1
|
Morris T, Muradova Z, Brown N, Carmès L, Guthier R, Iyer M, Seban L, Liles A, Bennett S, Isikawa M, Lavelle M, Bort G, Lux F, Tillement O, Dufort S, LeDuc G, Berbeco R. Second Generation Gd-Bi Ultrasmall Nanoparticles Amplify the Effects of Clinical Radiation Therapy and Provide Clinical MRI Contrast. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00420-1. [PMID: 40348199 DOI: 10.1016/j.ijrobp.2025.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025]
Abstract
PURPOSE AGuIX nanoparticles consisting of Gd atoms chelated to a polysiloxane matrix are under clinical evaluation as theranostic agents with radiation therapy. A new generation, AGuIX-Bi, replaces 70% of the Gd atoms in AGuIX with Bi atoms, improving radiation dose amplification while maintaining MRI contrast. The therapeutic efficacy of AGuIX-Bi was investigated under clinical megavoltage and MRI conditions in two of non-small cell lung cancer (NSCLC) models. METHODS AND MATERIALS Murine (LLC) and human (A549) NSCLC were studied in mice, with animals inoculated and divided into cohorts for control (saline, AGuIX, AGuIX-Bi) and irradiation (saline+RT, AGuIX+RT, AGuIX-Bi+RT). Nanoparticle cohorts were injected 24-hours prior to delivering 10 Gy of irradiation using a 6 MV flattening-filter-free (FFF) beam. Tumors were measured until euthanasia was necessary, taken as time-to-tumor doubling (TTD). Additionally, AGuIX and AGuIX-Bi phantoms were constructed with T1-weighted images and maps taken using a 3T clinical MRI scanner. T1-images of A549 inoculated mice were obtained on the same scanner with injection of AGuIX or AGuIX-Bi 2- and 24-hrs prior to imaging. RESULTS No toxicity was observed due to nanoparticle injection, anaesthesia, or irradiation. In both LLC and A549 models, AGuIX-Bi+RT significantly outperformed both saline+RT and AGuIX+RT in reducing tumor growth (p<0.05). Median TTD for AGuIX-Bi+RT compared to AGuIX+RT groups was increased by 160% for A549, and by 60% for LLC models (p<0.05). Longitudinal relaxivity constants (r1) derived from phantom T1-mapping were 6.9 mM-1 s-1 for AGuIX and 8.4 mM-1 s-1 for AGuIX-Bi. Additionally, T1-weighted mouse tumor imaging showed contrast-to-noise (CNR) of AGuIX-Bi to be roughly half that of AGuIX. CONCLUSIONS AGuIX-Bi nanoparticles proved more effective than AGuIX at delaying tumor growth for both NSCLC models while maintaining sufficient MRI contrast at 3T. Replacing some Gd atoms with bismuth improves the efficacy of AGuIX nanoparticles under clinical megavoltage energies without compromising imaging.
Collapse
Affiliation(s)
- Toby Morris
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115.
| | - Zeinaf Muradova
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Needa Brown
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816
| | - Léna Carmès
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France; NH TherAguix SA, Meylan 38240, France
| | - Romy Guthier
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854
| | - Meghna Iyer
- William Beaumont School of Medicine, Oakland University, Rochester, MI 48309
| | - Léa Seban
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France; NH TherAguix SA, Meylan 38240, France
| | - Arianna Liles
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Stephanie Bennett
- Biological Sciences Division, University of Chicago, Chicago, IL 60637
| | - Mileni Isikawa
- Departamento de Física, FFCLRP- Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Michael Lavelle
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Guillaume Bort
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France; Institut Curie, PSL Research University, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, Orsay, France; Université Paris-Saclay, CNRS, UMR9187, INSERM, U1196, Chemistry and Modeling for the Biology of Cancer, Orsay, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Lyon1-CNRS, Université de Lyon, Villeurbanne Cedex 69100, France
| | | | | | - Ross Berbeco
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|
2
|
Aubrun C, Doussineau T, Carmès L, Meyzaud A, Boux F, Dufort S, Delfour A, De Beaumont O, Mirjolet C, Le Duc G. Mechanisms of Action of AGuIX as a Pan-Cancer Nano-Radiosensitizer: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:519. [PMID: 40283954 PMCID: PMC12030438 DOI: 10.3390/ph18040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Objective: This review provides an overview of the current knowledge regarding the mechanisms of action of AGuIX, a clinical-stage theranostic nano-radiosensitizer composed of gadolinium. It covers the steps following the administration, from the internalization in tumor cells to the interaction with X-rays and the subsequent physical, chemical, biological, and immunological events. Results: After intravenous injection, AGuIX accumulates in tumors