22 and sensitive line bro-W22) exhibiting differential tolerance to salt stress during seedling growth and development but showing no significant differences in seedling characteristics under non-treatment conditions. In order to identify the specific genes involved in seedlings' salt stress response, we generated two recombinant inbred lines (RILpur-W22 and RILbro-W22) by crossing pur-W22 and bro-W22, and then performed transcriptome analysis on seedlings grown under both non-treatment and salt treatment conditions. A total of 6100 and 5710 differentially expressed genes (DEGs) were identified in RILpur-W22 and RILbro-W22 seedlings, respectively, under salt-stressed conditions when compared to the non-treated groups. Among these DEGs, 3160 were identified as being present in both RILpur-W22 and RILbro-W22, and these served as commonly stressed EDGs that were mainly enriched in the redox process, the monomer metabolic process, catalytic activity, the plasma membrane, and metabolic process regulation. Furthermore, we detected 1728 specific DEGs in the salt-tolerant RILpur-W22 line that were not detected in the salt-sensitive RILbro-W22 line, of which 887 were upregulated and 841 were downregulated. These DEGs are primarily associated with redox processes, biological regulation, and the plasma membrane. Notably, the anthocyanin synthesis related genes in RILpur-W22 were strongly induced under salt treatment conditions, which was consistented with the salt tolerance phenotype of its seedlings. In summary, the results of the transcriptome analysis not only expanded our understanding of the complex molecular mechanism of anthocyanin in improving the salt tolerance of maize seedlings, but also, the DEGs specifically expressed in the salt-tolerant line (RILpur-W22) provided candidate genes for further genetic analysis.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Science, Sanya 572000, China
| | - Zhipeng Yuan
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Delin Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Minghao Cai
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
| | - Zhi Liang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
| | - Quanquan Chen
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
| | - Xuemei Du
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
| | - Jianhua Wang
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
| | - Riliang Gu
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
| | - Li Li
- Beijing Innovation Center for Crop Seed Technology, Ministry of Agriculture and Rural Affairs, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (J.W.); (Z.Y.); (D.L.); (M.C.); (Z.L.); (Q.C.); (X.D.); (J.W.)
| |
Collapse
|
18
|
Sun Z, Peng J, Lv Q, Ding J, Chen S, Duan M, He Q, Wu J, Tian Y, Yu D, Tan Y, Sheng X, Chen J, Sun X, Liu L, Peng R, Liu H, Zhou T, Xu N, Lou J, Yuan L, Wang B, Yuan D. Dissecting the genetic basis of heterosis in elite super-hybrid rice. PLANT PHYSIOLOGY 2023; 192:307-325. [PMID: 36755501 PMCID: PMC10152689 DOI: 10.1093/plphys/kiad078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Y900 is one of the top hybrid rice (Oryza sativa) varieties, with its yield exceeding 15 t·hm-2. To dissect the mechanism of heterosis, we sequenced the male parent line R900 and female parent line Y58S using long-read and Hi-C technology. High-quality reference genomes of 396.41 Mb and 398.24 Mb were obtained for R900 and Y58S, respectively. Genome-wide variations between the parents were systematically identified, including 1,367,758 single-nucleotide polymorphisms, 299,149 insertions/deletions, and 4,757 structural variations. The level of variation between Y58S and R900 was the lowest among the comparisons of Y58S with other rice genomes. More than 75% of genes exhibited variation between the two parents. Compared with other two-line hybrids sharing the same female parent, the portion of Geng/japonica (GJ)-type genetic components from different male parents increased with yield increasing in their corresponding hybrids. Transcriptome analysis revealed that the partial dominance effect was the main genetic effect that constituted the heterosis of Y900. In the hybrid, both alleles from the two parents were expressed, and their expression patterns were dynamically regulated in different tissues. The cis-regulation was dominant for young panicle tissues, while trans-regulation was more common in leaf tissues. Overdominance was surprisingly prevalent in stems and more likely regulated by the trans-regulation mechanism. Additionally, R900 contained many excellent GJ haplotypes, such as NARROW LEAF1, Oryza sativa SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13, and Grain number, plant height, and heading date8, making it a good complement to Y58S. The fine-tuned mechanism of heterosis involves genome-wide variation, GJ introgression, key functional genes, and dynamic gene/allele expression and regulation pattern changes in different tissues and growth stages.
