1
|
Pagès JC. [Life is shaped by differences not supporting any hierarchy]. Med Sci (Paris) 2025; 41:282-285. [PMID: 40117555 DOI: 10.1051/medsci/2025038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025] Open
Affiliation(s)
- Jean-Christophe Pagès
- Unité mixte de recherche UMR RESTORE et Plateforme éthique et biosciences, Génotoul Societal, Université de Toulouse et CHU de Toulouse, France
| |
Collapse
|
2
|
Gontier N. Situating physiology within evolutionary theory. J Physiol 2024; 602:2401-2415. [PMID: 37755322 DOI: 10.1113/jp284410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Traditionally defined as the science of the living, or as the field that beyond anatomical structure and bodily form studies functional organization and behaviour, physiology has long been excluded from evolutionary research. The main reason for this exclusion is that physiology has a presential and futuristic outlook on life, while evolutionary theory is traditionally defined as the study of natural history. In this paper, I re-evaluate these classic science divisions and situate physiology within the history of the evolutionary sciences, as well as within debates on the Extended Evolutionary Synthesis and the need for a Third Way of Evolution. I then briefly point out how evolutionary physiology in particular contributes to research on function, causation, teleonomy, agency and cognition.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab & Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Kuzmin E, Baker TM, Van Loo P, Glass L. Dynamics of karyotype evolution. CHAOS (WOODBURY, N.Y.) 2024; 34:051502. [PMID: 38717409 PMCID: PMC11068413 DOI: 10.1063/5.0206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/19/2024] [Indexed: 05/12/2024]
Abstract
In the evolution of species, the karyotype changes with a timescale of tens to hundreds of thousand years. In the development of cancer, the karyotype often is modified in cancerous cells over the lifetime of an individual. Characterizing these changes and understanding the mechanisms leading to them has been of interest in a broad range of disciplines including evolution, cytogenetics, and cancer genetics. A central issue relates to the relative roles of random vs deterministic mechanisms in shaping the changes. Although it is possible that all changes result from random events followed by selection, many results point to other non-random factors that play a role in karyotype evolution. In cancer, chromosomal instability leads to characteristic changes in the karyotype, in which different individuals with a specific type of cancer display similar changes in karyotype structure over time. Statistical analyses of chromosome lengths in different species indicate that the length distribution of chromosomes is not consistent with models in which the lengths of chromosomes are random or evolve solely by simple random processes. A better understanding of the mechanisms underlying karyotype evolution should enable the development of quantitative theoretical models that combine the random and deterministic processes that can be compared to experimental determinations of the karyotype in diverse settings.
Collapse
Affiliation(s)
| | - Toby M. Baker
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | | | - Leon Glass
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
4
|
Brunk CF, Marshall CR. Opinion: The Key Steps in the Origin of Life to the Formation of the Eukaryotic Cell. Life (Basel) 2024; 14:226. [PMID: 38398735 PMCID: PMC10890422 DOI: 10.3390/life14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The path from life's origin to the emergence of the eukaryotic cell was long and complex, and as such it is rarely treated in one publication. Here, we offer a sketch of this path, recognizing that there are points of disagreement and that many transitions are still shrouded in mystery. We assume life developed within microchambers of an alkaline hydrothermal vent system. Initial simple reactions were built into more sophisticated reflexively autocatalytic food-generated networks (RAFs), laying the foundation for life's anastomosing metabolism, and eventually for the origin of RNA, which functioned as a genetic repository and as a catalyst (ribozymes). Eventually, protein synthesis developed, leading to life's biology becoming dominated by enzymes and not ribozymes. Subsequent enzymatic innovation included ATP synthase, which generates ATP, fueled by the proton gradient between the alkaline vent flux and the acidic sea. This gradient was later internalized via the evolution of the electron transport chain, a preadaptation for the subsequent emergence of the vent creatures from their microchamber cradles. Differences between bacteria and archaea suggests cellularization evolved at least twice. Later, the bacterial development of oxidative phosphorylation and the archaeal development of proteins to stabilize its DNA laid the foundation for the merger that led to the formation of eukaryotic cells.
