1
|
Wei N. Sex differences in cardiac dynamics during myocardial ischemia using a single cell approach. Sci Rep 2025; 15:9153. [PMID: 40097687 PMCID: PMC11914424 DOI: 10.1038/s41598-025-94055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
Myocardial ischemia, arising from severe blockages in coronary arteries, poses a significant global health risk due to its potential to cause arrhythmia and heart failure, often leading to sudden cardiac death. During acute myocardial ischemia, profound changes occur in cardiac electrophysiology and anatomy, influencing action potential morphology and propagation, which increased susceptibility to arrhythmias. Sex differences play a critical role in myocardial ischemia and arrhythmogenesis. Females exhibit distinct genetic and hormonal influences on ion channel expression and cardiac function, affecting susceptibility to arrhythmias like Torsade de Pointes. Using the O'Hara-Rudy dynamic (ORd) model, this study shows that females are more likely than males to exhibit cardiac alternans (2:2), a periodic variation in action potential duration between consecutive heartbeats, as well as 2:1 arrhythmic behaviors-characterized by inexcitability in the even beats-under ischemic conditions. Additionally, hormones further exacerbate these gender differences. Moreover, females show a higher propensity than males to terminate 2:2 and 2:1 arrhythmic responses during ischemia treatment. This manuscript aims to uncover sex-specific disparities in electrophysiological responses and drug reactions during myocardial ischemia using the optimized ORd model. These findings underscore the importance of considering sex-specific factors in cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Ning Wei
- Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Zhou X, Wang ZJ, Camps J, Tomek J, Santiago A, Quintanas A, Vazquez M, Vaseghi M, Rodriguez B. Clinical phenotypes in acute and chronic infarction explained through human ventricular electromechanical modelling and simulations. eLife 2024; 13:RP93002. [PMID: 39711335 DOI: 10.7554/elife.93002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Zhinuo Jenny Wang
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Julia Camps
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alfonso Santiago
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Adria Quintanas
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
| | - Mariano Vazquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, United States
- Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Martinez-Navarro H, Bertrand A, Doste R, Smith H, Tomek J, Ristagno G, Oliveira RS, Weber dos Santos R, Pandit SV, Rodriguez B. ECG analysis of ventricular fibrillation dynamics reflects ischaemic progression subject to variability in patient anatomy and electrode location. Front Cardiovasc Med 2024; 11:1408822. [PMID: 39664764 PMCID: PMC11631900 DOI: 10.3389/fcvm.2024.1408822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/04/2024] [Indexed: 12/13/2024] Open
Abstract
Background Ventricular fibrillation (VF) is the deadliest arrhythmia, often caused by myocardial ischaemia. VF patients require urgent intervention planned quickly and non-invasively. However, the accuracy with which electrocardiographic (ECG) markers reflect the underlying arrhythmic substrate is unknown. Methods We analysed how ECG metrics reflect the fibrillatory dynamics of electrical excitation and ischaemic substrate. For this, we developed a human-based computational modelling and simulation framework for the quantification of ECG metrics, namely, frequency, slope, and amplitude spectrum area (AMSA) during VF in acute ischaemia for several electrode configurations. Simulations reproduced experimental and clinical findings in 21 scenarios presenting variability in the location and transmural extent of regional ischaemia, and severity of ischaemia in the remote myocardium secondary to VF. Results Regional acute myocardial ischaemia facilitated re-entries, potentially breaking up into VF. Ischaemia in the remote myocardium modulated fibrillation dynamics. Cases presenting a mildly ischaemic remote myocardium yielded sustained VF, enabled by the high proliferation of phase singularities (PS, 11-22) causing remarkably disorganised activation patterns. Conversely, global acute ischaemia induced stable rotors (3-12 PS). Changes in frequency and morphology of the ECG during VF reproduced clinical findings but did not show a direct correlation with the underlying wave dynamics. AMSA allowed the precise stratification of VF according to ischaemic severity in the remote myocardium (healthy: 23.62-24.45 mV Hz; mild ischaemia: 10.58-21.47 mV Hz; moderate ischaemia: 4.82-11.12 mV Hz). Within the context of clinical reference values, apex-anterior and apex-posterior electrode configurations were the most discriminatory in stratifying VF based on the underlying ischaemic substrate. Conclusion This in silico study provides further insights into non-invasive patient-specific strategies for assessing acute ventricular arrhythmias. The use of reliable ECG markers to characterise VF is critical for developing tailored resuscitation strategies.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Ambre Bertrand
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Ruben Doste
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Hannah Smith
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Jakub Tomek
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Ristagno
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano Statale, Milano, Italy
| | - Rafael S. Oliveira
- Computer Science Department, Universidade Federal de São João del Rei, São João del Rei, Brazil
| | - Rodrigo Weber dos Santos
- Departamento de Ciência da Computação, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Sandeep V. Pandit
- Scientific Affairs, ZOLL Medical Corporation, Chelmsford, MA, United States
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Coleman JA, Doste R, Ashkir Z, Coppini R, Sachetto R, Watkins H, Raman B, Bueno-Orovio A. Mechanisms of ischaemia-induced arrhythmias in hypertrophic cardiomyopathy: a large-scale computational study. Cardiovasc Res 2024; 120:914-926. [PMID: 38646743 PMCID: PMC11218689 DOI: 10.1093/cvr/cvae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/31/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
AIMS Lethal arrhythmias in hypertrophic cardiomyopathy (HCM) are widely attributed to myocardial ischaemia and fibrosis. How these factors modulate arrhythmic risk remains largely unknown, especially as invasive mapping protocols are not routinely used in these patients. By leveraging multiscale digital twin technologies, we aim to investigate ischaemic mechanisms of increased arrhythmic risk in HCM. METHODS AND RESULTS Computational models of human HCM cardiomyocytes, tissue, and ventricles were used to simulate outcomes of Phase 1A acute myocardial ischaemia. Cellular response predictions were validated with patch-clamp studies of human HCM cardiomyocytes (n = 12 cells, N = 5 patients). Ventricular simulations were informed by typical distributions of subendocardial/transmural ischaemia as analysed in perfusion scans (N = 28 patients). S1-S2 pacing protocols were used to quantify arrhythmic risk for scenarios in which regions of septal obstructive hypertrophy were affected by (i) ischaemia, (ii) ischaemia and impaired repolarization, and (iii) ischaemia, impaired repolarization, and diffuse fibrosis. HCM cardiomyocytes exhibited enhanced action potential and abnormal effective refractory period shortening to ischaemic insults. Analysis of ∼75 000 re-entry induction cases revealed that the abnormal HCM cellular response enabled establishment of arrhythmia at milder ischaemia than otherwise possible in healthy myocardium, due to larger refractoriness gradients that promoted conduction block. Arrhythmias were more easily sustained in transmural than subendocardial ischaemia. Mechanisms of ischaemia-fibrosis interaction were strongly electrophysiology dependent. Fibrosis enabled asymmetric re-entry patterns and break-up into sustained ventricular tachycardia. CONCLUSION HCM ventricles exhibited an increased risk to non-sustained and sustained re-entry, largely dominated by an impaired cellular response and deleterious interactions with the diffuse fibrotic substrate.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Zakariye Ashkir
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Raffaele Coppini
- Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Rafael Sachetto
- Department of Computer Science, Federal University of São João del-Rei, São João del-Rei, Minas Gerais, Brazil
| | - Hugh Watkins
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
5
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Zhang Y, Zhang Z, Qu Z. Curvature-mediated source and sink effects on the genesis of premature ventricular complexes in long QT syndrome. Am J Physiol Heart Circ Physiol 2024; 326:H1350-H1365. [PMID: 38551483 PMCID: PMC11380949 DOI: 10.1152/ajpheart.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
Premature ventricular complexes (PVCs) are spontaneous excitations occurring in the ventricles of the heart that are associated with ventricular arrhythmias and sudden cardiac death. Under long QT conditions, PVCs can be mediated by repolarization gradient (RG) and early afterdepolarizations (EADs), yet the effects of heterogeneities or geometry of the RG or EAD regions on PVC genesis remain incompletely understood. In this study, we use computer simulation to systematically investigate the effects of the curvature of the RG border region on PVC genesis under long QT conditions. We show that PVCs can be either promoted or suppressed by negative or positive RG border curvature depending on the source and sink conditions. When the origin of oscillation is in the source region and the source is too strong, a positive RG border curvature can promote PVCs by causing the source area to oscillate. When the origin of oscillation is in the sink region, a negative RG border curvature can promote PVCs by causing the sink area to oscillate. Furthermore, EAD-mediated PVCs are also promoted by negative border curvature. We also investigate the effects of wavefront curvature and show that PVCs are promoted by convex but suppressed by concave wavefronts; however, the effect of wavefront curvature is much smaller than that of RG border curvature. In conclusion, besides the increase of RG and occurrence of EADs caused by QT prolongation, the geometry of the RG border plays important roles in PVC genesis, which can greatly increase the risk of arrhythmias in cardiac diseases.NEW & NOTEWORTHY The effects of the curvature or geometry of the repolarization gradient region and wavefront curvature on the genesis of premature ventricular complexes are systematically investigated using computer modeling and simulation. Premature ventricular complexes can be promoted by either positive or negative curvature of the gradient region depending on the source and sink conditions. The underlying mechanisms of the curvature effects are revealed, which provides mechanistic insights into arrhythmogenesis in cardiac diseases.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, People's Republic of China
| | - Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, People's Republic of China
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
7
|
Coleman JA, Doste R, Beltrami M, Coppini R, Olivotto I, Raman B, Bueno-Orovio A. Electrophysiological mechanisms underlying T wave pseudonormalisation on stress ECGs in hypertrophic cardiomyopathy. Comput Biol Med 2024; 169:107829. [PMID: 38096763 DOI: 10.1016/j.compbiomed.2023.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Pseudonormal T waves may be detected on stress electrocardiograms (ECGs) in hypertrophic cardiomyopathy (HCM). Either myocardial ischaemia or purely exercise-induced changes have been hypothesised to contribute to this phenomenon, but the precise electrophysiological mechanisms remain unknown. METHODS Computational models of human HCM ventricles (n = 20) with apical and asymmetric septal hypertrophy phenotypes with variable severities of repolarisation impairment were used to investigate the effects of acute myocardial ischaemia on ECGs with T wave inversions at baseline. Virtual 12-lead ECGs were derived from a total of 520 biventricular simulations, for cases with regionally ischaemic K+ accumulation in hypertrophied segments, global exercise-induced serum K+ increases, and/or increased pacing frequency, to analyse effects on ECG biomarkers including ST segments, T wave amplitudes, and QT intervals. RESULTS Regional ischaemic K+ accumulation had a greater impact on T wave pseudonormalisation than exercise-induced serum K+ increases, due to larger reductions in repolarisation gradients. Increases in serum K+ and pacing rate partially corrected T waves in some anatomical and electrophysiological phenotypes. T wave morphology was more sensitive than ST segment elevation to regional K+ increases, suggesting that T wave pseudonormalisation may sometimes be an early, or the only, ECG feature of myocardial ischaemia in HCM. CONCLUSIONS Ischaemia-induced T wave pseudonormalisation can occur on stress ECG testing in HCM before significant ST segment changes. Some anatomical and electrophysiological phenotypes may enable T wave pseudonormalisation due to exercise-induced increased serum K+ and pacing rate. Consideration of dynamic T wave abnormalities could improve the detection of myocardial ischaemia in HCM.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ruben Doste
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Matteo Beltrami
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | - Raffaele Coppini
- Department of NeuroFarBa, University of Florence, Florence, Italy
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy; Meyer Children's Hospital IRCCS, Florence, Italy
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Strocchi M, Rodero C, Roney CH, Mendonca Costa C, Plank G, Lamata P, Niederer SA. A Semi-automatic Pipeline for Generation of Large Cohorts of Four-Chamber Heart Meshes. Methods Mol Biol 2024; 2735:117-127. [PMID: 38038846 DOI: 10.1007/978-1-0716-3527-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Computational models for cardiac electro-mechanics have been increasingly used to further understand heart function. Small cohort and single patient computational studies provide useful insight into cardiac pathophysiology and response to therapy. However, these smaller studies have limited capability to capture the high level of anatomical variability seen in cardiology patients. Larger cohort studies are, on the other hand, more representative of the study population, but building several patient-specific anatomical meshes can be time-consuming and requires access to larger datasets of imaging data, image processing software to label anatomical structures and tools to create high fidelity anatomical meshes. Limited access to these tools and data might limit advances in this area of research. In this chapter, we present our semi-automatic pipeline to build patient-specific four-chamber heart meshes from CT imaging datasets, including ventricular myofibers and a set of universal ventricular and atrial coordinates. This pipeline was applied to CT images from both heart failure patients and healthy controls to generate cohorts of tetrahedral meshes suitable for electro-mechanics simulations. Both cohorts were made publicly available in order to promote computational studies employing large virtual cohorts.