Collapse
Affiliation(s)
- Zhizhong Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | | | - Qiming Lv
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Jia Ding
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Siyang Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Meijuan Duan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qiang He
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Tian
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Dong Yu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanning Tan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiabing Sheng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jin Chen
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuewu Sun
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ling Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Rui Peng
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hai Liu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tianshun Zhou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Na Xu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jianhang Lou
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Bingbing Wang
- Biobin Data Sciences Co., Ltd., Changsha 410221, China
| | - Dingyang Yuan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
19
|
Ma M, Zhong W, Zhang Q, Deng L, Wen J, Yi B, Tu J, Fu T, Zhao L, Shen J. Genome-wide analysis of transcriptome and histone modifications in Brassica napus hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1123729. [PMID: 36778699 PMCID: PMC9911877 DOI: 10.3389/fpls.2023.1123729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Although utilization of heterosis has largely improved the yield of many crops worldwide, the underlying molecular mechanism of heterosis, particularly for allopolyploids, remains unclear. Here, we compared epigenome and transcriptome data of an elite hybrid and its parental lines in three assessed tissues (seedling, flower bud, and silique) to explore their contribution to heterosis in allopolyploid B. napus. Transcriptome analysis illustrated that a small proportion of non-additive genes in the hybrid compared with its parents, as well as parental expression level dominance, might have a significant effect on heterosis. We identified histone modification (H3K4me3 and H3K27me3) variation between the parents and hybrid, most of which resulted from the differences between parents. H3K4me3 variations were positively correlated with gene expression differences among the hybrid and its parents. Furthermore, H3K4me3 and H3K27me3 were rather stable in hybridization and were mainly inherited additively in the B. napus hybrid. Together, our data revealed that transcriptome reprogramming and histone modification remodeling in the hybrid could serve as valuable resources for better understanding heterosis in allopolyploid crops.
Collapse
|
20
|
Zhan W, Guo G, Cui L, Rashid MAR, Jiang L, Sun G, Yang J, Zhang Y. Combined transcriptome and metabolome analysis reveals the effects of light quality on maize hybrids. BMC PLANT BIOLOGY 2023; 23:41. [PMID: 36653749 PMCID: PMC9847186 DOI: 10.1186/s12870-023-04059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Heterosis, or hybrid vigor, refers to the phenotypic superiority of an F1 hybrid relative to its parents in terms of growth rate, biomass production, grain yield, and stress tolerance. Light is an energy source and main environmental cue with marked impacts on heterosis in plants. Research into the production applications and mechanism of heterosis has been conducted for over a century and a half, but little is known about the effect of light on plant heterosis. RESULTS In this study, an integrated transcriptome and metabolome analysis was performed using maize (Zea mays L.) inbred parents, B73 and Mo17, and their hybrids, B73 × Mo17 (BM) and Mo17 × B73 (MB), grown in darkness or under far-red, red, or blue light. Most differentially expressed genes (73.72-92.50%) and differentially accumulated metabolites (84.74-94.32%) exhibited non-additive effects in BM and MB hybrids. Gene Ontology analysis revealed that differential genes and metabolites were involved in glutathione transfer, carbohydrate transport, terpenoid biosynthesis, and photosynthesis. The darkness, far-red, red, and blue light treatments were all associated with phenylpropanoid-flavonoid biosynthesis by Weighted Gene Co-expression Network Analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Five genes and seven metabolites related to phenylpropanoid-flavonoid biosynthesis pathway were identified as potential contributors to the interactions between maize heterosis and light conditions. Consistent with the strong mid-parent heterosis observed for metabolites, significant increases in both fresh and dry weights were found in the MB and BM hybrids compared with their inbred parents. Unexpectedly, increasing light intensity resulted in higher biomass heterosis in MB, but lower biomass heterosis in BM. CONCLUSIONS The transcriptomic and metabolomic results provide unique insights into the effects of light quality on gene expression patterns and genotype-environment interactions, and have implications for gene mining of heterotic loci to improve maize production.
