1
|
Costa-Riquetto AD, de Santana LS, Franco PC, Jr ACS, Martio AE, Lisboa HRK, Kohara SK, Teles MG. Genetic and clinical features of neonatal and early onset diabetes mellitus in a tertiary center cohort in Brazil. Clin Genet 2023; 103:434-447. [PMID: 36510364 DOI: 10.1111/cge.14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Neonatal diabetes mellitus (NDM) is defined as the occurrence of severe hyperglycemia in infants under 6 months old and may be permanent (PNDM) or transient (TNDM). When diabetes is diagnosed at 6-12 months of age (early onset diabetes [EOD]), the etiology may be monogenic; however, most cases consist of type 1 diabetes mellitus (T1DM). Molecular diagnosis was determined in a cohort of 35 unrelated Brazilian patients with NDM or EOD based on targeted next-generation sequencing panel and/or chromosome 6q24 abnormalities. The impact of genetic testing on treatment and follow-up was evaluated. Overall, 24 patients had NDM: with 18 (75.0%) having PNDM, 5 TNDM (20.8%) and 1 case in which this information was unknown. Eleven patients had EOD. Genetic testing was positive in 20/24 patients with NDM (83.3%) and in 18.2% of cases of EOD. The commonest causes were ATP-sensitive potassium (KATP) channel genes, and GCK and IPEX mutations (37.1%, 11.4% and 5.7%, respectively). Patients with PNDM due to KCNJ11 and ABCC8 mutations transitioned successfully to sulfonylureas in almost 60% of cases, reinforcing the benefit of performing genetic testing in NDM as early as possible. This report refers to the largest series of cases of NDM (TNDM and PNDM) and EOD in Brazil in which patients were submitted to molecular investigation and in which the clinical impact of genetic diagnosis was also evaluated.
Collapse
Affiliation(s)
- Aline Dantas Costa-Riquetto
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Lucas Santos de Santana
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Pedro Campos Franco
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Augusto Cezar Santomauro Jr
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | | | | | | | - Milena G Teles
- Grupo de Diabetes Monogênico (Monogenic Diabetes Group), Unidade de Endocrinologia Genética (LIM25), Unidade de Diabetes, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| |
Collapse
|
2
|
Boddu PK, Velumula PK, Sharif S, Monika B. A Neonate With Diabetes Mellitus, Congenital Hypothyroidism, and Congenital Glaucoma. Cureus 2022; 14:e29488. [PMID: 36312692 PMCID: PMC9595247 DOI: 10.7759/cureus.29488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is a rare condition with more than 20 monogenic genes associated with it. GLIS3 gene-encoded GLI similar protein 3, as a transcription factor, is involved in the development of the pancreas, liver, kidneys, eye, and thyroid. We report a preterm female neonate with coarse facial features and hyperglycemia, later diagnosed with neonatal diabetes mellitus, congenital hypothyroidism (CH), congenital glaucoma (CG), and renal cysts, secondary to GLIS3 gene mutation. It is a rare genetic disorder involving multiple organ systems with progressive development of symptoms requiring long-term surveillance and management.
Collapse
|
3
|
Ali Khan I. Do second generation sequencing techniques identify documented genetic markers for neonatal diabetes mellitus? Heliyon 2021; 7:e07903. [PMID: 34584998 PMCID: PMC8455689 DOI: 10.1016/j.heliyon.2021.e07903] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/15/2021] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Neonatal diabetes mellitus (NDM) is noted as a genetic, heterogeneous, and rare disease in infants. NDM occurs due to a single-gene mutation in neonates. A common source for developing NDM in an infant is the existence of mutations/variants in the KCNJ11 and ABCC8 genes, encoding the subunits of the voltage-dependent potassium channel. Both KCNJ11 and ABCC8 genes are useful in diagnosing monogenic diabetes during infancy. Genetic analysis was previously performed using first-generation sequencing techniques, such as DNA-Sanger sequencing, which uses chain-terminating inhibitors. Sanger sequencing has certain limitations; it can screen a limited region of exons in one gene, but it cannot screen large regions of the human genome. In the last decade, first generation sequencing techniques have been replaced with second-generation sequencing techniques, such as next-generation sequencing (NGS), which sequences nucleic-acids more rapidly and economically than Sanger sequencing. NGS applications are involved in whole exome sequencing (WES), whole genome sequencing (WGS), and targeted gene panels. WES characterizes a substantial breakthrough in human genetics. Genetic testing for custom genes allows the screening of the complete gene, including introns and exons. The aim of this review was to confirm if the 22 genetic variations previously documented to cause NDM by Sanger sequencing could be detected using second generation sequencing techniques. The author has cross-checked global studies performed in NDM using NGS, ES/WES, WGS, and targeted gene panels as second-generation sequencing techniques; WES confirmed the similar variants, which have been previously documented with Sanger sequencing. WES is documented as a powerful tool and WGS as the most comprehensive test for verified the documented variants, as well as novel enhancers. This review recommends for the future studies should be performed with second generation sequencing techniques to identify the verified 22 genetic and novel variants by screening in NDM (PNDM or TNMD) children.