Collapse
Affiliation(s)
- Marina Strocchi
- Department of Biomedical Engineering, King's College London, London, UK
| | - Cristobal Rodero
- Department of Biomedical Engineering, King's College London, London, UK
| | - Caroline H Roney
- Department of Biomedical Engineering, King's College London, London, UK
| | | | | | - Pablo Lamata
- Department of Biomedical Engineering, King's College London, London, UK
| | - Steven A Niederer
- Department of Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
9
|
Xiong LI, Garfinkel A. Are physiological oscillations physiological? J Physiol 2023. [PMID: 37622389 DOI: 10.1113/jp285015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Despite widespread and striking examples of physiological oscillations, their functional role is often unclear. Even glycolysis, the paradigm example of oscillatory biochemistry, has seen questions about its oscillatory function. Here, we take a systems approach to argue that oscillations play critical physiological roles, such as enabling systems to avoid desensitization, to avoid chronically high and therefore toxic levels of chemicals, and to become more resistant to noise. Oscillation also enables complex physiological systems to reconcile incompatible conditions such as oxidation and reduction, by cycling between them, and to synchronize the oscillations of many small units into one large effect. In pancreatic β-cells, glycolytic oscillations synchronize with calcium and mitochondrial oscillations to drive pulsatile insulin release, critical for liver regulation of glucose. In addition, oscillation can keep biological time, essential for embryonic development in promoting cell diversity and pattern formation. The functional importance of oscillatory processes requires a re-thinking of the traditional doctrine of homeostasis, holding that physiological quantities are maintained at constant equilibrium values, a view that has largely failed in the clinic. A more dynamic approach will initiate a paradigm shift in our view of health and disease. A deeper look into the mechanisms that create, sustain and abolish oscillatory processes requires the language of nonlinear dynamics, well beyond the linearization techniques of equilibrium control theory. Nonlinear dynamics enables us to identify oscillatory ('pacemaking') mechanisms at the cellular, tissue and system levels.
Collapse
Affiliation(s)
- Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Alan Garfinkel
- Departments of Medicine (Cardiology) and Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Ochs AR, Boyle PM. Optogenetic Modulation of Arrhythmia Triggers: Proof-of-Concept from Computational Modeling. Cell Mol Bioeng 2023; 16:243-259. [PMID: 37810996 PMCID: PMC10550900 DOI: 10.1007/s12195-023-00781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Early afterdepolarizations (EADs) are secondary voltage depolarizations associated with reduced repolarization reserve (RRR) that can trigger lethal arrhythmias. Relating EADs to triggered activity is difficult to study, so the ability to suppress or provoke EADs would be experimentally useful. Here, we use computational simulations to assess the feasibility of subthreshold optogenetic stimulation modulating the propensity for EADs (cell-scale) and EAD-associated ectopic beats (organ-scale). Methods We modified a ventricular ionic model by reducing rapid delayed rectifier potassium (0.25-0.1 × baseline) and increasing L-type calcium (1.0-3.5 × baseline) currents to create RRR conditions with varying severity. We ran simulations in models of single cardiomyocytes and left ventricles from post-myocardial infarction patient MRI scans. Optogenetic stimulation was simulated using either ChR2 (depolarizing) or GtACR1 (repolarizing) opsins. Results In cell-scale simulations without illumination, EADs were seen for 164 of 416 RRR conditions. Subthreshold stimulation of GtACR1 reduced EAD incidence by up to 84.8% (25/416 RRR conditions; 0.1 μW/mm2); in contrast, subthreshold ChR2 excitation increased EAD incidence by up to 136.6% (388/416 RRR conditions; 50 μW/mm2). At the organ scale, we assumed simultaneous, uniform illumination of the epicardial and endocardial surfaces. GtACR1-mediated suppression (10-50 μW/mm2) and ChR2-mediated unmasking (50-100 μW/mm2) of EAD-associated ectopic beats were feasible in three distinct ventricular models. Conclusions Our findings suggest that optogenetics could be used to silence or provoke both EADs and EAD-associated ectopic beats. Validation in animal models could lead to exciting new experimental regimes and potentially to novel anti-arrhythmia treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00781-z.
Collapse
Affiliation(s)
- Alexander R. Ochs
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
| | - Patrick M. Boyle
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
11
|
Alexander C, Bishop MJ, Gilchrist RJ, Burton FL, Smith GL, Myles RC. Initiation of ventricular arrhythmia in the acquired long QT syndrome. Cardiovasc Res 2023; 119:465-476. [PMID: 35727943 PMCID: PMC10064840 DOI: 10.1093/cvr/cvac103] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 06/02/2022] [Indexed: 11/15/2022] Open
Abstract
AIMS Long QT syndrome (LQTS) carries a risk of life-threatening polymorphic ventricular tachycardia (Torsades de Pointes, TdP) and is a major cause of premature sudden cardiac death. TdP is induced by R-on-T premature ventricular complexes (PVCs), thought to be generated by cellular early-afterdepolarisations (EADs). However, EADs in tissue require cellular synchronisation, and their role in TdP induction remains unclear. We aimed to determine the mechanism of TdP induction in rabbit hearts with acquired LQTS (aLQTS). METHODS AND RESULTS Optical mapping of action potentials (APs) and intracellular Ca2+ was performed in Langendorff-perfused rabbit hearts (n = 17). TdP induced by R-on-T PVCs was observed during aLQTS (50% K+/Mg++ & E4031) conditions in all hearts (P < 0.0001 vs. control). Islands of AP prolongation bounded by steep voltage gradients (VGs) were consistently observed before arrhythmia and peak VGs were more closely related to the PVC upstroke than EADs, both temporally (7 ± 5 ms vs. 44 ± 27 ms, P < 0.0001) and spatially (1.0 ± 0.7 vs. 3.6 ± 0.9 mm, P < 0.0001). PVCs were initiated at estimated voltages of ∼ -40 mV and had upstroke dF/dtmax and Vm-Ca2+ dynamics compatible with ICaL activation. Computational simulations demonstrated that PVCs could arise directly from VGs, through electrotonic triggering of ICaL. In experiments and the model, sub-maximal L-type Ca2+ channel (LTCC) block (200 nM nifedipine and 90% gCaL, respectively) abolished both PVCs and TdP in the continued presence of aLQTS. CONCLUSION These data demonstrate that ICaL activation at sites displaying steep VGs generates the PVCs which induce TdP, providing a mechanism and rationale for LTCC blockers as a novel therapeutic approach in LQTS.
Collapse
Affiliation(s)
- Cherry Alexander
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, King’s College London, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Rebecca J Gilchrist
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
12
|
Bernikova OG, Tsvetkova AS, Gonotkov MA, Ovechkin AO, Demidova MM, Azarov JE, Platonov PG. Prolonged repolarization in the early phase of ischemia is associated with ventricular fibrillation development in a porcine model. Front Physiol 2023; 14:1035032. [PMID: 36755793 PMCID: PMC9899978 DOI: 10.3389/fphys.2023.1035032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Background: Repolarization prolongation can be the earliest electrophysiological change in ischemia, but its role in arrhythmogenesis is unclear. The aim of the present study was to evaluate the early ischemic action potential duration (APD) prolongation concerning its causes, expression in ECG and association with early ischemic ventricular fibrillation (phase 1A VF). Methods: Coronary occlusion was induced in 18 anesthetized pigs, and standard 12 lead ECG along with epicardial electrograms were recorded. Local activation time (AT), end of repolarization time (RT), and activation-repolarization interval (ARIc) were determined as dV/dt minimum during QRS-complex, dV/dt maximum during T-wave, and rate-corrected RT-AT differences, respectively. Patch-clamp studies were done in enzymatically isolated porcine cardiomyocytes. IK(ATP) activation and Ito1 inhibition were tested as possible causes of the APD change. Results: During the initial period of ischemia, a total of 11 pigs demonstrated maximal ARIc prolongation >10 ms at 1 and/or 2.5 min of occlusion (8 and 6 cases at 1 and 2.5 min, respectively) followed by typical ischemic ARIc shortening. The maximal ARIc across all leads was associated with VF development (OR 1.024 95% CI 1.003-1.046, p = 0.025) and maximal rate-corrected QT interval (QTc) (B 0.562 95% CI 0.346-0.775, p < 0.001) in logistic and linear regression analyses, respectively. Phase 1A VF incidence was associated with maximal QTc at the 2.5 min of occlusion in ROC curve analysis (AUC 0.867, p = 0.028) with optimal cut-off 456 ms (sensitivity 1.00, specificity 0.778). The pigs having maximal QTc at 2.5 min more and less than 450 ms significantly differed in phase 1A VF incidence in Kaplan-Meier analysis (log-rank p = 0.007). In the patch-clamp experiments, 4-aminopyridine did not produce any effects on the APD; however, pinacidil activated IK(ATP) and caused a biphasic change in the APD with initial prolongation and subsequent shortening. Conclusion: The transiently prolonged repolarization during the initial period of acute ischemia was expressed in the prolongation of the maximal QTc interval in the body surface ECG and was associated with phase 1A VF. IK(ATP) activation in the isolated cardiomyocytes reproduced the biphasic repolarization dynamics observed in vivo, which suggests the probable role of IK(ATP) in early ischemic arrhythmogenesis.
