1
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Ibuki Y, Komaki Y, Yang G, Toyooka T. Long-wavelength UVA enhances UVB-induced cell death in cultured keratinocytes: DSB formation and suppressed survival pathway. Photochem Photobiol Sci 2021; 20:639-652. [PMID: 33978941 DOI: 10.1007/s43630-021-00050-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Solar UV radiation consists of both UVA and UVB. The wavelength-specific molecular responses to UV radiation have been studied, but the interaction between UVA and UVB has not been well understood. In this study, we found that long-wavelength UVA, UVA1, augmented UVB-induced cell death, and examined the underlying mechanisms. Human keratinocytes HaCaT were exposed to UVA1, followed by UVB irradiation. Irradiation by UVA1 alone showed no effect on cell survival, whereas the UVA1 pre-irradiation remarkably enhanced UVB-induced cell death. UVA1 delayed the repair of pyrimidine dimers formed by UVB and the accumulation of nucleotide excision repair (NER) proteins to damaged sites. Gap synthesis during NER was also decreased, suggesting that UVA1 delayed NER, and unrepaired pyrimidine dimers and single-strand breaks generated in the process of NER were left behind. Accumulation of this unrepaired DNA damage might have led to the formation of DNA double-strand breaks (DSBs), as was detected using gel electrophoresis analysis and phosphorylated histone H2AX assay. Combined exposure enhanced the ATM-Chk2 signaling pathway, but not the ATR-Chk1 pathway, confirming the enhanced formation of DSBs. Moreover, UVA1 suppressed the UVB-induced phosphorylation of Akt, a survival signal pathway. These results indicated that UVA1 influenced the repair of UVB-induced DNA damage, which resulted in the formation of DSBs and enhanced cell death, suggesting the risk of simultaneous exposure to high doses of UVA1 and UVB.
Collapse
Affiliation(s)
- Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan.
| | - Yukako Komaki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Guang Yang
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka, 422-8526, Japan
| | - Tatsushi Toyooka
- National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
3
|
Antitumor Activity of Protons and Molecular Hydrogen: Underlying Mechanisms. Cancers (Basel) 2021; 13:cancers13040893. [PMID: 33672714 PMCID: PMC7924327 DOI: 10.3390/cancers13040893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Protons (H+) and molecular hydrogen (H2) in the cell are critical in a wide variety of processes. New cancer treatment uses H2, a biologically inactive gas. H2 can rapidly penetrate cell membranes and reach subcellular components to protect nuclear DNA and mitochondria. H2 reduces oxidative stress, exerts anti-inflammatory effects, and acts as a modulator of apoptosis. Exogenous H2 is a protective therapy that can be used in cancer. Cyclotrons and synchrotrons are currently used to produce protons. Proton beam radiotherapy (PBT) offers great promise for the treatment of a wide variety of cancers. H2 and different types of H2 donors may represent a novel therapeutic strategy in cancer treatment. Abstract Understanding the structure and dynamics of the various hydrogen forms has been a subject of numerous studies. Protons (H+) and molecular hydrogen (H2) in the cell are critical in a wide variety of processes. A new cancer treatment uses H2, a biologically inactive gas. Due to its small molecular weight, H2 can rapidly penetrate cell membranes and reach subcellular components to protect nuclear DNA and mitochondria. H2 reduces oxidative stress, exerts anti-inflammatory effects, and acts as a modulator of apoptosis. Exogenous H2, administered by inhalation, drinking H2-rich water, or injecting H2-rich saline solution, is a protective therapy that can be used in multiple diseases, including cancer. In particle therapy, cyclotrons and synchrotrons are the accelerators currently used to produce protons. Proton beam radiotherapy (PBT) offers great promise for the treatment of a wide variety of cancers due to the sharp decrease in the dose of radiation at a defined point. In these conditions, H2 and different types of H2 donors may represent a novel therapeutic strategy in cancer treatment.
Collapse
|
4
|
Protection against Ultraviolet A-Induced Skin Apoptosis and Carcinogenesis through the Oxidative Stress Reduction Effects of N-(4-bromophenethyl) Caffeamide, A Propolis Derivative. Antioxidants (Basel) 2020; 9:antiox9040335. [PMID: 32326032 PMCID: PMC7222364 DOI: 10.3390/antiox9040335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
Ultraviolet A (UVA) is a major factor in skin aging and damage. Antioxidative materials may ameliorate this UV damage. This study investigated the protective properties of N-(4-bromophenethyl) caffeamide (K36H) against UVA-induced skin inflammation, apoptosis and genotoxicity in keratinocytes. The protein expression or biofactor concentration related to UVA-induced skin damage were identified using an enzyme-linked immunosorbent assay and western blotting. K36H reduced UVA-induced intracellular reactive oxygen species generation and increased nuclear factor erythroid 2–related factor 2 translocation into the nucleus to upregulate the expression of heme oxygenase-1, an intrinsic antioxidant enzyme. K36H inhibited UVA-induced activation of extracellular-signal-regulated kinases and c-Jun N-terminal kinases, reduced the overexpression of matrix metalloproteinase (MMP)-1 and MMP-2 and elevated the expression of the metalloproteinase-1 tissue inhibitor. Moreover, K36H inhibited the phosphorylation of c-Jun and downregulated c-Fos expression. K36H attenuated UVA-induced Bax and caspase-3 expression and upregulated antiapoptotic protein B-cell lymphoma 2 expression. K36H reduced UVA-induced DNA damage. K36H also downregulated inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-6 expression as well as the subsequent generation of prostaglandin E2 and nitric oxide. We observed that K36H ameliorated UVA-induced oxidative stress, inflammation, apoptosis and antiphotocarcinogenic activity. K36H can potentially be used for the development of antiphotodamage and antiphotocarcinogenic products.
