1
|
Moss R, Wülfers EM, Lewetag R, Hornyik T, Perez-Feliz S, Strohbach T, Menza M, Krafft A, Odening KE, Seemann G. A computational model of rabbit geometry and ECG: Optimizing ventricular activation sequence and APD distribution. PLoS One 2022; 17:e0270559. [PMID: 35771854 PMCID: PMC9246225 DOI: 10.1371/journal.pone.0270559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/13/2022] [Indexed: 11/19/2022] Open
Abstract
Computational modeling of electrophysiological properties of the rabbit heart is a commonly used way to enhance and/or complement findings from classic lab work on single cell or tissue levels. Yet, thus far, there was no possibility to extend the scope to include the resulting body surface potentials as a way of validation or to investigate the effect of certain pathologies. Based on CT imaging, we developed the first openly available computational geometrical model not only of the whole heart but also the complete torso of the rabbit. Additionally, we fabricated a 32-lead ECG-vest to record body surface potential signals of the aforementioned rabbit. Based on the developed geometrical model and the measured signals, we then optimized the activation sequence of the ventricles, recreating the functionality of the Purkinje network, and we investigated different apico-basal and transmural gradients in action potential duration. Optimization of the activation sequence resulted in an average root mean square error between measured and simulated signal of 0.074 mV/ms for all leads. The best-fit T-Wave, compared to measured data (0.038 mV/ms), resulted from incorporating an action potential duration gradient from base to apex with a respective shortening of 20 ms and a transmural gradient with a shortening of 15 ms from endocardium to epicardium. By making our model and measured data openly available, we hope to give other researchers the opportunity to verify their research, as well as to create the possibility to investigate the impact of electrophysiological alterations on body surface signals for translational research.
Collapse
Affiliation(s)
- Robin Moss
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Eike M. Wülfers
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raphaela Lewetag
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Tibor Hornyik
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Stefanie Perez-Feliz
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
| | - Tim Strohbach
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Marius Menza
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Axel Krafft
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Katja E. Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Freiburg, Germany
- Translational Cardiology, Department of Cardiology and Department of Physiology, University Hospital Bern, Bern, Switzerland
| | - Gunnar Seemann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg ⋅ Bad Krozingen, Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Arteyeva NV. Dispersion of ventricular repolarization: Temporal and spatial. World J Cardiol 2020; 12:437-449. [PMID: 33014291 PMCID: PMC7509993 DOI: 10.4330/wjc.v12.i9.437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Repolarization heterogeneity (RH) is an intrinsic property of ventricular myocardium and the reason for T-wave formation on electrocardiogram (ECG). Exceeding the physiologically based RH level is associated with appearance of life-threatening ventricular arrhythmias and sudden cardiac death. In this regard, an accurate and comprehensive evaluation of the degree of RH parameters is of importance for assessment of heart state and arrhythmic risk. This review is devoted to comprehensive consideration of RH phenomena in terms of electrophysiological processes underlying RH, cardiac electric field formation during ventricular repolarization, as well as clinical significance of RH and its reflection on ECG parameters. The formation of transmural, apicobasal, left-to-right and anterior-posterior gradients of action potential durations and end of repolarization times resulting from the heterogenous distribution of repolarizing ion currents and action potential morphology throughout the heart ventricles, and the different sensitivity of myocardial cells in different ventricular regions to the action of pharmacological agents, temperature, frequency of stimulation, etc., are being discussed. The review is focused on the fact that RH has different aspects – temporal and spatial, global and local; ECG reflection of various RH aspects and their clinical significance are being discussed. Strategies for comprehensive assessment of ventricular RH using different ECG indices reflecting various RH aspects are presented.
Collapse
Affiliation(s)
- Natalia V Arteyeva
- Laboratory of Cardiac Physiology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia
| |
Collapse
|
4
|
Dressler FF, Brado J, Odening KE. Electromechanical heterogeneity in the heart : A key to long QT syndrome? Herzschrittmacherther Elektrophysiol 2018; 29:43-47. [PMID: 29234865 DOI: 10.1007/s00399-017-0544-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
In the healthy heart, physiological heterogeneities in structure and in electrical and mechanical activity are crucial for normal, efficient excitation and pumping. Alterations of heterogeneity have been linked to arrhythmogenesis in various cardiac disorders such as long QT syndrome (LQTS). This inherited arrhythmia disorder is caused by mutations in different ion channel genes and is characterized by (heterogeneously) prolonged cardiac repolarization and increased risk for ventricular tachycardia, syncope and sudden cardiac death. Cardiac electrical and mechanical function are not independent of each other but interact in a bidirectional manner by electromechanical and mechano-electrical coupling. Therefore, changes in either process will affect the other. Recent experimental and clinical evidence suggests that LQTS, which is primarily considered an "electrical" disorder, also exhibits features of disturbed mechanical function and heterogeneity, which in turn appears to correlate with the risk of arrhythmia in the individual patient. In this review, we give a short overview of the current knowledge about physiological and pathological, long QT-related electrical and mechanical heterogeneity in the heart. Also, their respective roles for future risk prediction approaches in LQTS are discussed.
Collapse
Affiliation(s)
- F F Dressler
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Brado
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Munich, Germany
| | - K E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Experimental Cardiovascular Medicine, Heart Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Rog-Zielinska EA, Peyronnet R. Cardiac mechanics and electrics: It takes two to tango. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:121-123. [PMID: 28962935 DOI: 10.1016/j.pbiomolbio.2017.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen, Medical School of the University of Freiburg, Germany; Imperial College London, National Heart and Lung Institute, Heart Science Centre, UK
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg-Bad Krozingen, Medical School of the University of Freiburg, Germany.
| |
Collapse
|