Collapse
Affiliation(s)
- Olesya G. Bernikova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia
| | - Alena S. Tsvetkova
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Mikhail A. Gonotkov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey O. Ovechkin
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia,Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia
| | - Marina M. Demidova
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Jan E. Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia,Department of Mathematical Physiology, Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, Ekaterinburg, Russia,Institute of Medicine, Pitirim Sorokin Syktyvkar State University, Syktyvkar, Russia,Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden,*Correspondence: Jan E. Azarov,
| | - Pyotr G. Platonov
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden,Arrhythmia Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
13
|
Minnebaeva EV, Durkina AV, Azarov JE, Bernikova OG. Myocardial Electrophysiological Response to Ischemia and Reperfusion Depends on the Age of Rats. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Nagy N, Tóth N, Nánási PP. Antiarrhythmic and Inotropic Effects of Selective Na +/Ca 2+ Exchanger Inhibition: What Can We Learn from the Pharmacological Studies? Int J Mol Sci 2022; 23:ijms232314651. [PMID: 36498977 PMCID: PMC9736231 DOI: 10.3390/ijms232314651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Life-long stable heart function requires a critical balance of intracellular Ca2+. Several ion channels and pumps cooperate in a complex machinery that controls the influx, release, and efflux of Ca2+. Probably one of the most interesting and most complex players of this crosstalk is the Na+/Ca2+ exchanger, which represents the main Ca2+ efflux mechanism; however, under some circumstances, it can also bring Ca2+ into the cell. Therefore, the inhibition of the Na+/Ca2+ exchanger has emerged as one of the most promising possible pharmacological targets to increase Ca2+ levels, to decrease arrhythmogenic depolarizations, and to reduce excessive Ca2+ influx. In line with this, as a response to increasing demand, several more or less selective Na+/Ca2+ exchanger inhibitor compounds have been developed. In the past 20 years, several results have been published regarding the effect of Na+/Ca2+ exchanger inhibition under various circumstances, e.g., species, inhibitor compounds, and experimental conditions; however, the results are often controversial. Does selective Na+/Ca2+ exchanger inhibition have any future in clinical pharmacological practice? In this review, the experimental results of Na+/Ca2+ exchanger inhibition are summarized focusing on the data obtained by novel highly selective inhibitors.
Collapse
Affiliation(s)
- Norbert Nagy
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, 6720 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-682; Fax: +36-62-545-680
| | - Noémi Tóth
- ELKH-SZTE Research Group of Cardiovascular Pharmacology, 6720 Szeged, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
Qu Z, Liu MB, Olcese R, Karagueuzian H, Garfinkel A, Chen PS, Weiss JN. R-on-T and the initiation of reentry revisited: Integrating old and new concepts. Heart Rhythm 2022; 19:1369-1383. [PMID: 35364332 PMCID: PMC11334931 DOI: 10.1016/j.hrthm.2022.03.1224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Initiation of reentry requires 2 factors: (1) a triggering event, most commonly focal excitations such as premature ventricular complexes (PVCs); and (2) a vulnerable substrate with regional dispersion of refractoriness and/or excitability, such as occurs during the T wave of the electrocardiogram when some areas of the ventricle have repolarized and recovered excitability but others have not. When the R wave of a PVC coincides in time with the T wave of the previous beat, this timing can lead to unidirectional block and initiation of reentry, known as the R-on-T phenomenon. Classically, the PVC triggering reentry has been viewed as arising focally from 1 region and propagating into another region whose recovery is delayed, resulting in unidirectional conduction block and reentry initiation. However, more recent evidence indicates that PVCs also can arise from the T wave itself. In the latter case, the PVC initiating reentry is not a separate event from the T wave but rather is causally generated from the repolarization gradient that manifests as the T wave. We call the former an "R-to-T" mechanism and the latter an "R-from-T" mechanism, which are initiation mechanisms distinct from each other. Both are important components of the R-on-T phenomenon and need to be taken into account when designing antiarrhythmic strategies. Strategies targeting suppression of triggers alone or vulnerable substrate alone may be appropriate in some instances but not in others. Preventing R-from-T arrhythmias requires suppressing the underlying dynamic tissue instabilities responsible for producing both triggers and substrate vulnerability simultaneously. The same principles are likely to apply to supraventricular arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Hrayr Karagueuzian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Integrative Biology and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
16
|
Sacconi L, Silvestri L, Rodríguez EC, Armstrong GA, Pavone FS, Shrier A, Bub G. KHz-rate volumetric voltage imaging of the whole Zebrafish heart. BIOPHYSICAL REPORTS 2022; 2:100046. [PMID: 36425080 PMCID: PMC9680780 DOI: 10.1016/j.bpr.2022.100046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/31/2022] [Indexed: 05/11/2023]
Abstract
Fast volumetric imaging is essential for understanding the function of excitable tissues such as those found in the brain and heart. Measuring cardiac voltage transients in tissue volumes is challenging, especially at the high spatial and temporal resolutions needed to give insight to cardiac function. We introduce a new imaging modality based on simultaneous illumination of multiple planes in the tissue and parallel detection with multiple cameras, avoiding compromises inherent in any scanning approach. The system enables imaging of voltage transients in situ, allowing us, for the first time to our knowledge, to map voltage activity in the whole heart volume at KHz rates. The high spatiotemporal resolution of our method enabled the observation of novel dynamics of electrical propagation through the zebrafish atrioventricular canal.
Collapse
Affiliation(s)
- Leonardo Sacconi
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Medical Faculty, University of Freiburg, Freiburg, Germany
- Corresponding author
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | | | - Gary A.B. Armstrong
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Francesco S. Pavone
- European Laboratory for Non-linear Spectroscopy, and National Institute of Optics, National Research Council, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Canada
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Canada
- Corresponding author
| |
Collapse
|
17
|
Pargaei M, Kumar BVR, Pavarino LF, Scacchi S. Cardiac electro-mechanical activity in a deforming human cardiac tissue: modeling, existence-uniqueness, finite element computation and application to multiple ischemic disease. J Math Biol 2022; 84:17. [PMID: 35142929 DOI: 10.1007/s00285-022-01717-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/11/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
In this study, the cardiac electro-mechanical model in a deforming domain is taken with the addition of mechanical feedback and stretch-activated channel current coupled with the ten Tusscher human ventricular cell level model that results in a coupled PDE-ODE system. The existence and uniqueness of such a coupled system in a deforming domain is proved. At first, the existence of a solution is proved in the deformed domain. The local existence of the solution is proved using the regularization and the Faedo-Galerkin technique. Then, the global existence is proved using the energy estimates in appropriate Banach spaces, Gronwall lemma, and the compactness procedure. The existence of the solution in an undeformed domain is proved using the lower semi-continuity of the norms. Uniqueness is proved using Young's inequality, Gronwall lemma, and the Cauchy-Schwartz inequality. For the application purpose, this model is applied to understand the electro-mechanical activity in ischemic cardiac tissue. It also takes care of the development of active tension, conductive, convective, and ionic feedback. The Second Piola-Kirchoff stress tensor arising in Lagrangian mapping between reference and moving frames is taken as a combination of active, passive, and volumetric components. We investigated the effect of varying strength of hyperkalemia and hypoxia, in the ischemic subregions of human cardiac tissue with local multiple ischemic subregions, on the electro-mechanical activity of healthy and ischemic zones. This system is solved numerically using the [Formula: see text] finite element method in space and the implicit-explicit Euler method in time. Discontinuities arising with the modeled multiple ischemic regions are treated to the desired order of accuracy by a simple regularization technique using the interpolating polynomials. We examined the cardiac electro-mechanical activity for several cases in multiple hyperkalemic and hypoxic human cardiac tissue. We concluded that local multiple ischemic subregions severely affect the cardiac electro-mechanical activity more, in terms of action potential (v) and mechanical parameters, intracellular calcium ion concentration [Formula: see text], active tension ([Formula: see text]), stretch ([Formula: see text]) and stretch rate ([Formula: see text]), of a healthy cell in its vicinity, compared to a single Hyperkalemic or Hypoxic subregion. The four moderate hypoxically generated ischemic subregions affect the waveform of the stretch along the fiber and the stretch rate more than a single severe ischemic subregion.
Collapse
Affiliation(s)
- Meena Pargaei
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India.,Govt. Post Graduate College, Champawat, Uttarakhand, India
| | - B V Rathish Kumar
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India
| | - Luca F Pavarino
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Simone Scacchi
- Department of Mathematics, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Terminal T-wave inversion predicts reperfusion tachyarrhythmias in STEMI. J Electrocardiol 2022; 71:28-31. [PMID: 35026678 DOI: 10.1016/j.jelectrocard.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION A reliable electrocardiographic predictor of ventricular fibrillation (VF) in patients with ST elevation myocardial infarction (STEMI) is lacking so far. Previous experimental/simulation study suggested a terminal T-wave inversion (TTWI) in ischemia-related ECG leads corresponding to anterior infarct localization as an independent predictor of reperfusion VF (rVF). This T-wave characteristic has never been tested as a rVF predictor in clinical settings. The aim of this study was to test if terminal T-wave inversion (TTWI) at admission ECG (before reperfusion) can serve as a predictor of ventricular fibrillation during reperfusion (rVF) in patients with anterior STEMI undergoing primary PCI. METHODS AND RESULTS Study population included consecutive patients with anterior infarct localization admitted for primary PCI (n = 181, age 65 [57; 76] years, 66% male). Of those, 14 patients had rVF (rVF group, age 59 [47; 76] years, 64% male) and patients without rVF comprised the No-rVF group (n = 167, age 65 [57; 76] years, 66% male). Association of TTWI with rVF was analyzed using logistic regression analysis adjusted for relevant clinical and electrocardiographic covariates. The prevalence of TTWI in rVF group was 62% comparing to 23% in the No-rVF group, p = 0.005. TTWI was associated with increased risk of rVF (OR 5.51; 95% CI 1.70-17.89; p = 0.004) and remained a significant predictor after adjustment for age, gender, history of MI prior to index admission, VF before reperfusion, Tpeak-Tend, maximal ST elevation, and QRS duration (OR 23.49; 95% CI 3.14-175.91; p = 0.002). CONCLUSIONS The terminal T-wave inversion in anterior leads before PCI independently predicted rVF in patients with anterior MI thus confirming the previous experimental/simulation findings.
Collapse
|
19
|
Analysis of vulnerability to reentry in acute myocardial ischemia using a realistic human heart model. Comput Biol Med 2021; 141:105038. [PMID: 34836624 DOI: 10.1016/j.compbiomed.2021.105038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/25/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022]
Abstract
Electrophysiological alterations of the myocardium caused by acute ischemia constitute a pro-arrhythmic substrate for the generation of potentially lethal arrhythmias. Experimental evidence has shown that the main components of acute ischemia that induce these electrophysiological alterations are hyperkalemia, hypoxia (or anoxia in complete artery occlusion), and acidosis. However, the influence of each ischemic component on the likelihood of reentry is not completely established. Moreover, the role of the His-Purkinje system (HPS) in the initiation and maintenance of arrhythmias is not completely understood. In the present work, we investigate how the three components of ischemia affect the vulnerable window (VW) for reentry using computational simulations. In addition, we analyze the role of the HPS on arrhythmogenesis. A 3D biventricular/torso human model that includes a realistic geometry of the central and border ischemic zones with one of the most electrophysiologically detailed model of ischemia to date, as well as a realistic cardiac conduction system, were used to assess the VW for reentry. Four scenarios of ischemic severity corresponding to different minutes after coronary artery occlusion were simulated. Our results suggest that ischemic severity plays an important role in the generation of reentries. Indeed, this is the first 3D simulation study to show that ventricular arrhythmias could be generated under moderate ischemic conditions, but not in mild and severe ischemia. Moreover, our results show that anoxia is the ischemic component with the most significant effect on the width of the VW. Thus, a change in the level of anoxia from moderate to severe leads to a greater increment in the VW (40 ms), in comparison with the increment of 20 ms and 35 ms produced by the individual change in the level of hyperkalemia and acidosis, respectively. Finally, the HPS was a necessary element for the generation of approximately 17% of reentries obtained. The retrograde conduction from the myocardium to HPS in the ischemic region, conduction blocks in discrete sections of the HPS, and the degree of ischemia affecting Purkinje cells, are suggested as mechanisms that favor the generation of ventricular arrhythmias.