through the enhanced permeability and retention (EPR) effect, and its specific retention properties allow its persistence in tumors for several days. At the cellular level, the nanomedicine is internalized by endocytic processes and mainly located in the cytoplasm, especially in lysosomes. AGuIX enhances the effects of radiotherapy (RT) at several levels, starting from radiation-matter interactions to a chemical stage of reactive oxygen species (ROS) production, followed by a cascade of biological events leading to tumor cell death and immune response. Indeed, AGuIX induces a local increase in radiation dose deposition through the emission of Auger electrons, leading to a subsequent increase in ROS generation. AGuIX also impacts RT-induced biological mechanisms, including DNA damage and cell death mechanisms such as apoptosis, autophagic cell death, and ferroptosis. Last, the combination of AGuIX and RT stimulates an antitumor immune response through the induction of immunogenic cell death (ICD), the activation of dendritic and T cells, and the reprogramming of tumor-associated macrophages (TAMs) into a pro-inflammatory phenotype. Conclusions: AGuIX is a clinical-stage nanoparticle (NP) intravenously administered with pan-cancer potential due to its specific biodistribution properties and a strong ability to amplify RT-induced mechanisms.
Collapse
Affiliation(s)
- Clémentine Aubrun
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Tristan Doussineau
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Léna Carmès
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Aurélien Meyzaud
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Fabien Boux
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Sandrine Dufort
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Adeline Delfour
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
- X-Rain: Research Unit in Radiotherapy Combined with Immunotherapies and Nanoparticles, IMATHERA, Radiation Therapy Department, Centre Georges-François Leclerc, 21000 Dijon, France;
- TIReCS Team, CTM (Center for Translational and Molecular Medicine), INSERM UMR 1231, 21000 Dijon, France
| | - Olivier De Beaumont
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| | - Céline Mirjolet
- X-Rain: Research Unit in Radiotherapy Combined with Immunotherapies and Nanoparticles, IMATHERA, Radiation Therapy Department, Centre Georges-François Leclerc, 21000 Dijon, France;
- TIReCS Team, CTM (Center for Translational and Molecular Medicine), INSERM UMR 1231, 21000 Dijon, France
| | - Géraldine Le Duc
- NH TherAguix SA, 19 Chemin des Prés, 38240 Meylan, France; (T.D.); (L.C.); (A.M.); (F.B.); (S.D.); (A.D.); (O.D.B.)
| |
Collapse
|
3
|
Cizkova J, Dolezal OJ, Buchta V, Pospichal J, Blanar V, Sinkorova Z, Carrillo A. Golden era of radiosensitizers. Front Vet Sci 2024; 11:1450776. [PMID: 39711799 PMCID: PMC11659289 DOI: 10.3389/fvets.2024.1450776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
The past 30 years have brought undeniable progress in medicine, biology, physics, and research. Knowledge of the nature of the human body, diseases, and disorders has been constantly improving, and the same is true regarding their treatment and diagnosis. One of the greatest advances in recent years has been the introduction of nanoparticles (NPs) into medicine. NPs refer to a material at a nanometer scale (0.1-100 nm) with features (specific physical, chemical, and biological properties) that are broadly and increasingly used in the medical field. Their applications in cancer treatment and radiotherapy seem particularly attractive. In this field, inorganic/metal NPs with high atomic number Z have been employed mainly due to their ability to enhance ionizing radiation's photoelectric and Compton effects and thereby increase conventional radiation therapy's efficacy. The improvement NPs enable relates to their enhanced permeation ability and longer retention effect in tumor cells, capacity to reduce toxicity of commercially available cancer drugs through advanced NPs drug delivery systems, radiation sensitizers of tumors, or enhancers of radiation doses to tumors. Advanced options according to size, core, and surface modification allow even such multimodal approaches in therapy as nanotheranostics or combined treatments. The current state of knowledge emphasizes the role of gold nanoparticles (AuNPs) in sensitizing tumors to radiation. We have reviewed AuNPs and their radiosensitizing power during radiation treatment. Our results are divided into groups based on AuNPs' surface modification and/or core structure design. This study provides a complete summary of the in vivo sensitizing effect of AuNPs, surface-modified AuNPs, and AuNPs combined with different elements, providing evidence for further successful veterinarian and clinical implementation.