Collapse
Affiliation(s)
- Weimin Zhan
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Lianhua Cui
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Muhammad Abdul Rehman Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Liangliang Jiang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guanghua Sun
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yanpei Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
21
|
Wang P, Gu M, Yu X, Shao S, Du J, Wang Y, Wang F, Chen S, Liao Z, Ye N, Zhang X. Allele-specific expression and chromatin accessibility contribute to heterosis in tea plants (Camellia sinensis). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1194-1211. [PMID: 36219505 DOI: 10.1111/tpj.16004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Heterosis is extensively used to improve crop productivity, yet its allelic and chromatin regulation remains unclear. Based on our resolved genomes of the maternal TGY and paternal HD, we analyzed the contribution of allele-specific expression (ASE) and chromatin accessibility of JGY and HGY, the artificial hybrids of oolong tea with the largest cultivated area in China. The ASE genes (ASEGs) of tea hybrids with maternal-biased were mainly related to the energy and terpenoid metabolism pathways, whereas the ASEGs with paternal-biased tend to be enriched in glutathione metabolism, and these parental bias of hybrids may coordinate and lead to the acquisition of heterosis in more biological pathways. ATAC-seq results showed that hybrids have significantly higher accessible chromatin regions (ACRs) compared with their parents, which may confer broader and stronger transcriptional activity of genes in hybrids. The number of ACRs with significantly increased accessibility in hybrids was much greater than decreased, and the associated alleles were also affected by differential ACRs across different parents, suggesting enhanced positive chromatin regulation and potential genetic effects in hybrids. Core ASEGs of terpene and purine alkaloid metabolism pathways with significant positive heterosis have greater chromatin accessibility in hybrids, and were potentially regulated by several members of the MYB, DOF and TRB families. The binding motif of CsMYB85 in the promoter ACR of the rate-limiting enzyme CsDXS was verified by DAP-seq. These results suggest that higher numbers and more accessible ACRs in hybrids contribute to the regulation of ASEGs, thereby affecting the formation of heterotic metabolites.
Collapse
Affiliation(s)
- Pengjie Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Mengya Gu
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xikai Yu
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Shuxian Shao
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Jiayin Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Feiquan Wang
- College of Tea and Food Science, Wuyi University, Wuyishan, Fujian, 354300, China
| | - Shuai Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Naixing Ye
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
22
|
Fukai E, Yoshikawa M, Shah N, Sandal N, Miyao A, Ono S, Hirakawa H, Akyol TY, Umehara Y, Nonomura KI, Stougaard J, Hirochika H, Hayashi M, Sato S, Andersen SU, Okazaki K. Widespread and transgenerational retrotransposon activation in inter- and intraspecies recombinant inbred populations of Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1397-1410. [PMID: 35792830 DOI: 10.1111/tpj.15896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) constitute a large proportion of genomes of multicellular eukaryotes, including flowering plants. TEs are normally maintained in a silenced state and their transpositions rarely occur. Hybridization between distant species has been regarded as a 'shock' that stimulates genome reorganization, including TE mobilization. However, whether crosses between genetically close parents that result in viable and fertile offspring can induce TE transpositions has remained unclear. Here, we investigated the activation of long terminal repeat (LTR) retrotransposons in three Lotus japonicus recombinant inbred line (RIL) populations. We found that at least six LTR retrotransposon families were activated and transposed in 78% of the RILs investigated. LORE1a, one of the transposed LTR retrotransposons, showed transgenerational epigenetic activation, indicating the long-term effects of epigenetic instability induced by hybridization. Our study highlights TE activation as an unexpectedly common event in plant reproduction.