Collapse
|
20
|
Zhang Z, Qu Z. Life and death saddles in the heart. Phys Rev E 2021; 103:062406. [PMID: 34271754 PMCID: PMC10066710 DOI: 10.1103/physreve.103.062406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Saddle points are responsible for threshold phenomena of many biological systems. In the heart, saddle points determine the normal excitability and conduction, but are also responsible for certain abnormal action potential behaviors associated with lethal arrhythmias. We investigate the dynamical mechanisms for the genesis of lethal extra heartbeats in heterogeneous cardiac tissue under two diseased conditions. For both conditions, the lethal events occur when the system is close to the saddle point, implying the pivotal role of the saddle point in cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
21
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
22
|
Tan C, Yi X, Chen Y, Wang S, Ji Q, Li F, Wang Y, Zou R, Wang C. The Changes of T-Wave Amplitude and QT Interval Between the Supine and Orthostatic Electrocardiogram in Children With Dilated Cardiomyopathy. Front Pediatr 2021; 9:680923. [PMID: 34295860 PMCID: PMC8290918 DOI: 10.3389/fped.2021.680923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
Objectives: Electrocardiogram (ECG) can be affected by autonomic nerves with body position changes. The study aims to explore the ECG changes of children with dilated cardiomyopathy (DCM) when their posture changes. Materials and methods: Sixty-four children diagnosed with DCM were recruited as research group and 55 healthy children as control group. T-wave amplitude and QT interval in ECG were recorded, and their differences between supine and orthostatic ECG were compared in both groups. Subsequently, the children with DCM were followed up and the differences before and after treatment compared. Results: ① Comparisons in differences: Differences of T-wave amplitude in lead II and III, aVF, and V5 and differences of QT interval in lead II, aVL, aVF, and V5 were lower in the research group than in the control group. ② Logistic regression analysis and diagnostic test evaluation: The differences of T-wave amplitude in lead III and QT interval in lead aVL may have predictive value for DCM diagnosis. When their values were 0.00 mV and 30 ms, respectively, the sensitivity and specificity of the combined index were 37.5 and 83.6%. ③ Follow-up: In the response group, the T-wave amplitude difference in lead aVR increased and the difference of QT interval in lead V6 decreased after treatment. In the non-response group, there was no difference before and after treatment. When the combined index of the differences of T-wave amplitude difference in lead aVR and QT interval difference in lead V6, respectively, were -0.05 mV and 5 ms, the sensitivity and specificity of estimating the prognosis of DCM were 44.4 and 83.3%. Conclusions: The differences of T-wave amplitude and QT interval may have a certain value to estimate DCM diagnosis and prognosis.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics, The Affiliated Zhuzhou Hospital, Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Xiuying Yi
- Department of Pediatrics, The Affiliated Zhuzhou Hospital, Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Ying Chen
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics, The Affiliated Zhuzhou Hospital, Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Shuangshuang Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics, The Affiliated Zhuzhou Hospital, Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Qing Ji
- Department of Pediatrics, The Affiliated Zhuzhou Hospital, Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Fang Li
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuwen Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Runmei Zou
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Wang
- Department of Pediatric Cardiovasology, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Zhang Z, Liu MB, Huang X, Song Z, Qu Z. Mechanisms of Premature Ventricular Complexes Caused by QT Prolongation. Biophys J 2020; 120:352-369. [PMID: 33333033 DOI: 10.1016/j.bpj.2020.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022] Open
Abstract
QT prolongation, due to lengthening of the action potential duration in the ventricles, is a major risk factor of lethal ventricular arrhythmias. A widely known consequence of QT prolongation is the genesis of early afterdepolarizations (EADs), which are associated with arrhythmias through the generation of premature ventricular complexes (PVCs). However, the vast majority of the EADs observed experimentally in isolated ventricular myocytes are phase-2 EADs, and whether phase-2 EADs are mechanistically linked to PVCs in cardiac tissue remains an unanswered question. In this study, we investigate the genesis of PVCs using computer simulations with eight different ventricular action potential models of various species. Based on our results, we classify PVCs as arising from two distinct mechanisms: repolarization gradient (RG)-induced PVCs and phase-2 EAD-induced PVCs. The RG-induced PVCs are promoted by increasing RG and L-type calcium current and are insensitive to gap junction coupling. EADs are not required for this PVC mechanism. In a paced beat, a single or multiple PVCs can occur depending on the properties of the RG. In contrast, phase-2 EAD-induced PVCs occur only when the RG is small and are suppressed by increasing RG and more sensitive to gap junction coupling. Unlike with RG-induced PVCs, in each paced beat, only a single EAD-induced PVC can occur no matter how many EADs in an action potential. In the wide parameter ranges we explore, RG-induced PVCs can be observed in all models, but the EAD-induced PVCs can only be observed in five of the eight models. The links between these two distinct PVC mechanisms and arrhythmogenesis in animal experiments and clinical settings are discussed.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| |
Collapse
|
24
|
Martinez-Navarro H, Zhou X, Bueno-Orovio A, Rodriguez B. Electrophysiological and anatomical factors determine arrhythmic risk in acute myocardial ischaemia and its modulation by sodium current availability. Interface Focus 2020; 11:20190124. [PMID: 33335705 PMCID: PMC7739909 DOI: 10.1098/rsfs.2019.0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myocardial ischaemia caused by coronary artery disease is one of the main causes of sudden cardiac death. Even though sodium current blockers are used as anti-arrhythmic drugs, decreased sodium current availability, also caused by mutations, has been shown to increase arrhythmic risk in ischaemic patients. The mechanisms are still unclear. Our goal is to exploit perfect control and data transparency of over 300 high-performance computing simulations to investigate arrhythmia mechanisms in acute myocardial ischaemia with variable sodium current availability. The human anatomically based torso-biventricular electrophysiological model used includes representation of realistic ventricular anatomy and fibre architecture, as well as ionic to electrocardiographic properties. Simulations show that reduced sodium current availability increased arrhythmic risk in acute regional ischaemia due to both electrophysiological (increased dispersion of refractoriness across the ischaemic border zone) and anatomical factors (conduction block from the thin right ventricle to thick left ventricle). The asymmetric ventricular anatomy caused high arrhythmic risk specifically for ectopic stimuli originating from the right ventricle and ventricular base. Increased sodium current availability was ineffective in reducing arrhythmic risk for septo-basal ectopic excitation. Human-based multiscale modelling and simulations reveal key electrophysiological and anatomical factors determining arrhythmic risk in acute ischaemia with variable sodium current availability.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Parks Road, Oxford OX1 3QD, UK
| |
Collapse
|
25
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
26
|
Hwang M, Lim CH, Leem CH, Shim EB. In silico models for evaluating proarrhythmic risk of drugs. APL Bioeng 2020; 4:021502. [PMID: 32548538 PMCID: PMC7274812 DOI: 10.1063/1.5132618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Safety evaluation of drugs requires examination of the risk of generating Torsade de Pointes (TdP) because it can lead to sudden cardiac death. Until recently, the QT interval in the electrocardiogram (ECG) has been used in the evaluation of TdP risk because the QT interval is known to be associated with the development of TdP. Although TdP risk evaluation based on QT interval has been successful in removing drugs with TdP risk from the market, some safe drugs may have also been affected due to the low specificity of QT interval-based evaluation. For more accurate evaluation of drug safety, the comprehensive in vitro proarrhythmia assay (CiPA) has been proposed by regulatory agencies, industry, and academia. Although the CiPA initiative includes in silico evaluation of cellular action potential as a component, attempts to utilize in silico simulation in drug safety evaluation are expanding, even to simulating human ECG using biophysical three-dimensional models of the heart and torso under the effects of drugs. Here, we review recent developments in the use of in silico models for the evaluation of the proarrhythmic risk of drugs. We review the single cell, one-dimensional, two-dimensional, and three-dimensional models and their applications reported in the literature and discuss the possibility of utilizing ECG simulation in drug safety evaluation.
Collapse
Affiliation(s)
- Minki Hwang
- SiliconSapiens Inc., Seoul 06097, South Korea
| | - Chul-Hyun Lim
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, South Korea
| | - Chae Hun Leem
- Department of Physiology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, South Korea
| | | |
Collapse
|
27
|
Lawson BAJ, Oliveira RS, Berg LA, Silva PAA, Burrage K, dos Santos RW. Variability in electrophysiological properties and conducting obstacles controls re-entry risk in heterogeneous ischaemic tissue. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190341. [PMID: 32448068 PMCID: PMC7287337 DOI: 10.1098/rsta.2019.0341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 05/07/2023]
Abstract
Ischaemia, in which inadequate blood supply compromises and eventually kills regions of cardiac tissue, can cause many types of arrhythmia, some life-threatening. A significant component of this is the effects of the resulting hypoxia, and concomitant hyperklaemia and acidosis, on the electrophysiological properties of myocytes. Clinical and experimental data have also shown that regions of structural heterogeneity (fibrosis, necrosis, fibro-fatty infiltration) can act as triggers for arrhythmias under acute ischaemic conditions. Mechanistic models have successfully captured these effects in silico. However, the relative significance of these separate facets of the condition, and how sensitive arrhythmic risk is to the extents of each, is far less explored. In this work, we use partitioned Gaussian process emulation and new metrics for source-sink mismatch that rely on simulations of bifurcating cardiac fibres to interrogate a model of heterogeneous ischaemic tissue. Re-entries were most sensitive to the level of hypoxia and the fraction of non-excitable tissue. In addition, our results reveal both protective and pro-arrhythmic effects of hyperklaemia, and present the levels of hyperklaemia, hypoxia and percentage of non-excitable tissue that pose the highest arrhythmic risks. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- Brodie A. J. Lawson
- ARC Centre of Excellence for Mathematical and Statistical Frontiers Queensland University of Technology, Brisbane, Australia
| | - Rafael S. Oliveira
- Department of Computer Science, Universidade Federal de São João del-Rei, São João del-Rei, Brazil
| | - Lucas A. Berg
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Pedro A. A. Silva
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Kevin Burrage
- ARC Centre of Excellence for Mathematical and Statistical Frontiers Queensland University of Technology, Brisbane, Australia
- Visiting Professor, Department of Computer Science, University of Oxford, Oxford, UK
| | - Rodrigo Weber dos Santos
- Graduate Program in Computational Modelling, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
28
|
Baczkó I, Hornyik T, Brunner M, Koren G, Odening KE. Transgenic Rabbit Models in Proarrhythmia Research. Front Pharmacol 2020; 11:853. [PMID: 32581808 PMCID: PMC7291951 DOI: 10.3389/fphar.2020.00853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
Drug-induced proarrhythmia constitutes a potentially lethal side effect of various drugs. Most often, this proarrhythmia is mechanistically linked to the drug's potential to interact with repolarizing cardiac ion channels causing a prolongation of the QT interval in the ECG. Despite sophisticated screening approaches during drug development, reliable prediction of proarrhythmia remains very challenging. Although drug-induced long-QT-related proarrhythmia is often favored by conditions or diseases that impair the individual's repolarization reserve, most cellular, tissue, and whole animal model systems used for drug safety screening are based on normal, healthy models. In recent years, several transgenic rabbit models for different types of long QT syndromes (LQTS) with differences in the extent of impairment in repolarization reserve have been generated. These might be useful for screening/prediction of a drug's potential for long-QT-related proarrhythmia, particularly as different repolarizing cardiac ion channels are impaired in the different models. In this review, we summarize the electrophysiological characteristics of the available transgenic LQTS rabbit models, and the pharmacological proof-of-principle studies that have been performed with these models—highlighting the advantages and disadvantages of LQTS models for proarrhythmia research. In the end, we give an outlook on potential future directions and novel models.
