1
|
Sehgal S, Gupta N, Dadha P, Nagarajan S, Gupta R, Verma MJ, Ibrahim K, Bilaver LA, Warren C, Sachdev A, Nimmagadda SR, Gupta RS. Understanding the burden of food allergy among urban and rural school children from north India. World Allergy Organ J 2024; 17:100916. [PMID: 38974947 PMCID: PMC11227004 DOI: 10.1016/j.waojou.2024.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024] Open
Abstract
Background There is paucity of reliable epidemiological data regarding the burden of food allergy in most developing countries, including India. Objective To provide current estimates of the prevalence and distribution of food allergy among urban and rural school children aged 6-14 years in Delhi and the National Capital Region (NCR) of Khekra in India. Methods A cross-sectional study was conducted from January 2022 to February 2023 to enroll school children, 6-14 years, from select urban and rural schools in Delhi and NCR. A questionnaire consisting of questions focused on household environment, early life factors, and pediatric food allergy characteristics was administered by a trained medical researcher to collect parent-proxy data. Univariate statistics were used to describe frequencies, percentages, and 95% confidence intervals for survey items. Results The estimated prevalence of parent-reported food allergy was 0.8% (95% CI: 0.4-1.5; urban: 0.4%, 95% CI: 0.1-1.1; rural: 1.7%, 95% CI: 0.7-3.5). Fruits such as mango (0.3%, 95% CI: 0.1-0.9), strawberry (0.1%, 95% CI: 0.0-0.7), orange (0.1%, 95% CI: 0.0-0.7), and custard apple (0.1%, 95% CI: 0.0-0.7) were reported only by urban children, while rural children reported yogurt (0.6%, 95% CI: 0.1-1.8) and wheat (0.3%, 95% CI: 0.0-1.3). Both groups reported brinjal (also known as eggplant) and banana, 0.1% (95% CI: 0.0-0.7) of urban and 0.3% (95% CI: 0.0-1.3) of rural, respectively. Overall, commonly reported clinical symptoms were diarrhea and/or vomiting (100%, 95% CI: 76.2-100), abdominal pain (88.9%, 95% CI: 58.6-98.8), and rash/itchy skin (66.7%, 95% CI: 34.8-89.6). Among children with parent reported food allergy, 66.7% (95% CI: 34.8-89.6) of food allergies were physician diagnosed, of which 33.3% were diagnosed via history alone (95% CI:7.7-71.4) while 66.7% (95% CI: 28.6-92.3) were confirmed via skin prick test and/or blood test. Conclusion The overall prevalence of food allergy is very low in Delhi and Khekra, India. Future work should focus on elucidating the complex interplay of early-life, environmental, genetic, and lifestyle factors to understand the reasons for India's low food allergy burden and improve epidemiological clues to prevention for the nations with higher disease burden.
Collapse
Affiliation(s)
- Shruti Sehgal
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
| | - Neeraj Gupta
- Department of Pediatric Allergy and Pulmonology, Institute of Child Health, Sir Ganga Ram Hospital, Delhi, India
| | - Priyanka Dadha
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
| | | | - Ruma Gupta
- ADK Jain Eye Hospital, Khekra, Uttar Pradesh, India
| | | | - Khalid Ibrahim
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
| | - Lucy A. Bilaver
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
| | - Christopher Warren
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
| | - Anil Sachdev
- Department of Pediatric Allergy and Pulmonology, Institute of Child Health, Sir Ganga Ram Hospital, Delhi, India
| | - Sai R. Nimmagadda
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill, USA
| | - Ruchi S. Gupta
- Center for Food Allergy and Asthma Research, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill, USA
- The Mary Ann & J. Milburn Smith Child Health Outcomes, Research and Evaluation Center, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill, USA
| |
Collapse
|
2
|
Garofoli F, Civardi E, Pisoni C, Angelini M, Ghirardello S. Anti-Inflammatory and Anti-Allergic Properties of Colostrum from Mothers of Full-Term and Preterm Babies: The Importance of Maternal Lactation in the First Days. Nutrients 2023; 15:4249. [PMID: 37836533 PMCID: PMC10574092 DOI: 10.3390/nu15194249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Our narrative review focuses on colostrum components, particularly those that influence the neonatal immune system of newborns. Colostrum is secreted in small volumes by the alveolar cells of the breast during the first two to five days after birth. Colostrum is poor in fat and carbohydrates, with larger protein and bioactive compounds than mature milk. It plays a crucial role in driving neonates' immunity, transferring those immunological factors which help the correct development of the neonatal immune system and support establishing a healthy gut microbiome. The newborn has an innate and adaptive immune system deficiency, with a consequent increase in infection susceptibility. In particular, neonates born prematurely have reduced immunological competencies due to an earlier break in the maternal trans-placenta transfer of bioactive components, such as maternal IgG antibodies. Moreover, during pregnancy, starting from the second trimester, maternal immune cells are conveyed to the fetus and persist in small quantities post-natal, whereby this transfer is known as microchimerism (MMc). Thus, preterm newborns are deficient in this maternal heritage, and have their own immune system under-developed, but colostrum can compensate for the lack. Early breastfeeding, which should be strongly encouraged in mothers of preterm and full-term babies, provides those immunomodulant compounds that can act as a support, allowing the newborn to face immune needs, including fronting infections and establishing tolerance. Moreover, making mothers aware that administering colostrum helps their infants in building a healthy immune system is beneficial to sustain them in the difficult post-partum period.