Collapse
Affiliation(s)
- Eigo Fukai
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, 950-2181, Niigata, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
- Plant Cytogenetics, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Manabu Yoshikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Niraj Shah
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2, Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Seijiro Ono
- Plant Cytogenetics, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Hideki Hirakawa
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Ken-Ichi Nonomura
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Hirohiko Hirochika
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2, Oowashi, Tsukuba, Ibaraki, 305-8634, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Shusei Sato
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | | | - Keiichi Okazaki
- Graduate School of Science and Technology, Niigata University, Ikarashi-ninocho, 950-2181, Niigata, Japan
| |
Collapse
|
23
|
Mo Z, Luo W, Pi K, Duan L, Wang P, Ke Y, Zeng S, Jia R, Liang T, Huang Y, Liu R. Comparative transcriptome analysis between inbred lines and hybrids provides molecular insights into K + content heterosis of tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:940787. [PMID: 35991430 PMCID: PMC9389268 DOI: 10.3389/fpls.2022.940787] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is essential for crop growth. Increasing the K+ content can often directly promote the improvement of crop yield and quality. Heterosis plays an important role in genetic improvement and leads to genetic gains. We found that the K+ content of tobacco showed significant heterosis, which is highly significant for cultivating tobacco varieties with high K+ content. However, the mechanism by which K+ content heterosis occurs in tobacco leaves is not clear. In this study, a comprehensive comparative transcriptome sequencing analysis of root samples from the hybrid G70 × GDH11 and its parental inbred lines G70 and GDH11 was performed to elucidate the importance of the root uptake capacity of K+ in the formation of heterosis. The results showed that 29.53% and 60.49% of the differentially expressed genes (DEGs) exhibited dominant and over-dominant expression patterns, respectively. These non-additive upregulated DEGs were significantly enriched in GO terms, such as metal ion transport and reaction, ion balance and homeostasis, ion channel activity, root meristem growth, and regulation of root hairs. The KEGG annotation results indicated that these genes were mainly involved in the pathways such as energy metabolism, carbohydrate formation, amino acid metabolism, and signal transduction. Further analysis showed that probable potassium transporter 17 (NtKT17) and potassium transporter 5-like (NtKT5), associated with potassium ion absorption, glutamate receptor 2.2-like and glutamate receptor 2.8-like, associated with ion channel activity, LOC107782957, protein detoxification 42-like, and probable glutamate carboxypeptidase 2, associated with root configuration, showed a significantly higher expression in the hybrids. These results indicated that the over-dominant expression pattern of DEGs played a key role in the heterosis of K+ content in tobacco leaves, and the overexpression of the genes related to K+ uptake, transport, and root development in hybrids helped to improve the K+ content of plants, thus showing the phenomenon of heterosis.
Collapse
Affiliation(s)
- Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Wen Luo
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Kai Pi
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Lili Duan
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Pingsong Wang
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Yuzhou Ke
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Shuaibo Zeng
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Rongli Jia
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Ting Liang
- College of Agriculture, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Ying Huang
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| | - Renxiang Liu
- College of Agriculture, Guizhou University, Guiyang, China
- College of Tobacco, Guizhou University, Guiyang, China
| |
Collapse
|
24
|
Deng X. 道阻且长,行则将至;行而不辍,未来可期 ——杂交小麦的发展和展望. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
|
26
|
Chen L, Zhu Y, Ren X, Yao D, Song Y, Fan S, Li X, Zhang Z, Yang S, Zhang J, Zhang J. Heterosis and Differential DNA Methylation in Soybean Hybrids and Their Parental Lines. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091136. [PMID: 35567137 PMCID: PMC9102035 DOI: 10.3390/plants11091136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 05/26/2023]
Abstract
Heterosis is an important biological phenomenon and is widely applied to increase agricultural productivity. However, the underlying molecular mechanisms of heterosis are still unclear. Here we constructed three combinations of reciprocal hybrids of soybean, and subsequently used MethylRAD-seq to detect CCGG and CCWGG (W = A or T) methylation in the whole genome of these hybrids and their parents at the middle development period of contemporary seed. We were able to prove that changes in DNA methylation patterns occurred in immature hybrid seeds and the parental variation was to some degree responsible for differential expression between the reciprocal hybrids. Non-additive differential methylation sites (DMSs) were also identified in large numbers in hybrids. Interestingly, most of these DMSs were hyper-methylated and were more concentrated in gene regions than the natural distribution of the methylated sites. Further analysis of the non-additive DMSs located in gene regions exhibited their participation in various biological processes, especially those related to transcriptional regulation and hormonal function. These results revealed DNA methylation reprogramming pattern in the hybrid soybean, which is associated with phenotypic variation and heterosis initiation.