Collapse
Affiliation(s)
- István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Tibor Hornyik
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary.,Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Brunner
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiology and Medical Intensive Care, St. Josefskrankenhaus, Freiburg, Germany
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI, United States
| | - Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Gaur N, Ortega F, Verkerk AO, Mengarelli I, Krogh-Madsen T, Christini DJ, Coronel R, Vigmond EJ. Validation of quantitative measure of repolarization reserve as a novel marker of drug induced proarrhythmia. J Mol Cell Cardiol 2020; 145:122-132. [PMID: 32325153 DOI: 10.1016/j.yjmcc.2020.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 11/25/2022]
Abstract
Repolarization reserve, the robustness of a cell to repolarize even when one of the repolarization mechanisms is failing, has been described qualitatively in terms of ionic currents, but has not been quantified by a generic metric that is applicable to drug screening. Prolonged repolarization leading to repolarization failure is highly arrhythmogenic. It may lead to ventricular tachycardia caused by triggered activity from early afterdepolarizations (EADs), or it may promote the occurrence of unidirectional conduction block and reentry. Both types of arrhythmia may deteriorate into ventricular fibrillation (VF) and death. We define the Repolarization Reserve Current (RRC) as the minimum constant current necessary to prevent normal repolarization of a cell. After developing and testing RRC for nine computational ionic models of various species, we applied it experimentally to atrial and ventricular human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM), and isolated guinea-pig ventricular cardiomyocytes. In simulations, repolarization was all-or-none with a precise, model-dependent critical RRC, resulting in a discrete shift in the Action Potential Duration (APD) - RRC relation, in the occurrence of EADs and repolarization failure. These data were faithfully reproduced in cellular experiments. RRC allows simple, fast, unambiguous quantification of the arrhythmogenic propensity in cardiac cells of various origins and species without the need of prior knowledge of underlying currents and is suitable for high throughput applications, and personalized medicine applications.
Collapse
Affiliation(s)
- Namit Gaur
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France; Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France
| | | | - Arie O Verkerk
- Dept. of Medical Biology, Academic Medical Center, Amsterdam, the Netherlands; Dept. of Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Isabella Mengarelli
- Dept. of Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | - Ruben Coronel
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France; Dept. of Experimental Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Edward J Vigmond
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, F-33600 Pessac-Bordeaux, France; Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France.
| |
Collapse
|
30
|
He Y, Liu Y, Zhou M, Xie K, Tang Y, Huang H, Huang C. C-type natriuretic peptide suppresses ventricular arrhythmias in rats with acute myocardial ischemia. Peptides 2020; 126:170238. [PMID: 31870937 DOI: 10.1016/j.peptides.2019.170238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022]
Abstract
This study aimed to investigate the effects of C-type natriuretic peptide (CNP) on ventricular arrhythmias in rats with acute myocardial ischemia (AMI). Forty male Sprague-Dawley rats were randomly divided into sham group (n = 10), AMI group (n = 15) and AMI + CNP group (n = 15). AMI model was induced by ligating the left anterior descending branch of the coronary artery, and CNP was pumped through the femoral vein starting 30 min before ischemia and continuing until 1 h after AMI. The occurrence of ventricular arrhythmias after ischemia and heart rate variability (HRV) were recorded and analyzed. The plasma norepinephrine level was detected at 15 min after AMI. Ventricular electrophysiological parameters including ventricular effective refractory period (ERP), ERP dispersion, ventricular action potential duration (APD) alternans and ventricular fibrillation threshold (VFT) were measured one hour after AMI. Then, the expressions of cyclic guanosine monophosphate in myocardial tissue and left stellate ganglion were examined. Compared to sham group, AMI significantly shortened the ERP, augmented ERP dispersion, elevated APD alternans cycle length, reduced VFT, and increased the incidence of ventricular arrhythmias. Moreover, AMI increased the sympathetic component of HRV, raised plasma norepinephrine levels, and decreased the cyclic guanosine monophosphate levels in myocardium and left stellate ganglion. All those changes were attenuated by CNP treatment. These findings suggest that CNP protected against ventricular arrhythmias in rats with AMI, potentially by inhibiting ischemia-induced cardiac sympathetic hyperactivity and cardiac electrophysiology instability.
Collapse
Affiliation(s)
- Yan He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Mingmin Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ke Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
31
|
Levrero-Florencio F, Margara F, Zacur E, Bueno-Orovio A, Wang Z, Santiago A, Aguado-Sierra J, Houzeaux G, Grau V, Kay D, Vázquez M, Ruiz-Baier R, Rodriguez B. Sensitivity analysis of a strongly-coupled human-based electromechanical cardiac model: Effect of mechanical parameters on physiologically relevant biomarkers. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2020; 361:112762. [PMID: 32565583 PMCID: PMC7299076 DOI: 10.1016/j.cma.2019.112762] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human heart beats as a result of multiscale nonlinear dynamics coupling subcellular to whole organ processes, achieving electrophysiologically-driven mechanical contraction. Computational cardiac modelling and simulation have achieved a great degree of maturity, both in terms of mathematical models of underlying biophysical processes and the development of simulation software. In this study, we present the detailed description of a human-based physiologically-based, and fully-coupled ventricular electromechanical modelling and simulation framework, and a sensitivity analysis focused on its mechanical properties. The biophysical detail of the model, from ionic to whole-organ, is crucial to enable future simulations of disease and drug action. Key novelties include the coupling of state-of-the-art human-based electrophysiology membrane kinetics, excitation-contraction and active contraction models, and the incorporation of a pre-stress model to allow for pre-stressing and pre-loading the ventricles in a dynamical regime. Through high performance computing simulations, we demonstrate that 50% to 200% - 1000% variations in key parameters result in changes in clinically-relevant mechanical biomarkers ranging from diseased to healthy values in clinical studies. Furthermore mechanical biomarkers are primarily affected by only one or two parameters. Specifically, ejection fraction is dominated by the scaling parameter of the active tension model and its scaling parameter in the normal direction ( k ort 2 ); the end systolic pressure is dominated by the pressure at which the ejection phase is triggered ( P ej ) and the compliance of the Windkessel fluid model ( C ); and the longitudinal fractional shortening is dominated by the fibre angle ( ϕ ) and k ort 2 . The wall thickening does not seem to be clearly dominated by any of the considered input parameters. In summary, this study presents in detail the description and implementation of a human-based coupled electromechanical modelling and simulation framework, and a high performance computing study on the sensitivity of mechanical biomarkers to key model parameters. The tools and knowledge generated enable future investigations into disease and drug action on human ventricles.
Collapse
Affiliation(s)
- F. Levrero-Florencio
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
- Corresponding authors.
| | - F. Margara
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - E. Zacur
- Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - A. Bueno-Orovio
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - Z.J. Wang
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - A. Santiago
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - J. Aguado-Sierra
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - G. Houzeaux
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
| | - V. Grau
- Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - D. Kay
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
| | - M. Vázquez
- Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona 08034, Spain
- ELEM Biotech, Spain
| | - R. Ruiz-Baier
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Universidad Adventista de Chile, Casilla 7-D, Chillan, Chile
| | - B. Rodriguez
- Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom
- Corresponding authors.
| |
Collapse
|
32
|
Balakina-Vikulova NA, Panfilov A, Solovyova O, Katsnelson LB. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model. J Physiol Sci 2020; 70:12. [PMID: 32070290 PMCID: PMC7028825 DOI: 10.1186/s12576-020-00741-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Experiments on animal hearts (rat, rabbit, guinea pig, etc.) have demonstrated that mechano-calcium feedback (MCF) and mechano-electric feedback (MEF) are very important for myocardial self-regulation because they adjust the cardiomyocyte contractile function to various mechanical loads and to mechanical interactions between heterogeneous myocardial segments in the ventricle walls. In in vitro experiments on these animals, MCF and MEF manifested themselves in several basic classical phenomena (e.g., load dependence, length dependence of isometric twitches, etc.), and in the respective responses of calcium transients and action potentials. However, it is extremely difficult to study simultaneously the electrical, calcium, and mechanical activities of the human heart muscle in vitro. Mathematical modeling is a useful tool for exploring these phenomena. We have developed a novel model to describe electromechanical coupling and mechano-electric feedbacks in the human cardiomyocyte. It combines the 'ten Tusscher-Panfilov' electrophysiological model of the human cardiomyocyte with our module of myocardium mechanical activity taken from the 'Ekaterinburg-Oxford' model and adjusted to human data. Using it, we simulated isometric and afterloaded twitches and effects of MCF and MEF on excitation-contraction coupling. MCF and MEF were found to affect significantly the duration of the calcium transient and action potential in the human cardiomyocyte model in response to both smaller afterloads as compared to bigger ones and various mechanical interventions applied during isometric and afterloaded twitches.
