1
|
Ruparelia N, Godec J, Lee R, Chai JT, Dall'Armellina E, McAndrew D, Digby JE, Forfar JC, Prendergast BD, Kharbanda RK, Banning AP, Neubauer S, Lygate CA, Channon KM, Haining NW, Choudhury RP. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur Heart J 2015; 36:1923-34. [PMID: 25982896 PMCID: PMC4571177 DOI: 10.1093/eurheartj/ehv195] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
AIMS Monocytes play critical roles in tissue injury and repair following acute myocardial infarction (AMI). Specifically targeting inflammatory monocytes in experimental models leads to reduced infarct size and improved healing. However, data from humans are sparse, and it remains unclear whether monocytes play an equally important role in humans. The aim of this study was to investigate whether the monocyte response following AMI is conserved between humans and mice and interrogate patterns of gene expression to identify regulated functions. METHODS AND RESULTS Thirty patients (AMI) and 24 control patients (stable coronary atherosclerosis) were enrolled. Female C57BL/6J mice (n = 6/group) underwent AMI by surgical coronary ligation. Myocardial injury was quantified by magnetic resonance imaging (human) and echocardiography (mice). Peripheral monocytes were isolated at presentation and at 48 h. RNA from separated monocytes was hybridized to Illumina beadchips. Acute myocardial infarction resulted in a significant peripheral monocytosis in both species that positively correlated with the extent of myocardial injury. Analysis of the monocyte transcriptome following AMI demonstrated significant conservation and identified inflammation and mitosis as central processes to this response. These findings were validated in both species. CONCLUSIONS Our findings show that the monocyte transcriptome is conserved between mice and humans following AMI. Patterns of gene expression associated with inflammation and proliferation appear to be switched on prior to their infiltration of injured myocardium suggesting that the specific targeting of inflammatory and proliferative processes in these immune cells in humans are possible therapeutic strategies. Importantly, they could be effective in the hours after AMI.
Collapse
Affiliation(s)
- Neil Ruparelia
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK Oxford Heart Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Jernej Godec
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Regent Lee
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Joshua T Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Erica Dall'Armellina
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK Acute Vascular Imaging Centre, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Debra McAndrew
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Janet E Digby
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - J Colin Forfar
- Oxford Heart Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | | | - Rajesh K Kharbanda
- Oxford Heart Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Adrian P Banning
- Oxford Heart Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Keith M Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK Oxford Heart Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| | - Nicholas W Haining
- Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK Oxford Heart Centre, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK Acute Vascular Imaging Centre, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Khan SA, Williamson EE, Foley TA, Cullen EL, Young PM, Araoz PA. Cardiac MRI of acute coronary syndrome. Future Cardiol 2013; 9:351-70. [DOI: 10.2217/fca.13.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute coronary syndrome (ACS) is a major cause of morbidity and mortality worldwide. New serological biomarkers, such as troponins, have improved the diagnosis of ACS; however, the diagnosis of ACS can still be difficult as there is marked heterogeneity in its presentation and significant overlap with other disorders presenting with chest pain. Evidence is accumulating that cardiac MRI provides information that can aid the detection and differential diagnosis of ACS, guide clinical decision-making and improve risk-stratification after an event. In this review, we present the relevant cardiac MRI techniques that can be used to detect ACS accurately, provide differential diagnosis, identify the sequelae of ACS, and determine prognostication after ACS.
Collapse
Affiliation(s)
- Shamruz Akerem Khan
- Department of Radiology, Mayo Clinic, 200 First Street, Southwest Rochester, MN 55905, USA
| | - Eric E Williamson
- Department of Radiology, Mayo Clinic, 200 First Street, Southwest Rochester, MN 55905, USA
| | - Thomas A Foley
- Department of Radiology, Mayo Clinic, 200 First Street, Southwest Rochester, MN 55905, USA
| | - Ethany L Cullen
- Department of Radiology, Mayo Clinic, 200 First Street, Southwest Rochester, MN 55905, USA
| | - Phillip M Young
- Department of Radiology, Mayo Clinic, 200 First Street, Southwest Rochester, MN 55905, USA
| | - Philip A Araoz
- Department of Radiology, Mayo Clinic, 200 First Street, Southwest Rochester, MN 55905, USA.
| |
Collapse
|
3
|
Smith RM, Black AJ, Velamakanni SS, Akkin T, Tolkacheva EG. Visualizing the complex 3D geometry of the perfusion border zone in isolated rabbit heart. APPLIED OPTICS 2012; 51:2713-2721. [PMID: 22614494 DOI: 10.1364/ao.51.002713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 03/14/2012] [Indexed: 06/01/2023]
Abstract
Myocardial infarction, caused by a major blockage of a coronary artery, creates a border zone (BZ) between perfused and nonperfused tissue, which is believed to be the origin of fatal cardiac arrhythmias. We used a combination of optical clearing and polarization-sensitive optical coherence tomography to visualize a three-dimensional organization of the BZ in isolated rabbit hearts (n=5) at the microscopic level with a high spatial resolution. We found that the BZ has a complex three-dimensional structure with nonperfused areas penetrating into perfused tissue with finger-like projections. These "fingers" may play an important role in the initiation and maintenance of ventricular arrhythmias.
Collapse
Affiliation(s)
- Rebecca M Smith
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|