Collapse
|
5
|
Zerumbone Exhibits Antiphotoaging and Dermatoprotective Properties in Ultraviolet A-Irradiated Human Skin Fibroblast Cells via the Activation of Nrf2/ARE Defensive Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4098674. [PMID: 31814875 PMCID: PMC6878809 DOI: 10.1155/2019/4098674] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/06/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
Ultraviolet A (UVA) irradiation (320-400 nm range) triggers deleterious consequences in skin cell microenvironment leading to skin damage, photoaging (premature skin aging), and cancer. The accumulation of intracellular reactive oxygen species (ROS) plays a key role in this effect. With rapid progress in cosmetic health and quality of life, use of safe and highly effective phytochemicals has become a need of the hour. Zerumbone (ZER), a natural sesquiterpene, from Zingiber zerumbet rhizomes is well-known for its beneficial effects. We investigated the antiphotoaging and dermatoprotective efficacies of ZER (2-8 μM) against UVA irradiation (3 J/cm2) and elucidated the underlying molecular mechanisms in human skin fibroblast (HSF) cells. ZER treatment prior to low dose of UVA exposure increased cell viability. UVA-induced ROS generation was remarkably suppressed by ZER with parallel inhibition of MMP-1 activation and collagen III degradation. This was due to the inhibition of AP-1 (c-Fos and c-Jun) translocation. Furthermore, ZER alleviated UVA-induced SA-β-galactosidase activity. Dose- or time-dependent increase of antioxidant genes, HO-1 and γ-GCLC by ZER, was associated with increased expression and nuclear accumulation of Nrf2 as well as decreased cytosolic Keap-1 expressions. Altered luciferase activity of ARE could explain the significance of Nrf2/ARE pathway underlying the dermatoprotective properties of ZER. Pharmacological inhibition of various signaling pathways suppressed nuclear Nrf2 activation in HSF cells confirming that Nrf2 translocation was mediated by ERK, JNK, PI3K/AKT, PKC, AMPK, casein kinase II, and ROS signaling pathways. Moreover, increased basal ROS levels and Nrf2 translocation seem crucial in ZER-mediated Nrf2/ARE signaling pathway. This was also evidenced from Nrf2 knocked-out studies in which ZER was not able to suppress the UVA-induced ROS generation in the absence of Nrf2. This study concluded that in the treatment of UVA-induced premature skin aging, ZER may consider as a desirable food supplement for skin protection and/or preparation of skin care products.
Collapse
|
6
|
Xue F, Chen S, Chunxiang B, Farrukh Nisar M, Liu Y, Sutrisno L, Xiang Y, Zhang Y, Diao Q, Lin M, Zhong JL. eIF2 alpha phosphorylation alleviates UVA-induced HO-1 expression in mouse epidermal cells. Free Radic Res 2019; 52:1359-1370. [PMID: 30693837 DOI: 10.1080/10715762.2018.1489127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ultraviolet A (UVA) irradiation is a potential environmental stressor, which contributes to inflammation, photoaging, and carcinogenesis. UVA causes endoplasmic reticulum stress, hence phosphorylates the α subunit of eIF2. Meanwhile, UVA also induces expression of haem oxygenase-1 (HO-1) and nuclear factor erythroid-derived two related factor 2 (Nrf2) in human skin cells. In mouse JB6 cell, we found high dose UVA could change cell morphology, cause cell viability loss. UVA irradiation activated phosphorylation of eIF2α and Nrf2-HO-1 pathway in a dose-dependent manner. Besides, modulation of eIF2α phosphorylation status could alter expression pattern of Nrf2-HO-1 signalling. Salubrinal, a selective inhibitor of eIF2α dephosphorylation, increased the S phase in cell cycle of JB6 cells after UVA irradiation, suggesting phosphorylation status of eIF2α may affect cellular homeostasis under UVA irradiation. The study directed to further acknowledge about the relationship of UVA-induced eIF2α phosphorylation and Nrf2-HO-1 pathway, which may play a role in phototherapy and photo protection.
Collapse
Affiliation(s)
- Fangfang Xue
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Shida Chen
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Bian Chunxiang
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Muhammad Farrukh Nisar
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Yong Liu
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Linawati Sutrisno
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Yuancai Xiang
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Yiguo Zhang
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China
| | - Qingchun Diao
- b Chongqing Traditional Chinese Medicine Hospital , Chongqing , China
| | - Mao Lin
- b Chongqing Traditional Chinese Medicine Hospital , Chongqing , China
| | - Julia Li Zhong
- a Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering college , Chongqing University , Chongqing , China.,b Chongqing Traditional Chinese Medicine Hospital , Chongqing , China
| |
Collapse
|
7
|
Hart PH. The case for greater vigilance in applying sunscreen during real-life sun exposure. Br J Dermatol 2019; 180:462-463. [PMID: 30821379 DOI: 10.1111/bjd.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- P H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Australia
| |
Collapse
|
8
|
Protective Effects and Mechanisms of N-Phenethyl Caffeamide from UVA-Induced Skin Damage in Human Epidermal Keratinocytes through Nrf2/HO-1 Regulation. Int J Mol Sci 2019; 20:ijms20010164. [PMID: 30621167 PMCID: PMC6337442 DOI: 10.3390/ijms20010164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
The skin provides an effective barrier against physical, chemical, and microbial invasion; however, overexposure to ultraviolet (UV) radiation causes excessive cellular oxidative stress, which leads to skin damage, DNA damage, mutations, and skin cancer. This study investigated the protective effects of N-phenethyl caffeamide (K36) from UVA damage on human epidermal keratinocytes. We found that K36 reduced UVA-induced intracellular reactive oxygen species (ROS) production and induced the expression of the intrinsic antioxidant enzyme heme oxygenase-1 (HO-1) by increasing the translocation of nuclear factor erythroid 2⁻related factor 2 (Nrf2). K36 could inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) and reduce UVA-induced matrix metalloproteinase (MMP)-1 and MMP-2 overexpression; it could also elevate the expression of tissue inhibitors of metalloproteinases (TIMP). In addition, K36 ameliorated 8-hydroxy-2'-deoxyguanosine (8-OHdG) induced by UVA irradiation. Furthermore, K36 could downregulate the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) and the subsequent production of nitric oxide (NO) and prostaglandin E₂ (PGE₂). Based on our findings, K36 possessed potent antioxidant, anti-inflammatory, antiphotodamage, and even antiphotocarcinogenesis activities. Thus, K36 has the potential to be used to multifunctional skin care products and drugs.