Collapse
Affiliation(s)
- Nathalie A Balakina-Vikulova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| | - Alexander Panfilov
- Ural Federal University, Ekaterinburg, Russia
- Ghent University, Ghent, Belgium
| | - Olga Solovyova
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Ural Federal University, Ekaterinburg, Russia
| | - Leonid B Katsnelson
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
- Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
33
|
Zhou X, Qu Y, Passini E, Bueno-Orovio A, Liu Y, Vargas HM, Rodriguez B. Blinded In Silico Drug Trial Reveals the Minimum Set of Ion Channels for Torsades de Pointes Risk Assessment. Front Pharmacol 2020; 10:1643. [PMID: 32082155 PMCID: PMC7003137 DOI: 10.3389/fphar.2019.01643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Torsades de Pointes (TdP) is a type of ventricular arrhythmia which could be observed as an unwanted drug-induced cardiac side effect, and it is associated with repolarization abnormalities in single cells. The pharmacological evaluations of TdP risk in previous years mainly focused on the hERG channel due to its vital role in the repolarization of cardiomyocytes. However, only considering drug effects on hERG led to false positive predictions since the drug action on other ion channels can also have crucial regulatory effects on repolarization. To address the limitation of only evaluating hERG, the Comprehensive in Vitro Proarrhythmia Assay initiative has proposed to systematically integrate drug effects on multiple ion channels into in silico drug trial to improve TdP risk assessment. It is not clear how many ion channels are sufficient for reliable TdP risk predictions, and whether differences in IC50 and Hill coefficient values from independent sources can lead to divergent in silico prediction outcomes. The rationale of this work is to investigate the above two questions using a computationally efficient population of human ventricular cells optimized to favor repolarization abnormality. Our blinded results based on two independent data sources confirm that simulations with the optimized population of human ventricular cell models enable efficient in silico drug screening, and also provide direct observation and mechanistic analysis of repolarization abnormality. Our results show that 1) the minimum set of ion channels required for reliable TdP risk predictions are Nav1.5 (peak), Cav1.2, and hERG; 2) for drugs with multiple ion channel blockage effects, moderate IC50 variations combined with variable Hill coefficients can affect the accuracy of in silico predictions.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Yusheng Qu
- SPARC, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Yang Liu
- GAU, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Hugo M Vargas
- SPARC, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Li Z, Mirams GR, Yoshinaga T, Ridder BJ, Han X, Chen JE, Stockbridge NL, Wisialowski TA, Damiano B, Severi S, Morissette P, Kowey PR, Holbrook M, Smith G, Rasmusson RL, Liu M, Song Z, Qu Z, Leishman DJ, Steidl‐Nichols J, Rodriguez B, Bueno‐Orovio A, Zhou X, Passini E, Edwards AG, Morotti S, Ni H, Grandi E, Clancy CE, Vandenberg J, Hill A, Nakamura M, Singer T, Polonchuk L, Greiter‐Wilke A, Wang K, Nave S, Fullerton A, Sobie EA, Paci M, Musuamba Tshinanu F, Strauss DG. General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA In Silico Strategy. Clin Pharmacol Ther 2020; 107:102-111. [PMID: 31709525 PMCID: PMC6977398 DOI: 10.1002/cpt.1647] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022]
Abstract
This white paper presents principles for validating proarrhythmia risk prediction models for regulatory use as discussed at the In Silico Breakout Session of a Cardiac Safety Research Consortium/Health and Environmental Sciences Institute/US Food and Drug Administration-sponsored Think Tank Meeting on May 22, 2018. The meeting was convened to evaluate the progress in the development of a new cardiac safety paradigm, the Comprehensive in Vitro Proarrhythmia Assay (CiPA). The opinions regarding these principles reflect the collective views of those who participated in the discussion of this topic both at and after the breakout session. Although primarily discussed in the context of in silico models, these principles describe the interface between experimental input and model-based interpretation and are intended to be general enough to be applied to other types of nonclinical models for proarrhythmia assessment. This document was developed with the intention of providing a foundation for more consistency and harmonization in developing and validating different models for proarrhythmia risk prediction using the example of the CiPA paradigm.
Collapse
|
35
|
Tomek J, Bueno-Orovio A, Passini E, Zhou X, Minchole A, Britton O, Bartolucci C, Severi S, Shrier A, Virag L, Varro A, Rodriguez B. Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife 2019; 8:48890. [PMID: 31868580 PMCID: PMC6970534 DOI: 10.7554/elife.48890] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
Human-based modelling and simulations are becoming ubiquitous in biomedical science due to their ability to augment experimental and clinical investigations. Cardiac electrophysiology is one of the most advanced areas, with cardiac modelling and simulation being considered for virtual testing of pharmacological therapies and medical devices. Current models present inconsistencies with experimental data, which limit further progress. In this study, we present the design, development, calibration and independent validation of a human-based ventricular model (ToR-ORd) for simulations of electrophysiology and excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. Validation based on substantial multiscale simulations supports the credibility of the ToR-ORd model under healthy and key disease conditions, as well as drug blockade. In addition, the process uncovers new theoretical insights into the biophysical properties of the L-type calcium current, which are critical for sodium and calcium dynamics. These insights enable the reformulation of L-type calcium current, as well as replacement of the hERG current model.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Ana Minchole
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Oliver Britton
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Chiara Bartolucci
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Stefano Severi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Alvin Shrier
- Department of Physiology, McGill University, Montreal, Canada
| | - Laszlo Virag
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Andras Varro
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
36
|
Liu MB, Vandersickel N, Panfilov AV, Qu Z. R-From-T as a Common Mechanism of Arrhythmia Initiation in Long QT Syndromes. Circ Arrhythm Electrophysiol 2019; 12:e007571. [PMID: 31838916 PMCID: PMC6924944 DOI: 10.1161/circep.119.007571] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long QT syndromes (LQTS) arise from many genetic and nongenetic causes with certain characteristic ECG features preceding polymorphic ventricular tachyarrhythmias (PVTs). However, how the many molecular causes result in these characteristic ECG patterns and how these patterns are mechanistically linked to the spontaneous initiation of PVT remain poorly understood. METHODS Anatomic human ventricle and simplified tissue models were used to investigate the mechanisms of spontaneous initiation of PVT in LQTS. RESULTS Spontaneous initiation of PVT was elicited by gradually ramping up ICa,L to simulate the initial phase of a sympathetic surge or by changing the heart rate, reproducing the different genotype-dependent clinical ECG features. In LQTS type 2 (LQT2) and LQTS type 3 (LQT3), T-wave alternans was observed followed by premature ventricular complexes (PVCs). Compensatory pauses occurred resulting in short-long-short sequences. As ICa,L increased further, PVT episodes occurred, always preceded by a short-long-short sequence. However, in LQTS type 1 (LQT1), once a PVC occurred, it always immediately led to an episode of PVT. Arrhythmias in LQT2 and LQT3 were bradycardia dependent, whereas those in LQT1 were not. In all 3 genotypes, PVCs always originated spontaneously from the steep repolarization gradient region and manifested on ECG as R-on-T. We call this mechanism R-from-T, to distinguish it from the classic explanation of R-on-T arrhythmogenesis in which an exogenous PVC coincidentally encounters a repolarizing region. In R-from-T, the PVC and the T wave are causally related, where steep repolarization gradients combined with enhanced ICa,L lead to PVCs emerging from the T wave. Since enhanced ICa,L was required for R-from-T to occur, suppressing window ICa,L effectively prevented arrhythmias in all 3 genotypes. CONCLUSIONS Despite the complex molecular causes, these results suggest that R-from-T is likely a common mechanism for PVT initiation in LQTS. Targeting ICa,L properties, such as suppressing window ICa,L or preventing excessive ICa,L increase, could be an effective unified therapy for arrhythmia prevention in LQTS.
Collapse
Affiliation(s)
- Michael B. Liu
- Department of Medicine (M.B.L., Z.Q.), University of California, Los Angeles
| | - Nele Vandersickel
- Department of Physics and Astronomy, Ghent University, Belgium (N.V., A.V.P.)
| | - Alexander V. Panfilov
- Department of Physics and Astronomy, Ghent University, Belgium (N.V., A.V.P.)
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg, Russia (A.V.P.)
| | - Zhilin Qu
- Department of Medicine (M.B.L., Z.Q.), University of California, Los Angeles
- Department of Biomathematics (Z.Q.), University of California, Los Angeles
| |
Collapse
|
37
|
High arrhythmic risk in antero-septal acute myocardial ischemia is explained by increased transmural reentry occurrence. Sci Rep 2019; 9:16803. [PMID: 31728039 PMCID: PMC6856379 DOI: 10.1038/s41598-019-53221-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial ischemia is a precursor of sudden arrhythmic death. Variability in its manifestation hampers understanding of arrhythmia mechanisms and challenges risk stratification. Our aim is to unravel the mechanisms underlying how size, transmural extent and location of ischemia determine arrhythmia vulnerability and ECG alterations. High performance computing simulations using a human torso/biventricular biophysically-detailed model were conducted to quantify the impact of varying ischemic region properties, including location (LAD/LCX occlusion), transmural/subendocardial ischemia, size, and normal/slow myocardial propagation. ECG biomarkers and vulnerability window for reentry were computed in over 400 simulations for 18 cases evaluated. Two distinct mechanisms explained larger vulnerability to reentry in transmural versus subendocardial ischemia. Macro-reentry around the ischemic region was the primary mechanism increasing arrhythmic risk in transmural versus subendocardial ischemia, for both LAD and LCX occlusion. Transmural micro-reentry at the ischemic border zone explained arrhythmic vulnerability in subendocardial ischemia, especially in LAD occlusion, as reentries were favoured by the ischemic region intersecting the septo-apical region. ST elevation reflected ischemic extent in transmural ischemia for LCX and LAD occlusion but not in subendocardial ischemia (associated with mild ST depression). The technology and results presented can inform safety and efficacy evaluation of anti-arrhythmic therapy in acute myocardial ischemia.
Collapse
|
38
|
Colli-Franzone P, Gionti V, Pavarino L, Scacchi S, Storti C. Role of infarct scar dimensions, border zone repolarization properties and anisotropy in the origin and maintenance of cardiac reentry. Math Biosci 2019; 315:108228. [DOI: 10.1016/j.mbs.2019.108228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 07/13/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
|
39
|
Mincholé A, Zacur E, Ariga R, Grau V, Rodriguez B. MRI-Based Computational Torso/Biventricular Multiscale Models to Investigate the Impact of Anatomical Variability on the ECG QRS Complex. Front Physiol 2019; 10:1103. [PMID: 31507458 PMCID: PMC6718559 DOI: 10.3389/fphys.2019.01103] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023] Open
Abstract
AIMS Patient-to-patient anatomical differences are an important source of variability in the electrocardiogram, and they may compromise the identification of pathological electrophysiological abnormalities. This study aims at quantifying the contribution of variability in ventricular and torso anatomies to differences in QRS complexes of the 12-lead ECG using computer simulations. METHODS A computational pipeline is presented that enables computer simulations using human torso/biventricular anatomically based electrophysiological models from clinically standard magnetic resonance imaging (MRI). The ventricular model includes membrane kinetics represented by the biophysically detailed O'Hara Rudy model modified for tissue heterogeneity and includes fiber orientation based on the Streeter rule. A population of 265 torso/biventricular models was generated by combining ventricular and torso anatomies obtained from clinically standard MRIs, augmented with a statistical shape model of the body. 12-lead ECGs were simulated on the 265 human torso/biventricular electrophysiology models, and QRS morphology, duration and amplitude were quantified in each ECG lead for each of the human torso-biventricular models. RESULTS QRS morphologies in limb leads are mainly determined by ventricular anatomy, while in the precordial leads, and especially V1 to V4, they are determined by heart position within the torso. Differences in ventricular orientation within the torso can explain morphological variability from monophasic to biphasic QRS complexes. QRS duration is mainly influenced by myocardial volume, while it is hardly affected by the torso anatomy or position. An average increase of 0.12 ± 0.05 ms in QRS duration is obtained for each cm3 of myocardial volume across all the leads while it hardly changed due to changes in torso volume. CONCLUSION Computer simulations using populations of human torso/biventricular models based on clinical MRI enable quantification of anatomical causes of variability in the QRS complex of the 12-lead ECG. The human models presented also pave the way toward their use as testbeds in silico clinical trials.