Collapse
Affiliation(s)
- Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, PO Box-10219, Riyadh, 11433, Saudi Arabia
| |
Collapse
|
4
|
London S, De Franco E, Elias-Assad G, Barhoum MN, Felszer C, Paniakov M, Weiner SA, Tenenbaum-Rakover Y. Case Report: Neonatal Diabetes Mellitus Caused by a Novel GLIS3 Mutation in Twins. Front Endocrinol (Lausanne) 2021; 12:673755. [PMID: 34093443 PMCID: PMC8169976 DOI: 10.3389/fendo.2021.673755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/29/2021] [Indexed: 11/21/2022] Open
Abstract
Background Mutations in GLIS3 cause a rare syndrome characterized by neonatal diabetes mellitus (NDM), congenital hypothyroidism, congenital glaucoma and cystic kidneys. To date, 14 mutations in GLIS3 have been reported, inherited in an autosomal recessive manner. GLIS3 is a key transcription factor involved in β-cell development, insulin expression, and development of the thyroid, eyes, liver and kidneys. Cases We describe non-identical twins born to consanguineous parents presenting with NDM, congenital hypothyroidism, congenital glaucoma, hepatic cholestasis, cystic kidney and delayed psychomotor development. Sequence analysis of GLIS3 identified a novel homozygous nonsense mutation, c.2392C>T, p.Gln798Ter (p.Q798*), which results in an early stop codon. The diabetes was treated with a continuous subcutaneous insulin infusion pump and continuous glucose monitoring. Fluctuating blood glucose and intermittent hypoglycemia were observed on follow-up. Conclusions This report highlights the importance of early molecular diagnosis for appropriate management of NDM. We describe a novel nonsense mutation of GLIS3 causing NDM, extend the phenotype, and discuss the challenges in clinical management. Our findings provide new areas for further investigation into the roles of GLIS3 in the pathophysiology of diabetes mellitus.
Collapse
Affiliation(s)
- Shira London
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Ghadir Elias-Assad
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
- The Rappaport Faculty of Medicine, Technion – Institute of Technology, Haifa, Israel
| | - Marie Noufi Barhoum
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
- Clalit Health Services, Children Health Center, Naharia, Israel
- Faculty of Medicine, Bar-Ilan University, Zeffat, Israel
| | - Clari Felszer
- Neonatal Intensive Care Unit, Ha’Emek Medical Center, Afula, Israel
| | - Marina Paniakov
- Neonatal Intensive Care Unit, Ha’Emek Medical Center, Afula, Israel
| | - Scott A. Weiner
- Neonatal Intensive Care Unit, Ha’Emek Medical Center, Afula, Israel
| | - Yardena Tenenbaum-Rakover
- Pediatric Endocrine Institute, Ha’Emek Medical Center, Afula, Israel
- The Rappaport Faculty of Medicine, Technion – Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Bourgeois S, Sawatani T, Van Mulders A, De Leu N, Heremans Y, Heimberg H, Cnop M, Staels W. Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet? Cells 2021; 10:cells10010191. [PMID: 33477961 PMCID: PMC7835995 DOI: 10.3390/cells10010191] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials.
Collapse
Affiliation(s)
- Stephanie Bourgeois
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
| | - Annelore Van Mulders
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Nico De Leu
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Department of Endocrinology, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Endocrinology, ASZ Aalst, 9300 Aalst, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium; (T.S.); (M.C.)
- Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE) Research Group, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium; (S.B.); (A.V.M.); (N.D.L.); (Y.H.); (H.H.)