Collapse
Affiliation(s)
- Clifford F. Brunk
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Charles R. Marshall
- Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720-4780, USA
| |
Collapse
|
5
|
Mahlfeld K, Parenti LR. Croizat's form-making, RNA networks, and biogeography. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2023; 45:42. [PMID: 38010532 PMCID: PMC10682228 DOI: 10.1007/s40656-023-00597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
Advances in technology have increased our knowledge of the processes that effect genomic changes and of the roles of RNA networks in biocommunication, functionality, and evolution of genomes. Natural genetic engineering and genomic inscription occur at all levels of life: cell cycles, development, and evolution. This has implications for phylogenetic studies and for biogeography, particularly given the general acceptance of using molecular clocks as arbiters between vicariance and dispersal explanations in biogeography. Léon Croizat's development of panbiogeography and his explanation for the distribution patterns of organisms are based on concepts of dispersal, differential form-making, and ancestor that differ from concepts of descent used broadly in phylogenetic and biogeographic studies. Croizat's differential form-making is consistent with the extensive roles ascribed to RNAs in development and evolution and recent discoveries of genome studies. Evolutionary-developmental biology (evo-devo), including epigenetics, and the role of RNAs should be incorporated into biogeography.
Collapse
Affiliation(s)
- Karin Mahlfeld
- Openlabnz, 5 Imlay Crescent, Wellington, Ngaio, 6035, New Zealand.
| | - Lynne R Parenti
- Division of Fishes, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| |
Collapse
|
6
|
Melkikh AV. Mutations, sex, and genetic diversity: New arguments for partially directed evolution. Biosystems 2023; 229:104928. [PMID: 37172758 DOI: 10.1016/j.biosystems.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A review of the theories of the existence of sexes, genetic diversity, and the distribution of mutations among organisms shows that all these concepts are not a product of random evolution and cannot be explained within the framework of Darwinism. Most mutations are the result of the genome acting on itself. This is an organized process that is implemented very differently in different species, in different places in the genome. Because of the fact that it is not random, this process must be directed and regulated, albeit with complex and not fully understood laws. This means that an additional reason must be included in order to model such mutations during evolution. The assumption of directionality must not only be explicitly included in evolutionary theory but must also occupy a central place in it. In this study an updated model of partially directed evolution is constructed, which is capable of qualitatively explaining the indicated features of evolution. Experiments are described that can confirm or disprove the proposed model.
Collapse
|
7
|
Ilan Y. Constrained disorder principle-based variability is fundamental for biological processes: Beyond biological relativity and physiological regulatory networks. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:37-48. [PMID: 37068713 DOI: 10.1016/j.pbiomolbio.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
The constrained disorder principle (CDP) defines systems based on their degree of disorder bounded by dynamic boundaries. The principle explains stochasticity in living and non-living systems. Denis Noble described the importance of stochasticity in biology, emphasizing stochastic processes at molecular, cellular, and higher levels in organisms as having a role beyond simple noise. The CDP and Noble's theories (NT) claim that biological systems use stochasticity. This paper presents the CDP and NT, discussing common notions and differences between the two theories. The paper presents the CDP-based concept of taking the disorder beyond its role in nature to correct malfunctions of systems and improve the efficiency of biological systems. The use of CDP-based algorithms embedded in second-generation artificial intelligence platforms is described. In summary, noise is inherent to complex systems and has a functional role. The CDP provides the option of using noise to improve functionality.
Collapse
Affiliation(s)
- Yaron Ilan
- Faculty of Medicine, Hebrew University, Department of Medicine, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
8
|
Spadafora C. The epigenetic basis of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:57-69. [PMID: 36720315 DOI: 10.1016/j.pbiomolbio.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/17/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
An increasing body of data are revealing key roles of epigenetics in evolutionary processes. The scope of this manuscript is to assemble in a coherent frame experimental evidence supporting a role of epigenetic factors and networks, active during embryogenesis, in orchestrating variation-inducing phenomena underlying evolution, seen as a global process. This process unfolds over two crucial levels: i) a flow of RNA-based information - predominantly small regulatory RNAs released from somatic cells exposed to environmental stimuli - taken up by spermatozoa and delivered to oocytes at fertilization and ii) the highly permissive and variation-prone environments offered by zygotes and totipotent early embryos. Totipotent embryos provide a variety of biological tools favouring the emergence of evolutionarily significant phenotypic novelties driven by RNA information. Under this light, neither random genomic mutations, nor the sieving role of natural selection are required, as the sperm-delivered RNA cargo conveys specific information and acts as "phenotypic-inducer" of defined environmentally acquired traits.
