1
|
Marí-Bauset S, Peraita-Costa I, Donat-Vargas C, Llopis-González A, Marí-Sanchis A, Llopis-Morales J, Morales Suárez-Varela M. Systematic review of prenatal exposure to endocrine disrupting chemicals and autism spectrum disorder in offspring. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 26:6-32. [PMID: 34412519 DOI: 10.1177/13623613211039950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LAY ABSTRACT Autism spectrum disorders comprise a complex group with many subtypes of behaviorally defined neurodevelopmental abnormalities in two core areas: deficits in social communication and fixated, restricted, repetitive, or stereotyped behaviors and interests each with potential unique risk factors and characteristics. The underlying mechanisms and the possible causes of autism spectrum disorder remain elusive and while increased prevalence is undoubtable, it is unclear if it is a reflection of diagnostic improvement or emerging risk factors such as endocrine disrupting chemicals. Epidemiological studies, which are used to study the relation between endocrine disrupting chemicals and autism spectrum disorder, can have inherent methodological challenges that limit the quality and strength of their findings. The objective of this work is to systematically review the treatment of these challenges and assess the quality and strength of the findings in the currently available literature. The overall quality and strength were "moderate" and "limited," respectively. Risk of bias due to the exclusion of potential confounding factors and the lack of accuracy of exposure assessment methods were the most prevalent. The omnipresence of endocrine disrupting chemicals and the biological plausibility of the association between prenatal exposure and later development of autism spectrum disorder highlight the need to carry out well-designed epidemiological studies that overcome the methodological challenges observed in the currently available literature in order to be able to inform public policy to prevent exposure to these potentially harmful chemicals and aid in the establishment of predictor variables to facilitate early diagnosis of autism spectrum disorder and improve long-term outcomes.
Collapse
Affiliation(s)
- Salvador Marí-Bauset
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - Isabel Peraita-Costa
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Agustín Llopis-González
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| | | | - Juan Llopis-Morales
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
| | - María Morales Suárez-Varela
- Unit of Public Health and Environmental Care, Department of Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine, University of Valencia, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Institute of Health Carlos III, Spain
| |
Collapse
|
2
|
Abstract
Anthropogenic environmental pollutants affect many physiological, biochemical, and endocrine actions as reproduction, metabolism, immunity, behavior and as such can interfere with any aspect of hormone action. Microbiota and their genes, microbiome, a large body of microorganisms, first of all bacteria and co-existing in the host´s gut, are now believed to be autonomous endocrine organ, participating at overall endocrine, neuroendocrine and immunoendocrine regulations. While an extensive literature is available on the physiological and pathological aspects of both players, information about their mutual relationships is scarce. In the review we attempted to show various examples where both, endocrine disruptors and microbiota are meeting and can act cooperatively or in opposition and to show the mechanism, if known, staying behind these actions.
Collapse
Affiliation(s)
- R Hampl
- Institute of Endocrinology, Prague, Czech Republic.
| | | |
Collapse
|
3
|
Dhaliwal KK, Orsso CE, Richard C, Haqq AM, Zwaigenbaum L. Risk Factors for Unhealthy Weight Gain and Obesity among Children with Autism Spectrum Disorder. Int J Mol Sci 2019; 20:3285. [PMID: 31277383 PMCID: PMC6650879 DOI: 10.3390/ijms20133285] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder characterized by social and communication deficits and repetitive behaviors. Children with ASD are also at a higher risk for developing overweight or obesity than children with typical development (TD). Childhood obesity has been associated with adverse health outcomes, including insulin resistance, diabetes, heart disease, and certain cancers. Importantly some key factors that play a mediating role in these higher rates of obesity include lifestyle factors and biological influences, as well as secondary comorbidities and medications. This review summarizes current knowledge about behavioral and lifestyle factors that could contribute to unhealthy weight gain in children with ASD, as well as the current state of knowledge of emerging risk factors such as the possible influence of sleep problems, the gut microbiome, endocrine influences and maternal metabolic disorders. We also discuss some of the clinical implications of these risk factors and areas for future research.