Collapse
Affiliation(s)
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Piazzale Golgi 19, 27100 Pavia, Italy; (F.G.); (C.P.); (M.A.); (S.G.)
| | | | | | | |
Collapse
|
3
|
Fabrication and evaluation of a portable and reproducible quartz crystal microbalance immunochip for label-free detection of β-lactoglobulin allergen in milk products. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Acevedo N, Alashkar Alhamwe B, Caraballo L, Ding M, Ferrante A, Garn H, Garssen J, Hii CS, Irvine J, Llinás-Caballero K, López JF, Miethe S, Perveen K, Pogge von Strandmann E, Sokolowska M, Potaczek DP, van Esch BCAM. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021; 13:724. [PMID: 33668787 PMCID: PMC7996340 DOI: 10.3390/nu13030724] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Epidemiological studies have shown a dramatic increase in the incidence and the prevalence of allergic diseases over the last several decades. Environmental triggers including risk factors (e.g., pollution), the loss of rural living conditions (e.g., farming conditions), and nutritional status (e.g., maternal, breastfeeding) are considered major contributors to this increase. The influences of these environmental factors are thought to be mediated by epigenetic mechanisms which are heritable, reversible, and biologically relevant biochemical modifications of the chromatin carrying the genetic information without changing the nucleotide sequence of the genome. An important feature characterizing epigenetically-mediated processes is the existence of a time frame where the induced effects are the strongest and therefore most crucial. This period between conception, pregnancy, and the first years of life (e.g., first 1000 days) is considered the optimal time for environmental factors, such as nutrition, to exert their beneficial epigenetic effects. In the current review, we discussed the impact of the exposure to bacteria, viruses, parasites, fungal components, microbiome metabolites, and specific nutritional components (e.g., polyunsaturated fatty acids (PUFA), vitamins, plant- and animal-derived microRNAs, breast milk) on the epigenetic patterns related to allergic manifestations. We gave insight into the epigenetic signature of bioactive milk components and the effects of specific nutrition on neonatal T cell development. Several lines of evidence suggest that atypical metabolic reprogramming induced by extrinsic factors such as allergens, viruses, pollutants, diet, or microbiome might drive cellular metabolic dysfunctions and defective immune responses in allergic disease. Therefore, we described the current knowledge on the relationship between immunometabolism and allergy mediated by epigenetic mechanisms. The knowledge as presented will give insight into epigenetic changes and the potential of maternal and post-natal nutrition on the development of allergic disease.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Bilal Alashkar Alhamwe
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
- College of Pharmacy, International University for Science and Technology (IUST), Daraa 15, Syria
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Antonio Ferrante
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Charles S. Hii
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Irvine
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Kevin Llinás-Caballero
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Juan Felipe López
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (N.A.); (L.C.); (K.L.-C.); (J.F.L.)
| | - Sarah Miethe
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Khalida Perveen
- Department of Immunopathology, SA Pathology at the Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia; (A.F.); (C.S.H.); (J.I.); (K.P.)
- Adelaide School of Medicine and the Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Elke Pogge von Strandmann
- Institute of Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Center for Tumor Biology and Immunology, Philipps University Marburg, 35043 Marburg, Germany; (B.A.A.); (E.P.v.S.)
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland; (M.D.); (M.S.)