- Service of Pediatric Endocrinology, Department of Pediatrics, KidZ Health Castle, Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium
- Correspondence: ; Tel.: +32-0-24774473
| |
Collapse
|
6
|
Nicolaides NC, Kanaka-Gantenbein C, Papadopoulou-Marketou N, Sertedaki A, Chrousos GP, Papassotiriou I. Emerging technologies in pediatrics: the paradigm of neonatal diabetes mellitus. Crit Rev Clin Lab Sci 2020; 57:522-531. [PMID: 32356495 DOI: 10.1080/10408363.2020.1752141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the era of precision medicine, the tremendous progress in next-generation sequencing technologies has allowed the identification of an ever-increasing number of genes associated with known Mendelian disorders. Neonatal diabetes mellitus is a rare, genetically heterogeneous endocrine disorder diagnosed before 6 months of age. It may occur alone or in the context of genetic syndromes. Neonatal diabetes mellitus has been linked with genetic defects in at least 26 genes to date. Novel mutations in these disease-causing genes are being reported, giving us a better knowledge of the molecular events that occur upon insulin biosynthesis and secretion from the pancreatic β-cell. Of great importance, some of the identified genes encode proteins that can be therapeutically targeted by drugs per os, leading to transitioning from insulin to sulfonylureas. In this review, we provide an overview of pancreatic β-cell physiology, present the clinical manifestations and the genetic causes of the different forms of neonatal diabetes, and discuss the application of next-generation sequencing methods in the diagnosis and therapeutic management of neonatal diabetes and on research in this area.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Nektaria Papadopoulou-Marketou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Amalia Sertedaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece.,Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, "Aghia Sophia" Children's Hospital, Athens, Greece.,IFCC Emerging Technologies Division, Emerging Technologies in Pediatric Laboratory Medicine (C-ETPLM), Milano, Italy
| |
Collapse
|
7
|
Abstract
Neonatal diabetes mellitus (DM) is defined by the onset of persistent hyperglycemia within the first six months of life but may present up to 12 months of life. A gene mutation affecting pancreatic beta cells or synthesis/secretion of insulin is present in more than 80% of the children with neonatal diabetes. Neonatal DM can be transient, permanent, or be a component of a syndrome. Genetic testing is important as a specific genetic mutation can significantly alter the treatment and outcome. Patients with mutations of either KCNJ11 or ABCC8 that encode subunits of the KATP channel gene mutation can be managed with sulfonylurea oral therapy while patients with other genetic mutations require insulin treatment.
Collapse
Affiliation(s)
- Amanda Dahl
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Seema Kumar
- Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Correspondence: Seema Kumar Division of Pediatric Endocrinology and Metabolism, Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN55590, USATel +1 507-284-3300Fax +1 507-284-0727 Email
| |
Collapse
|
8
|
De Franco E, Watson RA, Weninger WJ, Wong CC, Flanagan SE, Caswell R, Green A, Tudor C, Lelliott CJ, Geyer SH, Maurer-Gesek B, Reissig LF, Lango Allen H, Caliebe A, Siebert R, Holterhus PM, Deeb A, Prin F, Hilbrands R, Heimberg H, Ellard S, Hattersley AT, Barroso I. A Specific CNOT1 Mutation Results in a Novel Syndrome of Pancreatic Agenesis and Holoprosencephaly through Impaired Pancreatic and Neurological Development. Am J Hum Genet 2019; 104:985-989. [PMID: 31006513 PMCID: PMC6506862 DOI: 10.1016/j.ajhg.2019.03.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/18/2019] [Indexed: 01/29/2023] Open
Abstract
We report a recurrent CNOT1 de novo missense mutation, GenBank: NM_016284.4; c.1603C>T (p.Arg535Cys), resulting in a syndrome of pancreatic agenesis and abnormal forebrain development in three individuals and a similar phenotype in mice. CNOT1 is a transcriptional repressor that has been suggested as being critical for maintaining embryonic stem cells in a pluripotent state. These findings suggest that CNOT1 plays a critical role in pancreatic and neurological development and describe a novel genetic syndrome of pancreatic agenesis and holoprosencephaly.
Collapse
|
9
|
Letourneau LR, Greeley SAW. Congenital forms of diabetes: the beta-cell and beyond. Curr Opin Genet Dev 2018; 50:25-34. [PMID: 29454299 DOI: 10.1016/j.gde.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
The majority of patients diagnosed with diabetes less than 6 months of age, and many cases diagnosed between 6 and 12 months of age, have a gene mutation that causes permanent or transient hyperglycemia. Recent research advances have allowed for the discovery of new causes of congenital diabetes, including genes involved in pancreatic development (GATA4, NKX2-2, MNX1) and monogenic causes of autoimmune dysregulation (STAT3, LRBA). Ongoing follow-up of patients with KCNJ11 and ABCC8 mutations has supported the safety and efficacy of sulfonylureas, as well as the use of insulin pumps and continuous glucose monitors in infants with insulin-requiring forms of monogenic diabetes. Future studies are needed to improve clinical care and outcomes for these patients and their families.