Collapse
Affiliation(s)
- Jana Cizkova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Ondrej Jan Dolezal
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Vojtech Buchta
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czechia
| | - Jan Pospichal
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czechia
| | - Vit Blanar
- Department of Nursing, Faculty of Health Studies, University of Pardubice, Pardubice, Czechia
| | - Zuzana Sinkorova
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| | - Anna Carrillo
- Department of Radiobiology, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czechia
| |
Collapse
|
4
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Chen Q, Fang C, Xia F, Wang Q, Li F, Ling D. Metal nanoparticles for cancer therapy: Precision targeting of DNA damage. Acta Pharm Sin B 2024; 14:1132-1149. [PMID: 38486992 PMCID: PMC10934341 DOI: 10.1016/j.apsb.2023.08.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/30/2023] [Accepted: 08/15/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunyan Fang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Xia
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Fangyuan Li
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou 310009, China
| | - Daishun Ling
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| |
Collapse
|
7
|
Zhang R, Jia M, Lv H, Li M, Ding G, Cheng G, Li J. Assembling Au 8 clusters on surfaces of bifunctional nanoimmunomodulators for synergistically enhanced low dose radiotherapy of metastatic tumor. J Nanobiotechnology 2024; 22:20. [PMID: 38183048 PMCID: PMC10768385 DOI: 10.1186/s12951-023-02279-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Radiotherapy is one of the mainstays of cancer therapy and has been used for treating 65-75% of patients with solid tumors. However, radiotherapy of tumors has two limitations: high-dose X-rays damage adjacent normal tissue and tumor metastases cannot be prevented. RESULTS Therefore, to overcome the two limitations of radiotherapy, a multifunctional core-shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer were fabricated by assembling Au8NCs on the surface of a bifunctional nanoimmunomodulator R837/BMS nanocore using nanoprecipitation followed by electrostatic assembly. Formed R837/BMS@Au8 NP composed of R837, BMS-1, and Au8 clusters. Au8NC can enhance X-ray absorption at the tumor site to reduce X-ray dose and releases a large number of tumor-associated antigens under X-ray irradiation. With the help of immune adjuvant R837, dendritic cells can effectively process and present tumor-associated antigens to activate effector T cells, meanwhile, a small-molecule PD-L1 inhibitor BMS-1 can block PD-1/PD-L1 pathway to reactivate cytotoxic T lymphocyte, resulting in a strong systemic antitumor immune response that is beneficial for limiting tumor metastasis. According to in vivo and in vitro experiments, radioimmunotherapy based on R837/BMS@Au8 nanoparticles can increase calreticulin expression on of cancer cells, reactive oxygen species generation, and DNA breakage and decrease colony formation. The results revealed that distant tumors were 78.2% inhibited depending on radioimmunotherapy of primary tumors. Therefore, the use of a novel radiosensitizer R837/BMS@Au8 NPs realizes low-dose radiotherapy combined with immunotherapy against advanced cancer. CONCLUSION In conclusion, the multifunctional core-shell R837/BMS@Au8 nanoparticles as a novel radiosensitizer effectively limiting tumor metastasis and decrease X-ray dose to 1 Gy, providing an efective strategy for the construction of nanosystems with radiosensitizing function.
Collapse
Affiliation(s)
- Rui Zhang
- School of Public Health, Jilin University, Chang Chun, 130021, China.
| | - Mengchao Jia
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Hongying Lv
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Radiation Medicine Chinese Academy of Medical Sciences, Tianjin, 300192, China
| | - Mengxuan Li
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Guanwen Ding
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Ge Cheng
- School of Public Health, Jilin University, Chang Chun, 130021, China
| | - Juan Li
- School of Public Health, Jilin University, Chang Chun, 130021, China.