Collapse
Affiliation(s)
- Corrado Spadafora
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy.
| |
Collapse
|
9
|
Gontier N, Sukhoverkhov A. Reticulate evolution underlies synergistic trait formation in human communities. Evol Anthropol 2023; 32:26-38. [PMID: 36205197 DOI: 10.1002/evan.21962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/19/2022] [Accepted: 09/18/2022] [Indexed: 11/11/2022]
Abstract
This paper investigates how reticulate evolution contributes to a better understanding of human sociocultural evolution in general, and community formation in particular. Reticulate evolution is evolution as it occurs by means of symbiosis, symbiogenesis, lateral gene transfer, infective heredity, and hybridization. From these mechanisms and processes, we mainly zoom in on symbiosis and we investigate how it underlies the rise of (1) human, plant, animal, and machine interactions typical of agriculture, animal husbandry, farming, and industrialization; (2) diet-microbiome relationships; and (3) host-virome and other pathogen interactions that underlie human health and disease. We demonstrate that reticulate evolution necessitates an understanding of behavioral and cultural evolution at a community level, where reticulate causal processes underlie the rise of synergistic organizational traits.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab, Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Anton Sukhoverkhov
- Department of Philosophy, Kuban State Agrarian University, Krasnodar, Russia
| |
Collapse
|
10
|
Lemke NB, Dickerson AJ, Tomberlin JK. No neonates without adults: A review of adult black soldier fly biology, Hermetia illucens (Diptera: Stratiomyidae): A review of adult black soldier fly biology, Hermetia illucens (Diptera: Stratiomyidae). Bioessays 2023; 45:e2200162. [PMID: 36382549 DOI: 10.1002/bies.202200162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
With the potential to process the world's agricultural and food waste, provide sustainable fodder for livestock, aquaculture, and pet animals, as well as act as a source of novel biomolecules, the black soldier fly, Hermetia illucens, has been launched into the leading position within the insects as feed industry. Fulfilment of these goals, however, requires mass-rearing facilities to have a steady supply of neonate larvae, which in-turn requires an efficient mating process to yield fertile eggs; yet, little is known about adult reproductive behavior, nor what physiological factors lead to its emergence. Moreover, fertile egg production tends to be highly variable in colony. Therefore, this review brings together what is currently known of the organismal biology of H. illucens, compiling information on adult morphology, physiology, biogeography, genomics, and behavioral ecology. As a holistic synthesis, it highlights several directions of interest for research to follow.
Collapse
Affiliation(s)
- Noah B Lemke
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Amy Jean Dickerson
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, College Station, Texas, USA.,National Science Foundation Center for Environmental Sustainability Through Insect Farming (NSF CEIF), College Station, Texas, 77843, United States
| |
Collapse
|
11
|
Vane-Wright RI. Turning biology to life: some reflections. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
This essay presents various reflections on living systems, what they are and how they evolve, prompted by editing Teleonomy in Living Systems (a special issue of the Biological Journal of the Linnean Society). Conclusions include the suggestion that the linked notions of teleonomy and agency represent fundamental properties of matter that become apparent only when organized in the way that we consider to be that of a living system. As such, they are factors that form part of the intrinsic ‘a priori’ of living systems, as they evolve in form through space and time. Biology, the science of life and living systems, needs to be ‘biological’ if it is to be anything at all. Understanding the role of teleonomy (internal, inherent goal-seeking) will always play a necessary part in this endeavour: teleonomy represents one of the fundamental properties of living systems.