Collapse
|
9
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|
10
|
Yang S, Zhou B, Xu W, Xue F, Nisar MF, Bian C, Huang X, Yang L, Zhang Y, Bartsch JW, Zhong JL. Nrf2- and Bach1 May Play a Role in the Modulation of Ultraviolet A-Induced Oxidative Stress by Acetyl-11-Keto-β-Boswellic Acid in Skin Keratinocytes. Skin Pharmacol Physiol 2017; 30:13-23. [PMID: 28142143 DOI: 10.1159/000452744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/15/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Exposure of human skin to solar ultraviolet A (UVA) irradiation causes severe oxidative stress with damage to various cellular components and concomitant inflammation and carcinogenesis. OBJECTIVE The aim of this study is to investigate the protective effect of acetyl-11-keto-β-boswellic acid (AKBA) against UVA radiation on human skin keratinocytes. METHODS HaCaT cells were pretreated with AKBA followed by UVA irradiation. Radiation effects on cell morphology, cell viability, intracellular reactive oxygen species (ROS) levels, and antioxidant enzymes were examined. RESULTS AKBA reduces UVA irradiation-induced cell viability loss, accompanied by a decreased production of UVA-induced ROS, decreased malondialdehyde, and increased superoxide dismutase expression. In addition, AKBA increased basal and UVA-induced levels of Nrf2 (NF-E2-related factor 2), the redox-sensitive factor, and its target genes NQO1 and heme oxygenase-1 (HO-1), whereas expression of the transcriptional repressor Bach1 (BTB and CNC homology 1) was reduced. Furthermore, the cytoprotective effects of AKBA against UVA-derived oxidative damage were accompanied by modulating expression of inflammatory mediators (i.e., cyclooxygenase-2 and nuclear factor-κB) and NOX1. CONCLUSIONS AKBA protects skin cells from UVA-induced damage by modulating inflammatory mediators and/or ROS production. Therefore, AKBA has potential in the development of skin care products.
Collapse
Affiliation(s)
- Shiying Yang
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gorman S, Black LJ, Feelisch M, Hart PH, Weller R. Can skin exposure to sunlight prevent liver inflammation? Nutrients 2015; 7:3219-39. [PMID: 25951129 PMCID: PMC4446748 DOI: 10.3390/nu7053219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
Liver inflammation contributes towards the pathology of non-alcoholic fatty liver disease (NAFLD). Here we discuss how skin exposure to sunlight may suppress liver inflammation and the severity of NAFLD. Following exposure to sunlight-derived ultraviolet radiation (UVR), the skin releases anti-inflammatory mediators such as vitamin D and nitric oxide. Animal modeling studies suggest that exposure to UVR can prevent the development of NAFLD. Association studies also support a negative link between circulating 25-hydroxyvitamin D and NAFLD incidence or severity. Clinical trials are in their infancy and are yet to demonstrate a clear beneficial effect of vitamin D supplementation. There are a number of potentially interdependent mechanisms whereby vitamin D could dampen liver inflammation, by inhibiting hepatocyte apoptosis and liver fibrosis, modulating the gut microbiome and through altered production and transport of bile acids. While there has been a focus on vitamin D, other mediators induced by sun exposure, such as nitric oxide may also play important roles in curtailing liver inflammation.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Western Australia 6008, Australia.
| | - Lucinda J Black
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Western Australia 6008, Australia.
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, 100 Roberts Rd, Subiaco, Western Australia 6008, Australia.
| | - Richard Weller
- University of Edinburgh, MRC Centre for Inflammation Research, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
12
|
Kühnl J, Roggenkamp D, Gehrke SA, Stäb F, Wenck H, Kolbe L, Neufang G. Licochalcone A activates Nrf2 in vitro and contributes to licorice extract-induced lowered cutaneous oxidative stress in vivo. Exp Dermatol 2014; 24:42-7. [PMID: 25381913 DOI: 10.1111/exd.12588] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2014] [Indexed: 01/11/2023]
Abstract
The retrochalcone licochalcone A (LicA) has previously been shown to possess antimicrobial and anti-inflammatory properties. In this study, we focused on pathways responsible for the antioxidative properties of LicA. In vitro, LicA protected from oxidative stress mediated by reactive oxygen species (ROS) by activating the expression of cytoprotective phase II enzymes. LicA induced nuclear translocation of NF-E2-related factor 2 (Nrf2) in primary human fibroblasts and elevated the expression of the cytoprotective and anti-inflammatory enzymes heme oxygenase 1 and glutamate-cysteine ligase modifier subunit. LicA-treated cells displayed a higher ratio of reduced to oxidized glutathione and decreased concentrations of ROS in UVA-irradiated human dermal fibroblasts, as well as in activated neutrophils. In vivo, ultraweak photon emission analysis of skin treated with LicA-rich licorice extract revealed a significantly lowered UVA-induced luminescence, indicative for a decrease in oxidative processes. We conclude from these data that topical application of licorice extract is a promising approach to induce Nrf2-dependent cytoprotection in human skin.
Collapse
Affiliation(s)
- Jochen Kühnl
- Beiersdorf AG, Research Skin Care, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Cadet J, Douki T, Ravanat JL. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol 2014; 91:140-55. [PMID: 25327445 DOI: 10.1111/php.12368] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
This review article focuses on a critical survey of the main available information on the UVB and UVA oxidative reactions to cellular DNA as the result of direct interactions of UV photons, photosensitized pathways and biochemical responses including inflammation and bystander effects. UVA radiation appears to be much more efficient than UVB in inducing oxidatively generated damage to the bases and 2-deoxyribose moieties of DNA in isolated cells and skin. The UVA-induced generation of 8-oxo-7,8-dihydroguanine is mostly rationalized in terms of selective guanine oxidation by singlet oxygen generated through type II photosensitization mechanism. In addition, hydroxyl radical whose formation may be accounted for by metal-catalyzed Haber-Weiss reactions subsequent to the initial generation of superoxide anion radical contributes in a minor way to the DNA degradation. This leads to the formation of both oxidized purine and pyrimidine bases together with DNA single-strand breaks at the exclusion, however, of direct double-strand breaks. No evidence has been provided so far for the implication of delayed oxidative degradation pathways of cellular DNA. In that respect putative characteristic UVA-induced DNA damage could include single and more complex lesions arising from one-electron oxidation of the guanine base together with aldehyde adducts to amino-substituted nucleobases.