| |
Collapse
|
8
|
Varzandeh M, Sabouri L, Mansouri V, Gharibshahian M, Beheshtizadeh N, Hamblin MR, Rezaei N. Application of nano-radiosensitizers in combination cancer therapy. Bioeng Transl Med 2023; 8:e10498. [PMID: 37206240 PMCID: PMC10189501 DOI: 10.1002/btm2.10498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/08/2022] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Radiosensitizers are compounds or nanostructures, which can improve the efficiency of ionizing radiation to kill cells. Radiosensitization increases the susceptibility of cancer cells to radiation-induced killing, while simultaneously reducing the potentially damaging effect on the cellular structure and function of the surrounding healthy tissues. Therefore, radiosensitizers are therapeutic agents used to boost the effectiveness of radiation treatment. The complexity and heterogeneity of cancer, and the multifactorial nature of its pathophysiology has led to many approaches to treatment. The effectiveness of each approach has been proven to some extent, but no definitive treatment to eradicate cancer has been discovered. The current review discusses a broad range of nano-radiosensitizers, summarizing possible combinations of radiosensitizing NPs with several other types of cancer therapy options, focusing on the benefits and drawbacks, challenges, and future prospects.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
| | - Leila Sabouri
- AmitisGen TECH Dev GroupTehranIran
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Vahid Mansouri
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical SciencesTehranIran
| | - Maliheh Gharibshahian
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Student Research CommitteeSchool of Medicine, Shahroud University of Medical SciencesShahroudIran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED)Universal Scientific Education and Research Network (USERN)TehranIran
- Department of Tissue EngineeringSchool of Advanced Technologies in Medicine, Tehran University of Medical SciencesTehranIran
| | - Michael R. Hamblin
- Laser Research Center, Faculty of Health ScienceUniversity of JohannesburgDoornfonteinSouth Africa
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for ImmunodeficienciesChildren's Medical Center, Tehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of Medicine, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
9
|
Varzandeh M, Varshosaz J, Labbaf S, Esmaeil N. Sodium-borohydride exfoliated bismuthene loaded with Mitomycin C for chemo-photo-radiotherapy of triple negative breast cancer. Int J Pharm 2023; 636:122825. [PMID: 36921740 DOI: 10.1016/j.ijpharm.2023.122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
In current study, a new remotely controlled drug delivery, radio-sensitizing, and photothermal therapy agent based on thioglycolic acid modified bismuth nanosheets is thoroughly evaluated. Bismuth nanosheets were synthesized using sodium borohydride (NaBH4) and Tween 20 through low energy (400 W) sonication within 2 h. The resultant nanosheets were 40-60 nm in size and 1-3 atomic layers in thickness. The morphological and structural characteristics of the nanosheets were studied using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy and ultraviolet spectroscopy. The surface of the nanosheets was modified using thioglycolic acid, which resulted in enhanced Mitomycin C loading capacity to 274.35% and circumvented the burst drug release due to the improved electrostatic interactions. At pH 7.4 and 5.0, the drug release was significantly boosted from 45.1 to 69.8%, respectively. Thioglycolic acid modified bismuth nanosheets under 1064 nm laser irradiation possessed photothermal conversion efficiency of η=51.4% enabling a temperature rise of 24.9 °C at 100 μg/ml in 5 min. The combination of drug delivery, photothermal therapy, and radio-sensitization greatly damaged the MDA-MB-231 cells through apoptosis and diminished their colony forming.
Collapse
Affiliation(s)
- Mohammad Varzandeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
10
|
Khorasani A, Shahbazi-Gahrouei D, Safari A. Recent Metal Nanotheranostics for Cancer Diagnosis and Therapy: A Review. Diagnostics (Basel) 2023; 13:diagnostics13050833. [PMID: 36899980 PMCID: PMC10000685 DOI: 10.3390/diagnostics13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
In recent years, there has been an increasing interest in using nanoparticles in the medical sciences. Today, metal nanoparticles have many applications in medicine for tumor visualization, drug delivery, and early diagnosis, with different modalities such as X-ray imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), etc., and treatment with radiation. This paper reviews recent findings of recent metal nanotheranostics in medical imaging and therapy. The study offers some critical insights into using different types of metal nanoparticles in medicine for cancer detection and treatment purposes. The data of this review study were gathered from multiple scientific citation websites such as Google Scholar, PubMed, Scopus, and Web of Science up through the end of January 2023. In the literature, many metal nanoparticles are used for medical applications. However, due to their high abundance, low price, and high performance for visualization and treatment, nanoparticles such as gold, bismuth, tungsten, tantalum, ytterbium, gadolinium, silver, iron, platinum, and lead have been investigated in this review study. This paper has highlighted the importance of gold, gadolinium, and iron-based metal nanoparticles in different forms for tumor visualization and treatment in medical applications due to their ease of functionalization, low toxicity, and superior biocompatibility.
Collapse
Affiliation(s)
- Amir Khorasani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Correspondence: ; Tel.: +98-31-37929095
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71439-14693, Iran
| |
Collapse
|