Collapse
Affiliation(s)
- Liangyu Chen
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Yanyu Zhu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xiaobo Ren
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yang Song
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Sujie Fan
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Xueying Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Zhuo Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Songnan Yang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
- Department Biology, University of British Columbia, Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jun Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China; (L.C.); (Y.Z.); (X.R.); (Y.S.); (S.F.); (X.L.); (Z.Z.)
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
27
|
Wang Y, Yuan J, Sun Y, Li Y, Wang P, Shi L, Ni A, Zong Y, Zhao J, Bian S, Ma H, Chen J. Genetic Basis of Sexual Maturation Heterosis: Insights From Ovary lncRNA and mRNA Repertoire in Chicken. Front Endocrinol (Lausanne) 2022; 13:951534. [PMID: 35966096 PMCID: PMC9363637 DOI: 10.3389/fendo.2022.951534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Sexual maturation is fundamental to the reproduction and production performance, heterosis of which has been widely used in animal crossbreeding. However, the underlying mechanism have long remained elusive, despite its profound biological and agricultural significance. In the current study, the reciprocal crossing between White Leghorns and Beijing You chickens were performed to measure the sexual maturation heterosis, and the ovary lncRNAs and mRNAs of purebreds and crossbreeds were profiled to illustrate molecular mechanism of heterosis. Heterosis larger than 20% was found for pubic space and oviduct length, whereas age at first egg showed negative heterosis in both crossbreeds. We identified 1170 known lncRNAs and 1994 putative lncRNAs in chicken ovary using a stringent pipeline. Gene expression pattern showed that nonadditivity was predominant, and the proportion of nonadditive lncRNAs and genes was similar between two crossbreeds, ranging from 44.24% to 49.15%. A total of 200 lncRNAs and 682 genes were shared by two crossbreeds, respectively. GO and KEGG analysis showed that the common genes were significantly enriched in the cell cycle, animal organ development, gonad development, ECM-receptor interaction, calcium signaling pathway and GnRH signaling pathway. Weighted gene co-expression network analysis (WGCNA) identified that 7 out of 20 co-expressed lncRNA-mRNA modules significantly correlated with oviduct length and pubic space. Interestingly, genes harbored in seven modules were also enriched in the similar biological process and pathways, in which nonadditive lncRNAs, such as MSTRG.17017.1 and MSTRG.6475.20, were strongly associated with nonadditive genes, such as CACNA1C and TGFB1 to affect gonad development and GnRH signaling pathway, respectively. Moreover, the results of real-time quantitative PCR (RT-qPCR) correlated well with the transcriptome data. Integrated with positive heterosis of serum GnRH and melatonin content detected in crossbreeds, we speculated that nonadditive genes involved in the GnRH signaling pathway elevated the gonad development, leading to the sexual maturation heterosis. We characterized a systematic landscape of ovary lncRNAs and mRNAs related to sexual maturation heterosis in chicken. The quantitative exploration of hybrid transcriptome changes lays foundation for genetic improvement of sexual maturation traits and provides insights into endocrine control of sexual maturation.
Collapse
|