Collapse
Affiliation(s)
- Khushmol K Dhaliwal
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
| | - Camila E Orsso
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, 2-06 Agriculture Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, 2-06 Agriculture Forestry Centre, Edmonton, AB T6G 2P5, Canada
| | - Andrea M Haqq
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada.
- Department of Agricultural, Food and Nutritional Science, Faculty of Agricultural, Life & Environmental Sciences, University of Alberta, 2-06 Agriculture Forestry Centre, Edmonton, AB T6G 2P5, Canada.
| | - Lonnie Zwaigenbaum
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada.
| |
Collapse
|
4
|
Diagnostic and Severity-Tracking Biomarkers for Autism Spectrum Disorder. J Mol Neurosci 2018; 66:492-511. [DOI: 10.1007/s12031-018-1192-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
|
5
|
Sobolewski M, Anderson T, Conrad K, Marvin E, Klocke C, Morris-Schaffer K, Allen JL, Cory-Slechta DA. Developmental exposures to ultrafine particle air pollution reduces early testosterone levels and adult male social novelty preference: Risk for children's sex-biased neurobehavioral disorders. Neurotoxicology 2018; 68:203-211. [PMID: 30144459 DOI: 10.1016/j.neuro.2018.08.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
Epidemiological studies have reported associations of air pollution exposures with various neurodevelopmental disorders such as autism spectrum disorder (ASD), attention deficit and schizophrenia, all of which are male-biased in prevalence. Our studies of early postnatal exposure of mice to the ultrafine particle (UFP) component of air pollution, considered the most reactive component, provide support for these epidemiological associations, demonstrating male-specific or male-biased neuropathological changes and cognitive and impulsivity deficits consistent with these disorders. Since these neurodevelopmental disorders also include altered social behavior and communication, the current study examined the ability of developmental UFP exposure to reproduce these social behavior deficits and to determine whether any observed alterations reflected changes in steroid hormone concentrations. Elevated plus maze, social conditioned place preference, and social novelty preference were examined in adult mice that had been exposed to concentrated (10-20x) ambient UFPs averaging approximately 45 ug/m3 particle mass concentrations from postnatal day (PND) 4-7 and 10-13 for 4 h/day. Changes in serum testosterone (T) and corticosterone where measured at postnatal day (P)14 and approximately P120. UFP exposure decreased serum T concentrations on PND 14 and social nose-to-nose sniff rates with novel males in adulthood, suggesting social communication deficits in unfamiliar social contexts. Decreased sniff rates were not accounted for by alterations in fear-mediated behaviors and occurred without overt deficits in social preference, recognition or communication with a familiar animal or alterations in corticosterone. Adult T serum concentrations were positively correlated with nose to nose sniff rates. Collectively, these studies confirm another feature of male-biased neurodevelopmental disorders following developmental exposures to even very low levels of UFP air pollution that could be related to alterations in sex steroid programming of brain function.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Timothy Anderson
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Katherine Conrad
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Elena Marvin
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Carolyn Klocke
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Keith Morris-Schaffer
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Joshua L Allen
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States
| | - Deborah A Cory-Slechta
- Dept. of Environmental Medicine, University of Rochester Medical School, Rochester, NY, United States.
| |
Collapse
|
6
|
Moosa A, Shu H, Sarachana T, Hu VW. Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder? Horm Behav 2018; 101:13-21. [PMID: 29042182 PMCID: PMC5913002 DOI: 10.1016/j.yhbeh.2017.10.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 11/30/2022]
Abstract
Recent research on the etiology of autism spectrum disorder (ASD) has shifted in part from a singular focus on genetic causes to the involvement of environmental factors and their gene interactions. This shift in focus is a result of the rapidly increasing prevalence of ASD coupled with the incomplete penetrance of this disorder in monozygotic twins. One such area of environmentally focused research is the association of exposures to endocrine disrupting compounds (EDCs) with elevated risk for ASD. EDCs are exogenous chemicals that can alter endogenous hormone activity and homeostasis, thus potentially disrupting the action of sex and other natural hormones at all stages of human development. Inasmuch as sex hormones play a fundamental role in brain development and sexual differentiation, exposure to EDCs in utero during critical stages of development can have lasting neurological and other physiological influences on the developing fetus and, ultimately, the child as well as adult. This review will focus on the possible contributions of EDCs to autism risk and pathogenesis by first discussing the influence of endogenous sex hormones on the autistic phenotype, followed by a review of documented human exposures to EDCs and associations with behaviors relevant to ASD. Mechanistic links between EDC exposures and aberrant neurodevelopment and behaviors are then considered, with emphasis on EDC-induced transcriptional profiles derived from animal and cellular studies. Finally, this review will discuss possible mechanisms through which EDC exposure can lead to persistent changes in gene expression and phenotype, which may in turn contribute to transgenerational inheritance of ASD.