Collapse
Affiliation(s)
- Ana Mincholé
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Ernesto Zacur
- Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, United Kingdom
| | - Rina Ariga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vicente Grau
- Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Ledezma CA, Zhou X, Rodríguez B, Tan PJ, Díaz-Zuccarini V. A modeling and machine learning approach to ECG feature engineering for the detection of ischemia using pseudo-ECG. PLoS One 2019; 14:e0220294. [PMID: 31404081 PMCID: PMC6690680 DOI: 10.1371/journal.pone.0220294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 07/12/2019] [Indexed: 11/19/2022] Open
Abstract
Early detection of coronary heart disease (CHD) has the potential to prevent the millions of deaths that this disease causes worldwide every year. However, there exist few automatic methods to detect CHD at an early stage. A challenge in the development of these methods is the absence of relevant datasets for their training and validation. Here, the ten Tusscher-Panfilov 2006 model and the O’Hara-Rudy model for human myocytes were used to create two populations of models that were in concordance with data obtained from healthy individuals (control populations) and included inter-subject variability. The effects of ischemia were subsequently included in the control populations to simulate the effects of mild and severe ischemic events on single cells, full ischemic cables of cells and cables of cells with various sizes of ischemic regions. Action potential and pseudo-ECG biomarkers were measured to assess how the evolution of ischemia could be quantified. Finally, two neural network classifiers were trained to identify the different degrees of ischemia using the pseudo-ECG biomarkers. The control populations showed action potential and pseudo-ECG biomarkers within the physiological ranges and the trends in the biomarkers commonly identified in ischemic patients were observed in the ischemic populations. On the one hand, inter-subject variability in the ischemic pseudo-ECGs precluded the detection and classification of early ischemic events using any single biomarker. On the other hand, the neural networks showed sensitivity and positive predictive value above 95%. Additionally, the neural networks revealed that the biomarkers that were relevant for the detection of ischemia were different from those relevant for its classification. This work showed that a computational approach could be used, when data is scarce, to validate proof-of-concept machine learning methods to detect ischemic events.
Collapse
Affiliation(s)
- Carlos A. Ledezma
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodríguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - P. J. Tan
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Vanessa Díaz-Zuccarini
- Department of Mechanical Engineering, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical Engineering, University College London, W1W 7TS, UK
- * E-mail:
| |
Collapse
|
41
|
Modeling and simulation of cardiac electric activity in a human cardiac tissue with multiple ischemic zones. J Math Biol 2019; 79:1551-1586. [PMID: 31352562 DOI: 10.1007/s00285-019-01403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/03/2019] [Indexed: 10/26/2022]
Abstract
In this work, a human ventricular model (ten Tusscher and Panfilov model) coupled with the tissue level monodomain model is used to analyze the influence of multiple myocardial ischemia on the human cardiac tissue. The existence and uniqueness of the ischemic model comprising the monodomain model with a discontinuous ionic model for the human cardiac tissue is discussed. The coupled system of partial differential equation and ordinary differential equations are solved numerically using [Formula: see text] finite elements in space and Backward Euler finite difference scheme in time. The apriori finite element error estimate for the numerical scheme has been shown to be of [Formula: see text]. Essentially, we evaluate the impact of the increasing size of the ischemic region and the presence of the multiple ischemic regions having equal or different intensities on the neighboring healthy part of the cardiac tissue. We examine both the individual and the combined influence of two types of ischemia, Hyperkalemia (with the variation of the extracellular potassium ion concentration, [Formula: see text]) and Hypoxia (with the variation of intracellular Adenosine triphosphate (ATP) concentration via parameter [Formula: see text]) on the cardiac electrical activity of cardiac tissue. We observe that with the increase in the ischemic region size by a factor five times, there is an additional almost 10% drop in the action potential duration (APD) in the neighboring healthy regions. The combined effect of Hyperkalemia and Hypoxia brings an additional 12% drop in APD in the ischemic subregions and an additional 5% drop in APD in the neighboring healthy part of the cardic tissue in comparison to the only Hyperkalemic ischemia. When the Hyperkalemic and/or Hypoxic degeneracy of a ischemic zone is non-uniform then innercore degeneracy has greater influence on resting potential and APD of outercore of variable intensity ischemic zone than the other way. Also, increasing the number of ischemic subregions from 2 to 4 leads to a 4% drop in APD.
Collapse
|
42
|
Sahli Costabal F, Yao J, Sher A, Kuhl E. Predicting critical drug concentrations and torsadogenic risk using a multiscale exposure-response simulator. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:61-76. [PMID: 30482568 PMCID: PMC6483901 DOI: 10.1016/j.pbiomolbio.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/21/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Torsades de pointes is a serious side effect of many drugs that can trigger sudden cardiac death, even in patients with structurally normal hearts. Torsadogenic risk has traditionally been correlated with the blockage of a specific potassium channel and a prolonged recovery period in the electrocardiogram. However, the precise mechanisms by which single channel block translates into heart rhythm disorders remain incompletely understood. Here we establish a multiscale exposure-response simulator that converts block-concentration characteristics from single cell recordings into three-dimensional excitation profiles and electrocardiograms to rapidly assess torsadogenic risk. For the drug dofetilide, we characterize the QT interval and heart rate at different drug concentrations and identify the critical concentration at the onset of torsades de pointes: For dofetilide concentrations of 2x, 3x, and 4x, as multiples of the free plasma concentration Cmax = 2.1 nM, the QT interval increased by +62.0%, +71.2%, and +82.3% compared to baseline, and the heart rate changed by -21.7%, -23.3%, and +88.3%. The last number indicates that, at the critical concentration of 4x, the heart spontaneously developed an episode of a torsades-like arrhythmia. Strikingly, this critical drug concentration is higher than the concentration estimated from early afterdepolarizations in single cells and lower than in one-dimensional cable models. Our results highlight the importance of whole heart modeling and explain, at least in part, why current regulatory paradigms often fail to accurately quantify the pro-arrhythmic potential of a drug. Our exposure-response simulator could provide a more mechanistic assessment of pro-arrhythmic risk and help establish science-based guidelines to reduce rhythm disorders, design safer drugs, and accelerate drug development.
Collapse
Affiliation(s)
| | - Jiang Yao
- Dassault Systèmes Simulia Corporation, Johnston, RI, 02919, United States
| | - Anna Sher
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, 02139, United States
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
43
|
Abstract
The treatment of individual patients in cardiology practice increasingly relies on advanced imaging, genetic screening and devices. As the amount of imaging and other diagnostic data increases, paralleled by the greater capacity to personalize treatment, the difficulty of using the full array of measurements of a patient to determine an optimal treatment seems also to be paradoxically increasing. Computational models are progressively addressing this issue by providing a common framework for integrating multiple data sets from individual patients. These models, which are based on physiology and physics rather than on population statistics, enable computational simulations to reveal diagnostic information that would have otherwise remained concealed and to predict treatment outcomes for individual patients. The inherent need for patient-specific models in cardiology is clear and is driving the rapid development of tools and techniques for creating personalized methods to guide pharmaceutical therapy, deployment of devices and surgical interventions.
Collapse
Affiliation(s)
- Steven A Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France
| | - Natalia A Trayanova
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Ectopic beats arise from micro-reentries near infarct regions in simulations of a patient-specific heart model. Sci Rep 2018; 8:16392. [PMID: 30401912 PMCID: PMC6219578 DOI: 10.1038/s41598-018-34304-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023] Open
Abstract
Ectopic beats are known to be involved in the initiation of a variety of cardiac arrhythmias. Although their location may vary, ectopic excitations have been found to originate from infarct areas, regions of micro-fibrosis and other heterogeneous tissues. However, the underlying mechanisms that link ectopic foci to heterogeneous tissues have yet to be fully understood. In this work, we investigate the mechanism of micro-reentry that leads to the generation of ectopic beats near infarct areas using a patient-specific heart model. The patient-specific geometrical model of the heart, including scar and peri-infarct zones, is obtained through magnetic resonance imaging (MRI). The infarct region is composed of ischemic myocytes and non-conducting cells (fibrosis, for instance). Electrophysiology is captured using an established cardiac myocyte model of the human ventricle modified to describe ischemia. The simulation results clearly reveal that ectopic beats emerge from micro-reentries that are sustained by the heterogeneous structure of the infarct regions. Because microscopic information about the heterogeneous structure of the infarct regions is not available, Monte-Carlo simulations are used to identify the probabilities of an infarct region to behave as an ectopic focus for different levels of ischemia and different percentages of non-conducting cells. From the proposed model, it is observed that ectopic beats are generated when a percentage of non-conducting cells is near a topological metric known as the percolation threshold. Although the mechanism for micro-reentries was proposed half a century ago to be a source of ectopic beats or premature ventricular contractions during myocardial infarction, the present study is the first to reproduce this mechanism in-silico using patient-specific data.
Collapse
|
45
|
Wang W, Zhang S, Ni H, Garratt CJ, Boyett MR, Hancox JC, Zhang H. Mechanistic insight into spontaneous transition from cellular alternans to arrhythmia-A simulation study. PLoS Comput Biol 2018; 14:e1006594. [PMID: 30500818 PMCID: PMC6291170 DOI: 10.1371/journal.pcbi.1006594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/12/2018] [Accepted: 10/23/2018] [Indexed: 02/01/2023] Open
Abstract
Cardiac electrical alternans (CEA), manifested as T-wave alternans in ECG, is a clinical biomarker for predicting cardiac arrhythmias and sudden death. However, the mechanism underlying the spontaneous transition from CEA to arrhythmias remains incompletely elucidated. In this study, multiscale rabbit ventricular models were used to study the transition and a potential role of INa in perpetuating such a transition. It was shown CEA evolved into either concordant or discordant action potential (AP) conduction alternans in a homogeneous one-dimensional tissue model, depending on tissue AP duration and conduction velocity (CV) restitution properties. Discordant alternans was able to cause conduction failure in the model, which was promoted by impaired sodium channel with either a reduced or increased channel current. In a two-dimensional homogeneous tissue model, a combined effect of rate- and curvature-dependent CV broke-up alternating wavefronts at localised points, facilitating a spontaneous transition from CEA to re-entry. Tissue inhomogeneity or anisotropy further promoted break-up of re-entry, leading to multiple wavelets. Similar observations have also been seen in human atrial cellular and tissue models. In conclusion, our results identify a mechanism by which CEA spontaneously evolves into re-entry without a requirement for premature ventricular complexes or pre-existing tissue heterogeneities, and demonstrated the important pro-arrhythmic role of impaired sodium channel activity. These findings are model-independent and have potential human relevance.