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos, Switzerland
| | - Daniel P. Potaczek
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Medical Faculty, Philipps University Marburg, Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung Center, 35043 Marburg, Germany; (H.G.); (S.M.)
| | - Betty C. A. M. van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands;
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
5
|
Dawod B, Marshall JS. Cytokines and Soluble Receptors in Breast Milk as Enhancers of Oral Tolerance Development. Front Immunol 2019; 10:16. [PMID: 30723472 PMCID: PMC6349727 DOI: 10.3389/fimmu.2019.00016] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
The postpartum period is an important window during which environmental factors can shape the life-long health of the infant. This time period often coincides with substantial milk consumption either in the form of breast milk or from cow's milk sources, such as infant formulas. Although breast milk is the most beneficial source of nutrients for infants during the first 6 months after birth, its role in regulating food allergy development, through regulation of oral tolerance, is still controversial. Breast milk contains several factors that can impact mucosal immune function, including immune cells, antibodies, microbiota, oligosaccharides, cytokines, and soluble receptors. However, there is considerable variation in the assessed levels of cytokines and soluble receptors between studies and across the lactation period. Most of these cytokines and soluble receptors are absent, or only found in limited quantities, in commercial baby formulas. Differences in content of these pluripotent factors, which impact on both the mother and the neonate, could contribute to the controversy surrounding the role of breast milk regulating oral tolerance. This review highlights current knowledge about the importance of cytokines and soluble receptors in breast milk on the development of oral tolerance and tolerance-relateddisorders. Understanding the mechanisms by which such milk components might promote oral tolerance could aid in the development of improved strategies for allergy prevention.
Collapse
Affiliation(s)
- Bassel Dawod
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
6
|
Human Milk and Allergic Diseases: An Unsolved Puzzle. Nutrients 2017; 9:nu9080894. [PMID: 28817095 PMCID: PMC5579687 DOI: 10.3390/nu9080894] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/07/2023] Open
Abstract
There is conflicting evidence on the protective role of breastfeeding in relation to the development of allergic sensitisation and allergic disease. Studies vary in methodology and definition of outcomes, which lead to considerable heterogeneity. Human milk composition varies both within and between individuals, which may partially explain conflicting data. It is known that human milk composition is very complex and contains variable levels of immune active molecules, oligosaccharides, metabolites, vitamins and other nutrients and microbial content. Existing evidence suggests that modulation of human breast milk composition has potential for preventing allergic diseases in early life. In this review, we discuss associations between breastfeeding/human milk composition and allergy development.
Collapse
|
7
|
Affiliation(s)
- Maya Bunik
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
8
|
Bogahawaththa D, Chandrapala J, Vasiljevic T. Modulation of milk immunogenicity by thermal processing. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2017.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
|
10
|
Corkins MR, Daniels SR, de Ferranti SD, Golden NH, Kim JH, Magge SN, Schwarzenberg SJ. Nutrition in Children and Adolescents. Med Clin North Am 2016; 100:1217-1235. [PMID: 27745591 DOI: 10.1016/j.mcna.2016.06.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nutrition is a critical factor for appropriate child and adolescent development. Appropriate nutrition changes according to age. Nutrition is an important element for prevention of disease development, especially for chronic diseases. Many children and adolescents live in environments that do not promote optimum nutrition. Families must work to provide improved food environments to encourage optimum nutrition. Early primordial prevention of risk factors for chronic disease, such as cardiovascular disease, is important, and dietary habits established early may be carried through adult life.
Collapse
Affiliation(s)
- Mark R Corkins
- Pediatric Gastroenterology, University of Tennessee Health Sciences Center, 49 North Dunlap Street, Memphis, TN 38105, USA
| | - Stephen R Daniels
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, 13123 East 16th Avenue, B065, Aurora, CO 80045, USA.
| | - Sarah D de Ferranti
- Preventive Cardiology Clinic, Department of Cardiology, Children's Hospital Boston, Harvard University Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Neville H Golden
- Division of Adolescent Medicine, Department of Pediatrics, Lucile Packard Children's Hospital Stanford, Stanford University School of Medicine, 770 Welch Road, Palo Alto, CA 94304, USA
| | - Jae H Kim
- Neonatal-Perinatal Medicine Fellowship, Supporting Premature Infant Nutrition Program, Rady Children's Hospital of San Diego, University of California San Diego Health, 3020 Children's Way, San Diego, CA 92123, USA
| | - Sheela N Magge
- Division of Endocrinology and Diabetes, Center for Translational Science, Patient and Clinical Interactions (formerly CRC), CTSI, Children's National Health System, The George Washington University School of Medicine and Health Sciences, 111 Michigan Ave NW, Washington, DC 20010, USA
| | - Sarah Jane Schwarzenberg
- Pediatric Gastroenterology, Hepatology and Nutrition, Masonic Children's Hospital, University of Minnesota, 2450 Riverside Avenue, Pediatric Ambulatory Services East Building, Minneapolis, MN 55454, USA
| |
Collapse
|