Collapse
Affiliation(s)
- Amer Moosa
- Dept. of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye St., NW, Washington, DC 20037, United States.
| | - Henry Shu
- Dept. of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye St., NW, Washington, DC 20037, United States.
| | - Tewarit Sarachana
- Department of Clinical Chemistry, Medical Technology Branch, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama I Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand.
| | - Valerie W Hu
- Dept. of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, 2300 Eye St., NW, Washington, DC 20037, United States.
| |
Collapse
|
7
|
Rahbar MH, Swingle HM, Christian MA, Hessabi M, Lee M, Pitcher MR, Campbell S, Mitchell A, Krone R, Loveland KA, Patterson DG. Environmental Exposure to Dioxins, Dibenzofurans, Bisphenol A, and Phthalates in Children with and without Autism Spectrum Disorder Living near the Gulf of Mexico. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1425. [PMID: 29160842 PMCID: PMC5708064 DOI: 10.3390/ijerph14111425] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 01/02/2023]
Abstract
Environmental exposure to organic endocrine disrupting chemicals, including dioxins, dibenzofurans, bisphenol A (BPA), and phthalates has been associated with neurodevelopmental disorders, including autism spectrum disorder (ASD). We conducted a pilot monitoring study of 30 ASD cases and 10 typically developing (TD) controls ages 2-8 years from communities along the Gulf of Mexico near Alabama, which houses 14 Superfund sites, to assess the concentrations of dioxins and dibenzofurans in serum, and BPA and phthalate ester metabolites in urine. Based on General Linear Models, the lipid- or creatinine-adjusted geometric mean concentrations of the aforementioned chemicals did not differ between the ASD case and TD control groups (all p ≥ 0.27). We compared our findings to the adjusted means as reported by the National Health and Nutrition Examination Survey, survey years 2011-2012, and found that TD controls in our study had lower BPA (59%) and MEHHP (26%) concentrations, higher MBP (50%) concentration, and comparable (<20% difference) MEP, MBZP, MEOHP, and MCPP concentrations. We also conducted a preliminary investigation of dietary exposures and found that the consumption of certain types of fish may be associated with higher OCDD concentrations, and the consumption of soft drinks and juices may be associated with lower BPA and MEOHP concentrations, respectively.
Collapse
Affiliation(s)
- Mohammad H Rahbar
- Department of Epidemiology, Human Genetics and Environmental Sciences (EHGES), University of Texas School of Public Health at Houston, Houston, TX 77030, USA.
- Division of Clinical and Translational Sciences, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA.
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Hanes M Swingle
- Division of Developmental-Behavioral Pediatrics, University of South Alabama, Mobile, AL 36604, USA.
| | - MacKinsey A Christian
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - MinJae Lee
- Division of Clinical and Translational Sciences, Department of Internal Medicine, University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA.
- Biostatistics/Epidemiology/Research Design (BERD) Component, Center for Clinical and Translational Sciences (CCTS), University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Meagan R Pitcher
- Baylor Licensing Group, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Sean Campbell
- AXYS Analytical Services Ltd., Sidney, BC V8L5X2, Canada.
| | - Amy Mitchell
- Division of Developmental-Behavioral Pediatrics, University of South Alabama, Mobile, AL 36604, USA.
| | - Ryan Krone
- Division of Developmental-Behavioral Pediatrics, University of South Alabama, Mobile, AL 36604, USA.
| | - Katherine A Loveland
- Department of Psychiatry and Behavioral Sciences, University of Texas McGovern Medical School at Houston, Houston, TX 77054, USA.