Collapse
Affiliation(s)
- Jean Cadet
- University Grenoble Alpes, INAC, Grenoble, France; CEA, INAC, Grenoble, France; Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
14
|
Rezzani R, Rodella LF, Favero G, Damiani G, Paganelli C, Reiter RJ. Attenuation of ultraviolet A-induced alterations in NIH3T3 dermal fibroblasts by melatonin. Br J Dermatol 2014; 170:382-91. [PMID: 24024734 DOI: 10.1111/bjd.12622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Sun exposure is responsible for long-term clinical skin changes such as photoageing, photodamage and photocancers. Ultraviolet (UV)A wavelengths stimulate the production of reactive oxygen species (ROS) that may contribute to photoageing. To protect against oxidative stress, skin cells have developed several defence systems, including ROS and metal ion scavengers and a battery of detoxifying, haem-degrading and repair enzymes. Melatonin's antioxidant activity is the result of three different but complementary actions: (i) a direct action due to its ability to act as a free radical scavenger; (ii) an indirect action that is a consequence of melatonin's ability to reduce free radical generation (radical avoidance); and (iii) its ability to upregulate antioxidant enzymes. OBJECTIVES In this study, we focused our attention on the prevention of photodamage, choosing melatonin as an antioxidant agent. METHODS In the present study we analysed the effects of pretreatment of murine fibroblasts cells (NIH3T3) with melatonin (1 mmol L(-1) ) followed by UVA irradiation (15 J cm(-2) ). Thereafter, changes in components of the extracellular matrix and in some antioxidant enzymes (inducible and constitutive haem oxygenase) were evaluated. RESULTS We observed that UVA radiation caused altered expression of extracellular matrix proteins and induced the expression of inducible haem oxygenase. This increase was not sufficient to protect the cells from damage. Instead, melatonin pretreatment led to increased expression of haem-degrading enzymes and suppression of UVA-induced photodamage. CONCLUSIONS These results suggest that melatonin, as a modifier of the dermatoendocrine system, may have utility in reducing the effects of skin ageing.
Collapse
Affiliation(s)
- R Rezzani
- Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, Viale Europa 11, 25123, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Nisar MF, Parsons KSG, Bian CX, Zhong JL. UVA irradiation induced heme oxygenase-1: a novel phototherapy for morphea. Photochem Photobiol 2014; 91:210-20. [PMID: 25207998 DOI: 10.1111/php.12342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
Abstract
Long wave UVA radiation (340-400 nm) causes detrimental as well as beneficial effects on human skin. Studies of human skin fibroblasts irradiated with UVA demonstrate increased expression of both antifibrotic heme oxygenase-1 (HO-1) and matrix metalloproteinase 1 (MMP-1). The use of UVA-induced MMP-1 is well-studied in treating skin fibrotic conditions such as localized scleroderma, now called morphea. However, the role that UVA-induced HO-1 plays in phototherapy of morphea has not been characterized. In the present manuscript, we have illustrated and reviewed the biological function of HO-1 and the use of UVA1 wavebands (340-400 nm) for phototherapy; the potential use of HO-1 induction in UVA therapy of morphea is also discussed.
Collapse
Affiliation(s)
- Muhammad Farrukh Nisar
- The Base of "111 Project" for Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
16
|
Reichrath J, Reichrath S. The relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of non-melanoma skin cancer (NMSC): Present concepts and future perspectives. DERMATO-ENDOCRINOLOGY 2013; 5:38-50. [PMID: 24494041 PMCID: PMC3897597 DOI: 10.4161/derm.24156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022]
Abstract
Solar UV (UV)-B-radiation exerts both beneficial and adverse effects on human health. On the one hand, it is the most important environmental risk factor for the development of non-melanoma skin cancer [NMSC; most importantly basal (BCC) and squamous (SCC) cell carcinomas], that represent the most common malignancies in Caucasian populations. On the other hand, the human body's requirements of vitamin D are mainly achieved by UV-B-induced cutaneous photosynthesis. This dilemma represents a serious problem in many populations, for an association of vitamin D-deficiency and multiple independent diseases including various types of cancer has been convincingly demonstrated. In line with these findings, epidemiologic and laboratory investigations now indicate that vitamin D and its metabolites have a risk reducing effect for NMSC. Potential mechanisms of action include inhibition of the hedgehog signaling pathway (BCC) and modulation of p53-mediated DNA damage response (SCC). As a consequence of these new findings it can be concluded that UV-B-radiation exerts both beneficial and adverse effects on risk and prognosis of NMSC. It can be assumed that many independent factors, including frequency and dose of UV-B exposure, skin area exposed, and individual factors (such as skin type and genetic determinants of the skin`s vitamin D status and of signaling pathways that are involved in the tumorigenesis of NMSC) determine whether UV-B exposure promotes or inhibits tumorigenesis of NMSC. Moreover, these findings may help to explain many of the differential effects of UV-B radiation on risk of NMSC, including variation in the dose-dependent risk for development of SCC in situ (actinic keratosis, AK), invasive SCC, and BCC. In this review, we analyze the relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of NMSC and give an overview of present concepts and future perspectives.