Collapse
Affiliation(s)
- Wei Wang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Shanzhuo Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Haibo Ni
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Clifford J. Garratt
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Mark R. Boyett
- Manchester Heart Centre, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Jules C. Hancox
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, and Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Space Institute of Southern China, Shenzhen, China
| |
Collapse
|
46
|
Saha M, Roney CH, Bayer JD, Meo M, Cochet H, Dubois R, Vigmond EJ. Wavelength and Fibrosis Affect Phase Singularity Locations During Atrial Fibrillation. Front Physiol 2018; 9:1207. [PMID: 30246796 PMCID: PMC6139329 DOI: 10.3389/fphys.2018.01207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
The mechanisms underlying atrial fibrillation (AF), the most common sustained cardiac rhythm disturbance, remain elusive. Atrial fibrosis plays an important role in the development of AF and rotor dynamics. Both electrical wavelength (WL) and the degree of atrial fibrosis change as AF progresses. However, their combined effect on rotor core location remains unknown. The aim of this study was to analyze the effects of WL change on rotor core location in both fibrotic and non-fibrotic atria. Three patient specific fibrosis distributions (total fibrosis content: 16.6, 22.8, and 19.2%) obtained from clinical imaging data of persistent AF patients were incorporated in a bilayer atrial computational model. Fibrotic effects were modeled as myocyte-fibroblast coupling + conductivity remodeling; structural remodeling; ionic current changes + conductivity remodeling; and combinations of these methods. To change WL, action potential duration (APD) was varied from 120 to 240ms, representing the range of clinically observed AF cycle length, by modifying the inward rectifier potassium current (IK1) conductance between 80 and 140% of the original value. Phase singularities (PSs) were computed to identify rotor core locations. Our results show that IK1 conductance variation resulted in a decrease of APD and WL across the atria. For large WL in the absence of fibrosis, PSs anchored to regions with high APD gradient at the center of the left atrium (LA) anterior wall and near the junctions of the inferior pulmonary veins (PVs) with the LA. Decreasing the WL induced more PSs, whose distribution became less clustered. With fibrosis, PS locations depended on the fibrosis distribution and the fibrosis implementation method. The proportion of PSs in fibrotic areas and along the borders varied with both WL and fibrosis modeling method: for patient one, this was 4.2-14.9% as IK1 varied for the structural remodeling representation, but 12.3-88.4% using the combination of structural remodeling with myocyte-fibroblast coupling. The degree and distribution of fibrosis and the choice of implementation technique had a larger effect on PS locations than the WL variation. Thus, distinguishing the fibrotic mechanisms present in a patient is important for interpreting clinical fibrosis maps to create personalized models.
Collapse
Affiliation(s)
- Mirabeau Saha
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Caroline H. Roney
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Jason D. Bayer
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Marianna Meo
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Hubert Cochet
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Remi Dubois
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| | - Edward J. Vigmond
- IMB, UMR 5251, University of Bordeaux, Pessac, France
- IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux University, Pessac, France
| |
Collapse
|
47
|
Cardone-Noott L, Rodriguez B, Bueno-Orovio A. Strategies of data layout and cache writing for input-output optimization in high performance scientific computing: Applications to the forward electrocardiographic problem. PLoS One 2018; 13:e0202410. [PMID: 30138401 PMCID: PMC6107169 DOI: 10.1371/journal.pone.0202410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/02/2018] [Indexed: 11/19/2022] Open
Abstract
Input-output (I/O) optimization at the low-level design of data layout on disk drastically impacts the efficiency of high performance computing (HPC) applications. However, such a low-level optimization is in general challenging, especially when using popular scientific file formats designed with an emphasis on portability and flexibility. To reconcile these two aspects, we present a novel low-level data layout for HPC applications, fully independent of the number of dimensions in the dataset. The new data layout improves reading and writing efficiency in large HPC applications using many processors, and in particular during parallel post-processing. Furthermore, its combination with a cached write mode, in order to aggregate multiple writes into larger ones, substantially decreased the writing times of the proposed strategy. When applied to our simulation framework for the forward calculation of the human electrocardiogram, the combined strategy resulted in drastic improvements in I/O performance, of up to 40% in writing and 93–98% in reading for post-processing tasks. Given the generality of the proposed strategies and scientific file formats used, our results may represent significant improvements in I/O performance of HPC applications across multiple disciplines, reducing execution and post-processing times and leading to a more efficient use of HPC resource envelopes.
Collapse
Affiliation(s)
- Louie Cardone-Noott
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Sahli Costabal F, Yao J, Kuhl E. Predicting drug-induced arrhythmias by multiscale modeling. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2964. [PMID: 29424967 DOI: 10.1002/cnm.2964] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Drugs often have undesired side effects. In the heart, they can induce lethal arrhythmias such as torsades de pointes. The risk evaluation of a new compound is costly and can take a long time, which often hinders the development of new drugs. Here, we establish a high-resolution, multiscale computational model to quickly assess the cardiac toxicity of new and existing drugs. The input of the model is the drug-specific current block from single cell electrophysiology; the output is the spatio-temporal activation profile and the associated electrocardiogram. We demonstrate the potential of our model for a low-risk drug, ranolazine, and a high-risk drug, quinidine: For ranolazine, our model predicts a prolonged QT interval of 19.4% compared with baseline and a regular sinus rhythm at 60.15 beats per minute. For quinidine, our model predicts a prolonged QT interval of 78.4% and a spontaneous development of torsades de pointes both in the activation profile and in the electrocardiogram. Our model reveals the mechanisms by which electrophysiological abnormalities propagate across the spatio-temporal scales, from specific channel blockage, via altered single cell action potentials and prolonged QT intervals, to the spontaneous emergence of ventricular tachycardia in the form of torsades de pointes. Our model could have important implications for researchers, regulatory agencies, and pharmaceutical companies on rationalizing safe drug development and reducing the time-to-market of new drugs.
Collapse
Affiliation(s)
| | - Jiang Yao
- Dassault Systèmes Simulia Corporation, Johnston, RI, USA
| | - Ellen Kuhl
- Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
49
|
Lyon A, Ariga R, Mincholé A, Mahmod M, Ormondroyd E, Laguna P, de Freitas N, Neubauer S, Watkins H, Rodriguez B. Distinct ECG Phenotypes Identified in Hypertrophic Cardiomyopathy Using Machine Learning Associate With Arrhythmic Risk Markers. Front Physiol 2018; 9:213. [PMID: 29593570 PMCID: PMC5859357 DOI: 10.3389/fphys.2018.00213] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/26/2018] [Indexed: 12/24/2022] Open
Abstract
Aims: Ventricular arrhythmia triggers sudden cardiac death (SCD) in hypertrophic cardiomyopathy (HCM), yet electrophysiological biomarkers are not used for risk stratification. Our aim was to identify distinct HCM phenotypes based on ECG computational analysis, and characterize differences in clinical risk factors and anatomical differences using cardiac magnetic resonance (CMR) imaging. Methods: High-fidelity 12-lead Holter ECGs from 85 HCM patients and 38 healthy volunteers were analyzed using mathematical modeling and computational clustering to identify phenotypic subgroups. Clinical features and the extent and distribution of hypertrophy assessed by CMR were evaluated in the subgroups. Results: QRS morphology alone was crucial to identify three HCM phenotypes with very distinct QRS patterns. Group 1 (n = 44) showed normal QRS morphology, Group 2 (n = 19) showed short R and deep S waves in V4, and Group 3 (n = 22) exhibited short R and long S waves in V4-6, and left QRS axis deviation. However, no differences in arrhythmic risk or distribution of hypertrophy were observed between these groups. Including T wave biomarkers in the clustering, four HCM phenotypes were identified: Group 1A (n = 20), with primary repolarization abnormalities showing normal QRS yet inverted T waves, Group 1B (n = 24), with normal QRS morphology and upright T waves, and Group 2 and Group 3 remaining as before, with upright T waves. Group 1A patients, with normal QRS and inverted T wave, showed increased HCM Risk-SCD scores (1A: 4.0%, 1B: 1.8%, 2: 2.1%, 3: 2.5%, p = 0.0001), and a predominance of coexisting septal and apical hypertrophy (p < 0.0001). HCM patients in Groups 2 and 3 exhibited predominantly septal hypertrophy (85 and 90%, respectively). Conclusion: HCM patients were classified in four subgroups with distinct ECG features. Patients with primary T wave inversion not secondary to QRS abnormalities had increased HCM Risk-SCD scores and coexisting septal and apical hypertrophy, suggesting that primary T wave inversion may increase SCD risk in HCM, rather than T wave inversion secondary to depolarization abnormalities. Computational ECG phenotyping provides insight into the underlying processes captured by the ECG and has the potential to be a novel and independent factor for risk stratification.
Collapse
Affiliation(s)
- Aurore Lyon
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Rina Ariga
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ana Mincholé
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Ormondroyd
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation & Computational Simulation Group, CIBER-BBN, University of Zaragoza, Zaragoza, Spain
| | - Nando de Freitas
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
50
|
Liu W, Kim TY, Huang X, Liu MB, Koren G, Choi BR, Qu Z. Mechanisms linking T-wave alternans to spontaneous initiation of ventricular arrhythmias in rabbit models of long QT syndrome. J Physiol 2018; 596:1341-1355. [PMID: 29377142 DOI: 10.1113/jp275492] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS T-wave alternans (TWA) and T-wave lability (TWL) are precursors of ventricular arrhythmias in long QT syndrome; however, the mechanistic link remains to be clarified. Computer simulations show that action potential duration (APD) prolongation and slowed heart rates promote APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos can exacerbate pre-existing or induce de novo APD dispersion, which combines with enhanced ICa,L to result in premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs can directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or further exacerbate the APD dispersion to cause spontaneous initiation of ventricular arrhythmias. Experiments conducted in transgenic long QT rabbits show that PVC alternans occurs at slow heart rates, preceding spontaneous intuition of ventricular arrhythmias. ABSTRACT T-wave alternans (TWA) and irregular beat-to-beat T-wave variability or T-wave lability (TWL), the ECG manifestations of action potential duration (APD) alternans and variability, are precursors of ventricular arrhythmias in long QT syndromes. TWA and TWL in patients tend to occur at normal heart rates and are usually potentiated by bradycardia. Whether or how TWA and TWL at normal or slow heart rates are causally linked to arrhythmogenesis remains unknown. In the present study, we used computer simulations and experiments of a transgenic rabbit model of long QT syndrome to investigate the underlying mechanisms. Computer simulations showed that APD prolongation and slowed heart rates caused early afterdepolarization-mediated APD alternans and chaos, manifesting as TWA and TWL, respectively. Regional APD alternans and chaos exacerbated pre-existing APD dispersion and, in addition, APD chaos could also induce APD dispersion de novo via chaos desynchronization. Increased APD dispersion, combined with substantially enhanced ICa,L , resulted in a tissue-scale dynamical instability that gave rise to the spontaneous occurrence of unidirectionally propagating premature ventricular complexes (PVCs) originating from the APD gradient region. These PVCs could directly degenerate into re-entrant arrhythmias without the need for an additional tissue substrate or could block the following sinus beat to result in a longer RR interval, which further exacerbated the APD dispersion giving rise to the spontaneous occurrence of ventricular arrhythmias. Slow heart rate-induced PVC alternans was observed in experiments of transgenic LQT2 rabbits under isoproterenol, which was associated with increased APD dispersion and spontaneous occurrence of ventricular arrhythmias, in agreement with the theoretical predictions.
Collapse
Affiliation(s)
- Weiqing Liu
- Department of Medicine, University of California, Los Angeles, California, USA.,School of Science, Jiangxi University of Science and Technology, Ganzhou, China
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Xiaodong Huang
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Physics, South China University of Technology, Guangzhou, China
| | - Michael B Liu
- Department of Medicine, University of California, Los Angeles, California, USA
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California, USA.,Department of Biomathematics, University of California, Los Angeles, California, USA
| |
Collapse
|