| | | |
Collapse
|
8
|
Mata A, Urrea L, Vilches S, Llorens F, Thüne K, Espinosa JC, Andréoletti O, Sevillano AM, Torres JM, Requena JR, Zerr I, Ferrer I, Gavín R, Del Río JA. Reelin Expression in Creutzfeldt-Jakob Disease and Experimental Models of Transmissible Spongiform Encephalopathies. Mol Neurobiol 2016; 54:6412-6425. [PMID: 27726110 DOI: 10.1007/s12035-016-0177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
Abstract
Reelin is an extracellular glycoprotein involved in key cellular processes in developing and adult nervous system, including regulation of neuronal migration, synapse formation, and plasticity. Most of these roles are mediated by the intracellular phosphorylation of disabled-1 (Dab1), an intracellular adaptor molecule, in turn mediated by binding Reelin to its receptors. Altered expression and glycosylation patterns of Reelin in cerebrospinal and cortical extracts have been reported in Alzheimer's disease. However, putative changes in Reelin are not described in natural prionopathies or experimental models of prion infection or toxicity. With this is mind, in the present study, we determined that Reelin protein and mRNA levels increased in CJD human samples and in mouse models of human prion disease in contrast to murine models of prion infection. However, changes in Reelin expression appeared only at late terminal stages of the disease, which prevent their use as an efficient diagnostic biomarker. In addition, increased Reelin in CJD and in in vitro models does not correlate with Dab1 phosphorylation, indicating failure in its intracellular signaling. Overall, these findings widen our understanding of the putative changes of Reelin in neurodegeneration.
Collapse
Affiliation(s)
- Agata Mata
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Laura Urrea
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Franc Llorens
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Katrin Thüne
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Juan-Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Valdeolmos, Spain
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse, France
| | - Alejandro M Sevillano
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
- Department of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Valdeolmos, Spain
| | - Jesús Rodríguez Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, 15782, Santiago de Compostela, Spain
- Department of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Inga Zerr
- Department of Neurology, German Center for Neurodegenerative Diseases - DZNE, Universitätsmedizin Göttingen, Bonn, Germany
| | - Isidro Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Kondolot M, Ozmert EN, Ascı A, Erkekoglu P, Oztop DB, Gumus H, Kocer-Gumusel B, Yurdakok K. Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:149-158. [PMID: 26991849 DOI: 10.1016/j.etap.2016.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/04/2016] [Accepted: 03/06/2016] [Indexed: 06/05/2023]
Abstract
Phthalates and bisphenol A (BPA) are endocrine disruting chemicals (EDCs) that are suggested to exert neurotoxic effects. This study aimed to determine plasma phthalates and BPA levels along with oxidant/antioxidant status in autistic children [n=51; including 12 children were diagnosed with "Pervasive Developmental Disorder-Not Otherwise Specified (PDD-NOS)]. Plasma levels of BPA, di (2-ethylhexyl)-phthalate (DEHP) and its main metabolite mono (2-ethylhexyl)-phthalate (MEHP); thiobarbituric acid reactive substance (TBARS) and carbonyl groups; erythrocyte glutathione peroxidase (GPx1), thioredoxin reductase (TrxR), catalase (CAT), superoxide dismutase (SOD) and glutathione reductase (GR) activities and glutathione (GSH) and selenium levels were measured. Plasma BPA levels of children with PDD-NOS were significantly higher than both classic autistic children and controls (n=50). Carbonyl, selenium concentrations and GPx1, SOD and GR activities were higher (p<0.05); CAT activity was markedly lower in study group. BPA exposure might be associated with PDD-NOS. Intracellular imbalance between oxidant and antioxidant status might facilitate its neurotoxicity.
Collapse
Affiliation(s)
- Meda Kondolot
- Erciyes University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Kayseri 38039, Turkey.
| | - Elif N Ozmert
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Developmental Pediatrics Unit, Ankara 06100, Turkey
| | - Ali Ascı
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey
| | - Pınar Erkekoglu
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey
| | - Didem B Oztop
- Erciyes University Faculty of Medicine, Department of Child Psychiatry, Kayseri 38039, Turkey
| | - Hakan Gumus
- Erciyes University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Kayseri 38039, Turkey
| | - Belma Kocer-Gumusel
- Hacettepe University Faculty of Pharmacy, Department of Toxicology, Ankara 06100, Turkey.