Collapse
Affiliation(s)
- Jörg Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum des Saarlandes; Homburg/Saar, Germany
| | - Sandra Reichrath
- Klinik für Dermatologie, Venerologie und Allergologie; Universitätsklinikum des Saarlandes; Homburg/Saar, Germany
| |
Collapse
|
17
|
Lee J, Kim MH, Lee JH, Jung E, Yoo ES, Park D. Artemisinic acid is a regulator of adipocyte differentiation and C/EBP δ expression. J Cell Biochem 2012; 113:2488-99. [PMID: 22396222 DOI: 10.1002/jcb.24124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipocyte dysfunction is associated with the development of obesity. In this study, artemisinic acid, which was isolated from Artemisia annua L., inhibited adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAMSCs) and its mechanism of action was determined. The mRNA levels of peroxidase proliferation-activated receptor (PPAR) γ and CCAAT/enhancer binding protein (C/EBP) α, late adipogenic factors, were reduced by artemisinic acid. Moreover, the mRNA levels of the PPAR γ target genes lipoprotein lipase, CD36, adipocyte protein, and liver X receptor were down-regulated by artemisinic acid. Artemisinic acid reduced expression of the C/EBP δ gene without impacting C/EBP β. In addition, attempts to elucidate a possible mechanism underlying the artemisinic acid-mediated effects revealed that reduced expression of the C/EBP δ gene was mediated by inhibiting Jun N-terminal kinase (JNK). Additionally, artemisinic acid also reduced the expression of the adipogenesis-associated genes glucose transporter-4 and vascular endothelial growth factor. In addition to the interference of artemisinic acid with adipogenesis, artemisinic acid significantly attenuated tumor necrosis factor-α-induced secretion of interleukin-6 by undifferentiated hAMSCs, thus influencing insulin resistance and the inflammatory state characterizing obesity. Taken together, these findings indicate that inhibiting adipogenic differentiation of hAMSCs by artemisinic acid occurs primarily through reduced expression of C/EBP δ, which is mediated by the inhibition of JNK and suggest that aremisinic acid may be used as a complementary treatment option for obesity associated with metabolic syndrome.
Collapse
Affiliation(s)
- Jongsung Lee
- Department of Dermatological Health Management, Eul-Ji University, Seongnam City, Gyunggi Do, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Sgarbossa A, Dal Bosco M, Pressi G, Cuzzocrea S, Dal Toso R, Menegazzi M. Phenylpropanoid glycosides from plant cell cultures induce heme oxygenase 1 gene expression in a human keratinocyte cell line by affecting the balance of NRF2 and BACH1 transcription factors. Chem Biol Interact 2012; 199:87-95. [PMID: 22735309 DOI: 10.1016/j.cbi.2012.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/15/2012] [Accepted: 06/16/2012] [Indexed: 12/26/2022]
Abstract
Phenylpropanoids have several highly significant biological properties in both plants and animals. Four phenylpropanoid glycosides (PPGs), verbascoside (VB), forsythoside B (FB), echinacoside (EC) and campneoside I (CP), were purified and tested for their capability to activate NRF2 and induce phase II cytoprotective enzymes in a human keratinocyte cell line (HaCaT). All four substances showed similar strong antioxidant and radical-scavenging activities as determined by diphenylpicrylhydrazyl assay. Furthermore, in HaCaT cells, FB and EC are strong activators of NRF2, the nuclear transcription factor regulating many phase II detoxifying and cytoprotective enzymes, such as heme oxygenase 1 (HMOX1). In HaCaT cells, FB and EC (200 μM) induced nuclear translocation of NRF2 protein after 24 h and reduced nuclear protein levels of BACH1, a repressor of the antioxidant response element. FB and EC greatly HMOX1 mRNA levels by more than 40-fold in 72 h. Cytoplasmic HMOX1 protein levels were also increased at 48 h after treatment. VB was less active compared to FB and EC, and CP was slightly active only at later times of treatment. We suggest that hydroxytyrosol (HYD) could be a potential bioactive metabolite of PPGs since HYD, in equimolar amounts to PGGs, is able to both activate HO-1 transcription and modify Nrf2/Bach1 nuclear protein levels. This is in agreement with the poor activity of CP, which contains a HYD moiety modified by an O-methyl group. In conclusion, FB and EC from plant cell cultures may provide long-lasting skin protection by induction of phase II cytoprotective capabilities.
Collapse
Affiliation(s)
- Anna Sgarbossa
- Dipartimento di Scienze della Vita e della Riproduzione, Sezione di Chimica Biologica, Università di Verona, Strada Le Grazie 8, 37124 Verona, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Xiang Y, Liu G, Yang L, Zhong JL. UVA-induced protection of skin through the induction of heme oxygenase-1. Biosci Trends 2012; 5:239-44. [PMID: 22281537 DOI: 10.5582/bst.2011.v5.6.239] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UVA (320-400 nm) and UVB (290-320 nm) are the major components of solar UV irradiation, which is associated with various pathological conditions. UVB causes direct damage to DNA of epidermal cells and is mainly responsible for erythema, immunosuppression, photoaging, and skin cancer. UVA has oxidizing properties that can cause damage or enhance UVB damaging effects on skin. On the other hand, UVA can also lead to high levels of heme oxygenase-1 (HO-1) expression of cells that can provide an antioxidant effect on skin as well as anti-inflammatory properties in mammals and rodents. Therefore, this review focuses on the potential protection of UVA wavebands for the skin immune response, instead of mechanisms that underlie UVA-induced damage. Also, the role of HO-1 in UVA-mediated protection against UVB-induced immunosuppression in skin will be summarized. Thus, this review facilitates further understanding of potential beneficial mechanisms of UVA irradiation, and using the longer UVA (UVA1, 340-400 nm) in combination with HO-1 for phototherapy and skin protection against sunlight exposure.
Collapse
Affiliation(s)
- Yuancai Xiang
- The "111 Project" Laboratory of Biomechanics & Tissue Repair Engineering, Ministry of Education, College of Bioengineering, Chongqing University, China
| | | | | | | |
Collapse
|
20
|
Karbaschi M, Brady NJ, Evans MD, Cooke MS. Immuno-slot blot assay for detection of UVR-mediated DNA damage. Methods Mol Biol 2012; 920:163-175. [PMID: 22941603 DOI: 10.1007/978-1-61779-998-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solar ultraviolet radiation (UVR), through the formation of DNA photolesions, is the primary cause of most skin cancers. A better understanding of the mechanisms of UVR-induced DNA damage may help prevent skin cancer and this may be achieved using methods to quantify DNA damage. The immuno-slot blot (ISB) method is routinely used for detection and quantification of any heat- and alkali-stable DNA adducts for which a sufficiently specific monoclonal antibody is available. The main steps in ISB are fragmentation and denaturation of the DNA, immobilization of DNA to a nitrocellulose filter, incubation with primary antibody against a specific DNA adduct, incubation with an enzyme-linked secondary antibody and finally chemiluminescence detection and quantification of the DNA adducts.