Collapse
Affiliation(s)
- Lisa R Letourneau
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA
| | - Siri Atma W Greeley
- Department of Medicine, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA; Department of Pediatrics, Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago Medicine, 5841 S. Maryland Ave. MC 1027, Chicago, IL 60637, USA.
| |
Collapse
|
10
|
Kharade SS, Parekh VI, Agarwal SK. Functional Defects From Endocrine Disease-Associated Mutations in HLXB9 and Its Interacting Partner, NONO. Endocrinology 2018; 159:1199-1212. [PMID: 29309627 PMCID: PMC5793795 DOI: 10.1210/en.2017-03155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/28/2017] [Indexed: 12/31/2022]
Abstract
The insulin-secreting pancreatic neuroendocrine tumors, insulinomas, characterized by increased pancreatic islet β-cell proliferation, express the phosphorylated isoform of the β-cell differentiation factor HLXB9 that interacts with NONO/p54NRB, a survival factor. Interestingly, two different homozygous germline mutations in HLXB9, p.F248L and p.F272L, were reported in neonatal diabetes, a condition with functional β-cell deficiency. Also, two somatic heterozygous NONO mutations were found in endocrine-related tumors, p.H146R (parathyroid) and p.R293H (small intestine neuroendocrine tumor). However, the biological consequence of the mutations, and the role of HLXB9-NONO interaction in normal or abnormal β cells, is not known. Expression, localization, and functional analysis of the clinically relevant HLXB9 and NONO mutants showed that HLXB9/p.F248L mutant localized in the nucleus but lacked phosphorylation, and NONO/p.R293H mutant was structurally impaired. The HLXB9 and NONO mutants retained the ability to interact, and overexpression of wild-type or mutant HXLB9 in MIN6 cells suppressed cell proliferation. To further understand the biological consequence of the HLXB9-NONO interaction, we mapped the NONO-interacting region in HLXB9. An 80-amino acid conserved region of HLXB9 could compete with full-length HLXB9 to interact with NONO; however, in functional assays, nuclear expression of this HLXB9-conserved region in MIN6 cells did not interfere with cell proliferation. Overall, our results highlight the importance of HLXB9 in conditions of β-cell excess (insulinomas) and in conditions of β-cell loss or dysfunction (diabetes). Our studies implicate therapeutic strategies for either reducing β-cell proliferation in insulinomas or alleviating normal β-cell deficiency in diabetes through the modulation of HLXB9 phosphorylation.
Collapse
Affiliation(s)
- Sampada S. Kharade
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Vaishali I. Parekh
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Sunita K. Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Pezzilli S, Ludovico O, Biagini T, Mercuri L, Alberico F, Lauricella E, Dallali H, Capocefalo D, Carella M, Miccinilli E, Piscitelli P, Scarale MG, Mazza T, Trischitta V, Prudente S. Insights From Molecular Characterization of Adult Patients of Families With Multigenerational Diabetes. Diabetes 2018; 67:137-145. [PMID: 28993341 DOI: 10.2337/db17-0867] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/01/2017] [Indexed: 11/13/2022]
Abstract
Multigenerational diabetes of adulthood is a mostly overlooked entity, simplistically lumped into the large pool of type 2 diabetes. The general aim of our research in the past few years is to unravel the genetic causes of this form of diabetes. Identifying among families with multigenerational diabetes those who carry mutations in known monogenic diabetes genes is the first step to then allow us to concentrate on remaining pedigrees in which to unravel new diabetes genes. Targeted next-generation sequencing of 27 monogenic diabetes genes was carried out in 55 family probands and identified mutations verified among their relatives by Sanger sequencing. Nine variants (in eight probands) survived our filtering/prioritization strategy. After likelihood of causality assessment by established guidelines, six variants were classified as "pathogenetic/likely pathogenetic" and two as "of uncertain significance." Combining present results with our previous data on the six genes causing the most common forms of maturity-onset diabetes of the young allows us to infer that 23.6% of families with multigenerational diabetes of adulthood carry mutations in known monogenic diabetes genes. Our findings indicate that the genetic background of hyperglycemia is unrecognized in the vast majority of families with multigenerational diabetes of adulthood. These families now become the object of further research aimed at unraveling new diabetes genes.