Collapse
Affiliation(s)
- Richard I Vane-Wright
- Durrell Institute of Conservation and Ecology (DICE), University of Kent , Canterbury CT2 7NR , UK
- Department of Life Sciences, Natural History Museum , London SW7 5BD , UK
| |
Collapse
|
12
|
Noble D. How the Hodgkin cycle became the principle of biological relativity. J Physiol 2022; 600:5171-5177. [PMID: 35980334 DOI: 10.1113/jp283193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Denis Noble
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Gontier N. Teleonomy as a problem of self-causation. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
A theoretical framework is provided to explore teleonomy as a problem of self-causation, distinct from upward, downward and reticulate causation. Causality theories in biology are often formulated within hierarchy theories, where causation is conceptualized as running up or down the rungs of a ladder-like hierarchy or, more recently, as moving between multiple hierarchies. Research on the genealogy of cosmologies demonstrates that in addition to hierarchy theories, causality theories also depend upon ideas of time. This paper explores the roots and impact of both time and hierarchy thinking on causal reasoning in the evolutionary sciences. Within evolutionary biology, the Neodarwinian synthesis adheres to a linear notion of time associated with linear hierarchies that portray upward causation. Eco-evo-devo schools recognize the importance of downward causation and consequently receive resistance from the standard view because downward causation is sometimes understood as backward causation, considered impossible by adherents of a linear time model. In contrast, downward causation works with a spatial or presential time notion. Hybridization, lateral gene transfer, infective heredity, symbiosis and symbiogenesis require recognition of reticulate causation occurring in both space and time, or spacetime, between distinct and interacting ontological hierarchies. Teleonomy is distinct from these types of causation because it invokes the problem of self-causation. By asking how the focal level in a hierarchy can persist through time, self-causation raises philosophical concerns on the nature of duration, identity and individuality.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab & Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa , 17 49-016 Lisboa , Portugal
| |
Collapse
|
14
|
Abstract
NEW FINDINGS What is the topic of this review? Revisiting the 2013 article 'Physiology is rocking the foundations of evolutionary biology'. What advances does it highlight? The discovery that the genome is not isolated from the soma and the environment, and that there is no barrier preventing somatic characteristics being transmitted to the germline, means that Darwin's pangenetic ideas become relevant again. ABSTRACT Charles Darwin spent the last decade of his life collaborating with physiologists in search of the biological processes of evolution. He viewed physiology as the way forward in answering fundamental questions about inheritance, acquired characteristics, and the mechanisms by which organisms could achieve their ends and survival. He collaborated with 19th century physiologists, notably John Burdon-Sanderson and George Romanes, in his search for the mechanisms of transgenerational inheritance. The discovery that the genome is not isolated from the soma and the environment, and that there is no barrier preventing somatic characteristics being transmitted to the germline, means that Darwin's pangenetic ideas become relevant again. It is time for 21st century physiology to come to the rescue of evolutionary biology. This article outlines research lines by which this could be achieved.
Collapse
Affiliation(s)
- Denis Noble
- Department of PhysiologyAnatomy & GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
15
|
Brown OR, Hullender DA. Neo-Darwinism must Mutate to survive. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 172:24-38. [PMID: 35439500 DOI: 10.1016/j.pbiomolbio.2022.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Darwinian evolution is a nineteenth century descriptive concept that itself has evolved. Selection by survival of the fittest was a captivating idea. Microevolution was biologically and empirically verified by discovery of mutations. There has been limited progress to the modern synthesis. The central focus of this perspective is to provide evidence to document that selection based on survival of the fittest is insufficient for other than microevolution. Realistic probability calculations based on probabilities associated with microevolution are presented. However, macroevolution (required for all speciation events and the complexifications appearing in the Cambrian explosion) are shown to be probabilistically highly implausible (on the order of 10-50) when based on selection by survival of the fittest. We conclude that macroevolution via survival of the fittest is not salvageable by arguments for random genetic drift and other proposed mechanisms. Evolutionary biology is relevant to cancer mechanisms with significance beyond academics. We challenge evolutionary biology to advance boldly beyond the inadequacies of the modern synthesis toward a unifying theory modeled after the Grand Unified Theory in physics. This should include the possibility of a fifth force in nature. Mathematics should be rigorously applied to current and future evolutionary empirical discoveries. We present justification that molecular biology and biochemistry must evolve to aeon (life) chemistry that acknowledges the uniqueness of enzymes for life. To evolve, biological evolution must face the known deficiencies, especially the limitations of the concept survival of the fittest, and seek solutions in Eigen's concept of self-organization, Schrödinger's negentropy, and novel approaches.