Collapse
Affiliation(s)
- Mahsa Karbaschi
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, UK.
| | | | | | | |
Collapse
|
21
|
Aroun A, Zhong JL, Tyrrell RM, Pourzand C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem Photobiol Sci 2012; 11:118-34. [DOI: 10.1039/c1pp05204g] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Cho JL, Allanson M, Reeve VE. Hypoxia inducible factor-1α contributes to UV radiation-induced inflammation, epidermal hyperplasia and immunosuppression in mice. Photochem Photobiol Sci 2011; 11:309-17. [PMID: 22048469 DOI: 10.1039/c1pp05265a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia inducible factor-1α (HIF-1α), a ubiquitous inducible oxygen-sensing transcription factor, promotes cell survival under hypoxic conditions, including the early pre-angiogenic period of tumorigenesis, and is known to contribute to many malignancies. However HIF-1α can also be activated by inflammatory mediators, and can activate inflammation-modulating proteins itself, including heme oxygenase-1 (HO-1) and the cytokine IL-6. Recently HIF-1α was reported to be induced by UVB (290-320 nm) radiation in cultured human keratinocytes, acting as a stress protein associated with the release of reactive oxygen species. In this in vivo murine study we demonstrate that HIF-1α protein is an early responder to UV radiation in the skin, and its activation can be attenuated by treating mice with its post-translational inhibitor, YC-1. Treatment with YC-1 following UV-irradiation of mice has revealed the involvement of HIF-1α in UV-induced inflammation, IL-6 production, and epidermal hyperplasia. In addition, upregulated cutaneous HIF-1α was found to be an important factor in the UV-suppression of T cell-mediated immunity, measured by contact hypersensitivity (CHS). The mechanism remains unclear, however it did not appear to involve the immunosuppressive cutaneous photoproduct cis-urocanic acid, but HIF-1α induction was inhibited by irradiation with photoimmune protective UVA (320-400 nm), implicating a negative correlation between the two stress proteins, HIF-1α and the photoimmune protective UVA responder HO-1.
Collapse
Affiliation(s)
- Jun-Lae Cho
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
| | | | | |
Collapse
|
23
|
Reeve VE, Allanson M, Domanski D, Painter N. Gender differences in UV-induced inflammation and immunosuppression in mice reveal male unresponsiveness to UVA radiation. Photochem Photobiol Sci 2011; 11:173-9. [PMID: 21968628 DOI: 10.1039/c1pp05224a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Immunosuppression attributed mainly to the UVB (290-320 nm) waveband is a prerequisite for skin cancer development in mice and humans. The contribution of UVA (320-400 nm) is controversial, but in mice UVA irradiation has been found to antagonise immunosuppression by UVB. In other studies of photoimmune regulation, protection mediated via oestrogen receptor-β signalling was identified as a normal endogenous defence in mice, and was shown to depend on UVA irradiation. A gender bias in photoimmune responsiveness was thus suggested, and is tested in this study by comparing the UV-induced inflammatory and immune responses in male and female hairless mice. We report that male mice, which show greater skin thickness than females, developed a less intense but slower resolving sunburn inflammatory oedema, correlated with reduced epidermal expression of pro-inflammatory IL-6 than females following solar simulated UV (SSUV, 290-400 nm) exposure. On the other hand, the contact hypersensitivity reaction (CHS) was more severely suppressed by SSUV in males, correlated with increased epidermal expression of immunosuppressive IL-10. Exposure to the UVB waveband alone, or to cis-urocanic acid, suppressed CHS equally in males and females. However, whereas UVA irradiation induced immunoprotection against either UVB or cis-urocanic acid in females, this protection was significantly reduced or abrogated in males. The results indicate that males are compromised by a relative unresponsiveness to the photoimmune protective effects of UVA, alone or as a component of SSUV. This could explain the known gender bias in skin cancer development in both mice and humans.
Collapse
Affiliation(s)
- Vivienne E Reeve
- Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
24
|
Lee J, Lee J, Jung E, Kim YS, Roh K, Jung KH, Park D. Ultraviolet A regulates adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via up-regulation of Kruppel-like factor 2. J Biol Chem 2010; 285:32647-56. [PMID: 20693579 DOI: 10.1074/jbc.m110.135830] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipocyte dysfunction is strongly associated with the development of obesity, which is a major risk factor for many disorders, including diabetes, hypertension, and heart disease. This study shows that ultraviolet A (UVA) inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells and its action mechanisms. The mRNA levels of peroxidase proliferator-activated receptor (PPAR) γ and CCAAT/enhancer-binding protein α (C/EBPα), but not CCAAT/enhancer-binding protein ((C/EBP) β and δ, were reduced by UVA. Moreover, the mRNA levels of PPAR γ target genes (lipoprotein lipase (LPL), CD36, adipocyte protein (aP2), and liver X receptor α (LXR)) were down-regulated by UVA. Additionally, attempts to elucidate a possible mechanism underlying the UVA-mediated effects revealed that UVA induced migration inhibitory factor (MIF) gene expression, and this was mediated through activation of AP-1 (especially JNK and p42/44 MAPK) and nuclear factor-κB. In addition, reduced adipogenesis by UVA was recovered upon the treatment with anti-MIF antibodies. AMP-activated protein kinase phosphorylation and up-regulation of Kruppel-like factor 2 (KLF2) were induced by UVA. Taken together, these findings suggest that the inhibition of adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by UVA occurs primarily through the reduced expression of PPAR γ, which is mediated by up-regulation of KLF2 via the activation of MIF-AMP-activated protein kinase signaling.