Collapse
Affiliation(s)
- Serena Pezzilli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ornella Ludovico
- Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Biagini
- Unit of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Luana Mercuri
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Alberico
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Eleonora Lauricella
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hamza Dallali
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Daniele Capocefalo
- Unit of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Unit of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elide Miccinilli
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Pamela Piscitelli
- Department of Medical Sciences, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Maria Giovanna Scarale
- Unit of Biostatistics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Tommaso Mazza
- Unit of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Vincenzo Trischitta
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Sabrina Prudente
- Research Unit of Metabolic and Cardiovascular Diseases, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| |
Collapse
|
12
|
An Activating STAT3 Mutation Causes Neonatal Diabetes through Premature Induction of Pancreatic Differentiation. Cell Rep 2017; 19:281-294. [DOI: 10.1016/j.celrep.2017.03.055] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 02/10/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
|
13
|
Dalvi NNH, Shaikh ST, Shivane VK, Lila AR, Bandgar TR, Shah NS. Genetically Confirmed Neonatal Diabetes: A Single Centre Experience. Indian J Pediatr 2017; 84:86-88. [PMID: 27496106 DOI: 10.1007/s12098-016-2203-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Nazia Nazir Hussain Dalvi
- Department of Endocrinology, Seth G.S. Medical College & King Edward Memorial Hospital, OPD No. 103 (Diabetes OPD), First Floor, Registration Hall Building, Near Gate No. 2, Seth G.S. Medical College & King Edward Memorial Hospital Campus, Parel, Mumbai, 400012, Maharashtra, India.
| | - Shareque T Shaikh
- Department of Endocrinology, Seth G.S. Medical College & King Edward Memorial Hospital, OPD No. 103 (Diabetes OPD), First Floor, Registration Hall Building, Near Gate No. 2, Seth G.S. Medical College & King Edward Memorial Hospital Campus, Parel, Mumbai, 400012, Maharashtra, India
| | - Vyankatesh K Shivane
- Department of Endocrinology, Seth G.S. Medical College & King Edward Memorial Hospital, OPD No. 103 (Diabetes OPD), First Floor, Registration Hall Building, Near Gate No. 2, Seth G.S. Medical College & King Edward Memorial Hospital Campus, Parel, Mumbai, 400012, Maharashtra, India
| | - Anurag R Lila
- Department of Endocrinology, Seth G.S. Medical College & King Edward Memorial Hospital, OPD No. 103 (Diabetes OPD), First Floor, Registration Hall Building, Near Gate No. 2, Seth G.S. Medical College & King Edward Memorial Hospital Campus, Parel, Mumbai, 400012, Maharashtra, India
| | - Tushar R Bandgar
- Department of Endocrinology, Seth G.S. Medical College & King Edward Memorial Hospital, OPD No. 103 (Diabetes OPD), First Floor, Registration Hall Building, Near Gate No. 2, Seth G.S. Medical College & King Edward Memorial Hospital Campus, Parel, Mumbai, 400012, Maharashtra, India
| | - Nalini S Shah
- Department of Endocrinology, Seth G.S. Medical College & King Edward Memorial Hospital, OPD No. 103 (Diabetes OPD), First Floor, Registration Hall Building, Near Gate No. 2, Seth G.S. Medical College & King Edward Memorial Hospital Campus, Parel, Mumbai, 400012, Maharashtra, India
| |
Collapse
|
14
|
Kleinberger JW, Maloney KA, Pollin TI. The Genetic Architecture of Diabetes in Pregnancy: Implications for Clinical Practice. Am J Perinatol 2016; 33:1319-1326. [PMID: 27571483 PMCID: PMC5507691 DOI: 10.1055/s-0036-1592078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genetic architecture of diabetes mellitus in general and in pregnancy is complex, owing to the multiple types of diabetes that comprise both complex/polygenic forms and monogenic (largely caused by a mutation in a single gene) forms such as maturity-onset diabetes of the young (MODY). Type 1 diabetes (T1D) and type 2 diabetes (T2D) have complex genetic etiologies, with over 40 and 90 genes/loci, respectively, implicated that interact with environmental/lifestyle factors. The genetic etiology of gestational diabetes mellitus has largely been found to overlap that of T2D. Genetic testing for complex forms of diabetes is not currently useful clinically, but genetic testing for monogenic forms, particularly MODY, has important utility for determining treatment, managing risk in family members, and pregnancy management. In particular, diagnosing MODY2, caused by GCK mutations, indicates that insulin should not be used, including during pregnancy, with the possible exception of an unaffected pregnancy during the third trimester to prevent macrosomia. A relatively simple method for identifying women with MODY2 has been piloted. MODY1, caused by HNF4A mutations, can paradoxically cause neonatal hyperinsulinemic hypoglycemia and macrosomia, indicating that detecting these cases is also clinically important. Diagnosing all MODY types provides opportunities for diagnosing other family members.
Collapse
Affiliation(s)
| | | | - Toni I. Pollin
- To Whom Correspondence May Be Addressed: Toni I. Pollin, MS, PhD, 660 West Redwood Street, Room 445C, Baltimore, MD 21201, 410-706-1630,
| |
Collapse
|