Collapse
Affiliation(s)
- Olen R Brown
- Dalton Cardiovascular Research Center, University of Missouri- Columbia, USA.
| | - David A Hullender
- Professor of Mechanical and Aerospace Engineering at the University of Texas at Arlington, USA
| |
Collapse
|
16
|
Santos TCB, Dingjan T, Futerman AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway. FEBS Lett 2022; 596:2345-2363. [PMID: 35899376 DOI: 10.1002/1873-3468.14457] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
Modern cell membranes contain a bewildering complexity of lipids, among them sphingolipids (SLs). Advances in mass spectrometry have led to the realization that the number and combinatorial complexity of lipids, including SLs, is much greater than previously appreciated. SLs are generated de novo by four enzymes, namely serine palmitoyltransferase, 3-ketodihydrosphingosine reductase, ceramide synthase and dihydroceramide Δ4-desaturase 1. Some of these enzymes depend on the availability of specific substrates and cofactors, which are themselves supplied by other complex metabolic pathways. The evolution of these four enzymes is poorly understood and likely depends on the co-evolution of the metabolic pathways that supply the other essential reaction components. Here, we introduce the concept of the 'anteome', from the Latin ante ('before') to describe the network of metabolic ('omic') pathways that must have converged in order for these pathways to co-evolve and permit SL synthesis. We also suggest that current origin of life and evolutionary models lack appropriate experimental support to explain the appearance of this complex metabolic pathway and its anteome.
Collapse
Affiliation(s)
- Tania C B Santos
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Dingjan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
17
|
Integrating mutational and nonmutational mechanisms of acquired therapy resistance within the Darwinian paradigm. Trends Cancer 2022; 8:456-466. [DOI: 10.1016/j.trecan.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
|
18
|
|
19
|
Taming, Domestication and Exaptation: Trajectories of Transposable Elements in Genomes. Cells 2021; 10:cells10123590. [PMID: 34944100 PMCID: PMC8700633 DOI: 10.3390/cells10123590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
During evolution, several types of sequences pass through genomes. Along with mutations and internal genetic tinkering, they are a useful source of genetic variability for adaptation and evolution. Most of these sequences are acquired by horizontal transfers (HT), but some of them may come from the genomes themselves. If they are not lost or eliminated quickly, they can be tamed, domesticated, or even exapted. Each of these processes results from a series of events, depending on the interactions between these sequences and the host genomes, but also on environmental constraints, through their impact on individuals or population fitness. After a brief reminder of the characteristics of each of these states (taming, domestication, exaptation), the evolutionary trajectories of these new or acquired sequences will be presented and discussed, emphasizing that they are not totally independent insofar as the first can constitute a step towards the second, and the second is another step towards the third.
Collapse
|
20
|
Crkvenjakov R, Heng HH. Further illusions: On key evolutionary mechanisms that could never fit with Modern Synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 169-170:3-11. [PMID: 34767862 DOI: 10.1016/j.pbiomolbio.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
In the light of illusions of the Modern Synthesis (MS) listed by Noble (2021a), its key concept, that gradual accumulation of gene mutations within microevolution leads to macroevolution, requires reexamination. In this article, additional illusions of the MS are identified as being caused by the absence of system information and correct history. First, the MS lacks distinction among the two basic types of information: genome-defined system and gene-defined parts-information, as its treatment was based mostly on gene information. In contrast, it is argued here that system information is maintained by species-specific karyotype code, and macroevolution is based on the whole genome information package rather than on specific genes. Linking the origin of species with system information shows that the creation and accumulation of the latter in evolution is the fundamental question omitted from the MS. Second, modern evidence eliminates the MS's preferred theory that present evolutionary events can be linearly extrapolated to the past to reconstruct Life's history, wrongly assuming that most of the fossil record supports the gradual change while ignoring the true karyotype/genome patterns. Furthermore, stasis, as the most prominent pattern of the deep history of Life, remains a puzzle to the MS, but can be explained by the mechanism of karyotype-preservation-via-sex. Consequently, the concept of system-information is smoothly integrated into the two-phased evolutionary model that paleontology requires (Eldredge and Gould, 1972). Finally, research on genome-level causation of evolution, which does not fit the MS, is summarized. The availability of alternative concepts further illustrates that it is time to depart from the MS.
Collapse
Affiliation(s)
| | - Henry H Heng
- Center for Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|