Collapse
Affiliation(s)
- Jongsung Lee
- Biospectrum Life Science Institute, Seongnam-Si, Gyunggi-Do 462-807, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Gorman S, McGlade JP, Lambert MJM, Strickland DH, Thomas JA, Hart PH. UV exposure and protection against allergic airways disease. Photochem Photobiol Sci 2010; 9:571-7. [PMID: 20354653 DOI: 10.1039/b9pp00136k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asthma is a chronic inflammatory disease of the small and large conducting airway mucosa characterised by Th2 cell immunity. Allergen-specific IgE levels control the immediate response whilst the interplay between airway mucosal antigen presenting cells, Th2 effector cells and CD4+CD25+ regulatory T cells control the late phase, cell-mediated response. Using two experimental systems in mice with ovalbumin and papain, respectively, as the allergens, UV irradiation of skin prior to allergen sensitisation reduced the expression of allergic airways disease, particularly the late phase response. In this review, the reduced Th2-driven, asthma-like responses in respiratory tissues of UV-irradiated mice are detailed. Possible mechanisms of UV regulation are debated. The potential beneficial effects of UV irradiation of skin in controlling allergic airways disease are discussed. This review gives some scientific understanding to century-old anecdotal reports that beach and mountain resort holidays associated with increased UV exposure are beneficial in asthma treatment.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, PO Box 855, West Perth, Western Australia, Australia 6872
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Numata I, Okuyama R, Memezawa A, Ito Y, Takeda K, Furuyama K, Shibahara S, Aiba S. Functional Expression of Heme Oxygenase-1 in Human Differentiated Epidermis and Its Regulation by Cytokines. J Invest Dermatol 2009; 129:2594-603. [DOI: 10.1038/jid.2009.119] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Cooke MS, Duarte TL, Cooper D, Chen J, Nandagopal S, Evans MD. Combination of azathioprine and UVA irradiation is a major source of cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine. DNA Repair (Amst) 2008; 7:1982-9. [DOI: 10.1016/j.dnarep.2008.08.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 01/29/2023]
|
29
|
Calabrese V, Calafato S, Puleo E, Cornelius C, Sapienza M, Morganti P, Mancuso C. Redox regulation of cellular stress response by ferulic acid ethyl ester in human dermal fibroblasts: role of vitagenes. Clin Dermatol 2008; 26:358-63. [PMID: 18691515 DOI: 10.1016/j.clindermatol.2008.01.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Skin is one of the main targets for reactive oxygen species; thus, reactive oxygen species-induced damage and protein and lipid modifications occur, and skin can undergo a wide array of diseases, from photosensitivity to cancer. In this study, human dermal fibroblasts exposed to hydrogen peroxide (0-1000 micromol/L) exhibited a marked increase in both protein carbonyls and 4-hydroxy-2-nonenal, which are indices of protein and lipid oxidation, respectively. An amount of 25 micromol/L ferulic acid ethyl ester, a well-known nutritional antioxidant, significantly counteracted both protein and lipid oxidation and reduced the loss in cell viability elicited by 500 micromol/L of hydrogen peroxide. A common way for cells to react to oxidative stress is up-regulation of vitagenes. To the vitagene family belong the heat shock proteins heme oxygenase-1 and heat shock protein-70, which are involved in the cellular defense against oxidative stress by different mechanisms. The administration of 25 micromol/L ferulic acid ethyl ester significantly decreased hydrogen peroxide-induced protein and lipid oxidation. Dermal fibroblasts exposed to 25 micromol/L ferulic acid ethyl ester in the presence of 500 micromol/L hydrogen peroxide showed an increased level of both heme oxygenase-1 and heat shock protein-70 compared with dermal fibroblasts treated with hydrogen peroxide alone. These findings provide evidence for the protective role of vitagenes in free radical-induced skin damage and highlight the potential protective use of nutritional antioxidants, such as ferulic acid and its derivatives.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Chemistry, Biochemistry and Molecular Biology Section, Faculty of Medicine, University of Catania, 95100 Catania, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Ceramide and raft signaling are linked with each other in UVA radiation-induced gene expression. Oncogene 2008; 27:4768-78. [DOI: 10.1038/onc.2008.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Genotoxicity of visible light (400–800nm) and photoprotection assessment of ectoin, l-ergothioneine and mannitol and four sunscreens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 91:24-34. [DOI: 10.1016/j.jphotobiol.2008.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/30/2007] [Accepted: 01/22/2008] [Indexed: 11/22/2022]
|
32
|
Cho JL, Allanson M, Domanski D, Arun SJ, Reeve VE. Estrogen receptor-beta signaling protects epidermal cytokine expression and immune function from UVB-induced impairment in mice. Photochem Photobiol Sci 2008; 7:120-5. [DOI: 10.1039/b709856a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Cooke MS, Osborne JE, Singh R, Mistry V, Farmer PB, Evans MD, Hutchinson PE. Evidence that oxidative stress is a risk factor for the development of squamous cell carcinoma in renal transplant patients. Free Radic Biol Med 2007; 43:1328-34. [PMID: 17893046 DOI: 10.1016/j.freeradbiomed.2007.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 02/02/2023]
Abstract
Renal transplant patients are at a greatly increased risk of skin malignancy, particularly squamous cell carcinoma (SCC), a tumor closely associated with UV exposure. There is also significant interindividual skin cancer risk among transplant patients, with evidence suggesting that this derives from variation in response to oxidative stress. Our aim was to assess urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), by liquid chromatography-tandem mass spectrometry, in renal transplant patients with and without SCC. The relationships between SCC and urinary 8-oxodG were analyzed by conditional logistic regression and those between 8-oxodG and other candidate variables by linear regression, correcting for the effect of SCC. In SCC patients, urinary 8-oxodG was significantly elevated (p=0.03), both pre- and post-tumor development, compared to non-SCC transplant patients. Secondary analyses indicated that 8-oxodG was related to current heavy smoking (p=0.02) and darker skin type (p=0.02), but not measures of previous chronic sun exposure or current age and gender. Although subject numbers were limited, immunosuppression with azathioprine was positively associated with 8-oxodG in all patients combined (p=0.02). These results demonstrate, for the first time, that a subpopulation of renal transplant patients is under greater oxidative burden, and it is this population that is particularly predisposed to skin cancer.