| | - Kadriye Yurdakok
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Social Pediatrics Unit, Developmental Pediatrics Unit, Ankara 06100, Turkey
| |
Collapse
|
10
|
Abstract
Using data of the current prevalence of autism as 200:10,000 and a 1:2000 incidence of definite mitochondrial (mt) disease, if there was no linkage of autism spectrum disorder (ASD) and mt disease, it would be expected that 1 in 110 subjects with mt disease would have ASD and 1 in 2000 individuals with ASD would have mt disease. The co-occurrence of autism and mt disease is much higher than these figures, suggesting a possible pathogenetic relationship. Such hypothesis was initially suggested by the presence of biochemical markers of abnormal mt metabolic function in patients with ASD, including elevation of lactate, pyruvate, or alanine levels in blood, cerebrospinal fluid, or brain; carnitine level in plasma; and level of organic acids in urine, and by demonstrating impaired mt fatty acid β-oxidation. More recently, mtDNA genetic mutations or deletions or mutations of nuclear genes regulating mt function have been associated with ASD in patients or in neuropathologic studies on the brains of patients with autism. In addition, the presence of dysfunction of the complexes of the mt respiratory chain or electron transport chain, indicating abnormal oxidative phosphorylation, has been reported in patients with ASD and in the autopsy samples of brains. Possible pathogenetic mechanisms linking mt dysfunction and ASD include mt activation of the immune system, abnormal mt Ca(2+) handling, and mt-induced oxidative stress. Genetic and epigenetic regulation of brain development may also be disrupted by mt dysfunction, including mt-induced oxidative stress. The role of the purinergic system linking mt dysfunction and ASD is currently under investigation. In summary, there is genetic and biochemical evidence for a mitochondria (mt) role in the pathogenesis of ASD in a subset of children. To determine the prevalence and type of genetic and biochemical mt defects in ASD, there is a need for further research using the latest genetic technology such as next-generation sequencing, microarrays, bioinformatics, and biochemical assays. Because of the availability of potential therapeutic options for mt disease, successful research results could translate into better treatment and outcome for patients with mt-associated ASD. This requires a high index of suspicion of mt disease in children with autism who are diagnosed early.
Collapse
Affiliation(s)
- Agustín Legido
- Section of Neurology, St. Christopher's Hospital for Children, Philadelphia, PA; Departments of Pediatrics and Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Reena Jethva
- Section of Neurology, St. Christopher's Hospital for Children, Philadelphia, PA; Departments of Pediatrics and Neurology, Drexel University College of Medicine, Philadelphia, PA
| | - Michael J Goldenthal
- Section of Neurology, St. Christopher's Hospital for Children, Philadelphia, PA; Departments of Pediatrics and Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
11
|
Carbone PS. Moving from research to practice in the primary care of children with autism spectrum disorders. Acad Pediatr 2013; 13:390-9. [PMID: 24011743 DOI: 10.1016/j.acap.2013.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/27/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
Autism spectrum disorders (ASD), once thought rare, are now commonly encountered in clinical practice. Academic pediatricians may be expected to teach medical students and pediatric residents about ASD, but most likely received limited exposure to ASD during their training. In recent years, research that informs the clinical guidance provided to pediatricians regarding surveillance, screening, and ongoing management of children with ASD has accelerated. By 24 months of age, children with ASD exhibit delays across multiple domains of development, yet the diagnosis is frequently made much later. Careful developmental surveillance lowers the age of identification of children with ASD. Several screening tools appropriate for use in primary care settings can aid in early identification. Improved surveillance and screening is of benefit because early intensive behavioral intervention has the potential to improve the developmental trajectory of children with ASD. Providing appropriate medical care for children with ASD improves both child and family outcomes. Recent research regarding sleep disturbances, gastrointestinal problems, and epilepsy in children with ASD has led to clinical pathways to evaluate and address these issues within the context of primary care. By being aware of and disseminating these research findings, academic pediatricians can help future and current clinicians improve the care of children with ASD.
Collapse
Affiliation(s)
- Paul S Carbone
- Department of Pediatrics, University of Utah Health Sciences Center, Salt Lake City, Utah.
| |
Collapse
|