Collapse
Affiliation(s)
- Marcus S Cooke
- Radiation and Oxidative Stress Group, Department of Cancer Studies and Molecular Medicine, Leicester LE2 7LX, UK.
| | | | | | | | | | | | | |
Collapse
|
34
|
Allanson M, Reeve VE. Carbon monoxide signalling reduces photocarcinogenesis in the hairless mouse. Cancer Immunol Immunother 2007; 56:1807-15. [PMID: 17440721 PMCID: PMC11030853 DOI: 10.1007/s00262-007-0324-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 03/23/2007] [Indexed: 11/29/2022]
Abstract
Exposure of the skin of mice to UVA (320-400 nm) radiation has been shown to provide protection against the immunosuppressive effects of UVB (290-320 nm) radiation. The UVA protection was mediated via the UVA induction of the stress protein heme oxygenase-1, and its enzymatic product carbon monoxide (CO). Because UVB-induced immunosuppression is an accompanying and prerequisite feature of the promotion phase of photocarcinogenesis, the potential for immunoprotective CO to act as an anti-skin cancer agent was tested in this study. Groups of female albino Skh:hr-1 hairless mice were irradiated chronically with daily minimally erythemogenic doses of solar simulated UV radiation (SSUV) during a 10 week-period to induce photocarcinogenesis. The effect of repeated topical application of lotions containing a CO-releasing molecule (CORM-2; tricarbonyldichlororuthenium (II) dimer) at 250 or 500 microM, that had previously been shown in short-term experiments to provide photoimmune protection in mice, was measured. Tumor development was monitored for 29 weeks. Topical CORM-2 treatment was observed to reduce the acute and chronic inflammatory erythema reaction compared with control irradiated mice that did not receive CORM-2 lotions, and to reduce the chronic epidermal hyperplasia accompanying tumor outgrowth. The CORM-2 treatments provided a significant moderate inhibition of early tumor appearance dose-dependently, significantly reduced the average tumor multiplicity, increased the regression of established tumors dose-dependently, and inhibited the formation of large locally invasive tumors. The CORM-2 treatments also reduced the expression of immunosuppressive IL-10 in the uninvolved epidermis and dermis of tumor-bearing mice, and enhanced immunopotentiating epidermal IL-12 expression. Therefore CO signalling was revealed to have previously unrecognized anti-carcinogenic functions in the skin, consistent with a protective modulation of the epidermal cytokines. This is a novel observation that also implies that the UVA waveband that produces CO physiologically in exposed skin, might likewise be found to have an anti-photocarcinogenic action.
Collapse
Affiliation(s)
- Munif Allanson
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
| | - Vivienne E. Reeve
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006 Australia
| |
Collapse
|
35
|
Miyamura Y, Coelho SG, Wolber R, Miller SA, Wakamatsu K, Zmudzka BZ, Ito S, Smuda C, Passeron T, Choi W, Batzer J, Yamaguchi Y, Beer JZ, Hearing VJ. Regulation of human skin pigmentation and responses to ultraviolet radiation. ACTA ACUST UNITED AC 2007; 20:2-13. [PMID: 17250543 DOI: 10.1111/j.1600-0749.2006.00358.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pigmentation of human skin is closely involved in protection against environmental stresses, in particular exposure to ultraviolet (UV) radiation. It is well known that darker skin is significantly more resistant to the damaging effects of UV, such as photocarcinogenesis and photoaging, than is lighter skin. Constitutive skin pigmentation depends on the amount of melanin and its distribution in that tissue. Melanin is significantly photoprotective and epidermal cells in darker skin incur less DNA damage than do those in lighter skin. This review summarizes current understanding of the regulation of constitutive human skin pigmentation and responses to UV radiation, with emphasis on physiological factors that influence those processes. Further research is needed to characterize the role of skin pigmentation to reduce photocarcinogenesis and to develop effective strategies to minimize such risks.
Collapse
Affiliation(s)
- Yoshinori Miyamura
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Weihkopf T, Becker N, Nieters A, Mester B, Deeg E, Elsner G, Blettner M, Seidler A. Sun exposure and malignant lymphoma: A population-based case–control study in Germany. Int J Cancer 2007; 120:2445-51. [PMID: 17311289 DOI: 10.1002/ijc.22492] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although some causes for malignant lymphoma are known their etiology is not well understood so far. We analyze the relationship between sun exposure and malignant lymphoma in a multicenter, population-based case-control study. Patients with malignant lymphoma (n = 710, 18-80 years) were prospectively recruited in 6 study regions in Germany. For each case, a gender, region and age-matched control was drawn from population-registers. In personal interviews, lifetime holidays spent in sunny climate, outdoor leisure activities and sunbed or sunlamp use were recorded. On basis of job task-specific supplementary questionnaires, an occupational physician assessed the cumulative working time outside. Odds ratios (OR) and 95%-confidence-intervals (CI) were calculated using conditional logistic regression analysis, adjusted for smoking and alcohol consumption. To increase statistical power, patients with specific lymphoma subentities were additionally compared with the entire control group using unconditional logistic regression. We observed a reduced overall lymphoma risk among subjects having spent vacations at sunny climates or frequently used sunbeds or sunlamps. The analysis of lymphoma subentities revealed similar results with the exception of T-NHL and follicular lymphoma which were positively associated with outdoor leisure activities. While cumulative working time outside appeared unrelated to NHL overall and most subentities, it was negatively associated with follicular lymphoma and weakly positively to HL. This data suggest that exposure to natural and artificial ultraviolet radiation may reduce the OR for lymphoma in this study population.
Collapse
Affiliation(s)
- Thomas Weihkopf
- Institute of Medical Biostatistics, Epidemiology and Informatics, Johannes-Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|