1
|
Effect of intermittency factor on singlet oxygen and PGE2 formation in azulene-mediated photodynamic therapy: A preliminary study. Biochem Biophys Rep 2022; 31:101290. [PMID: 35677631 PMCID: PMC9168118 DOI: 10.1016/j.bbrep.2022.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
In photodynamic therapy, intermittent irradiation modes that incorporate an interval between pulses are believed to decrease the effect of hypoxia by permitting an interval of re-oxygenation. The effect of the irradiation intermittency factor (the ratio of the irradiation pulse time to the total irradiation time) on singlet oxygen formation and inflammatory cytokine production was examined using azulene as a photosensitizer. Effects of difference intermittency factor on singlet oxygen formation and inflammatory cytokine were examined. Azulene solutions (1/10 μM) were irradiated with a 638-nm 500 mW diode laser in fractionation (intermittency factor of 5 or 9) or continuous mode using 50 mW/cm2 at 4 or 8 J/cm2. Singlet oxygen measurement was performed using a dimethyl anthracene probe. Peripheral blood mononuclear cells (PBMC) were stimulated by 10 ng/ml rhTNF-α for 6 h, before addition of 1 and 10 μM azulene solutions and irradiation. PGE2 measurement was undertaken using a human PGE2 ELISA kit. Kruskal-Wallis with Dunn Bonferroni test was used for statistical analyses at p < 0.05.Irradiation of 1 μM azulene+4 J/cm2+intermittency factor of 9 increased singlet oxygen 3-fold (p < 0.0001). Irradiation of 10 μM azulene at either 4 J/cm2+intermittency of 9 or 8 J/cm2+intermittency factor of 5 reduced PGE2 expression in PBMCs to non-inflamed levels. Thus, at 50 mW/cm2, 10 μM azulene-mediated photodynamic therapy with a high intermittency factor and a low energy density generated sufficient singlet oxygen to suppress PGE2 in Inflamed PBMCs. Different intermittency factors can stimulate ROS formation differently. Relative high intermittency factor with azulene induces high ROS formation. Relative high intermittency factor with low energy density inhibits PGE2 production. Azulene-based photodynamic therapy suppresses inflammation.
Collapse
|
2
|
Kubrak T, Karakuła M, Czop M, Kawczyk-Krupka A, Aebisher D. Advances in Management of Bladder Cancer-The Role of Photodynamic Therapy. Molecules 2022; 27:731. [PMID: 35163996 PMCID: PMC8838614 DOI: 10.3390/molecules27030731] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) is a non-invasive and modern form of therapy. It is used in the treatment of non-oncological diseases and more and more often in the treatment of various types of neoplasms in various locations including bladder cancer. The PDT method consists of local or systemic application of a photosensitizer, i.e., a photosensitive compound that accumulates in pathological tissue. Light of appropriate wavelength is absorbed by the photosensitizer molecules, which in turn transfers energy to oxygen or initiates radical processes that leads to selective destruction of diseased cells. The technique enables the selective destruction of malignant cells, as the photocytotoxicity reactions induced by the photosensitizer take place strictly within the pathological tissue. PDT is known to be well tolerated in a clinical setting in patients. In cited papers herein no new safety issues were identified. The development of anti-cancer PDT therapies has greatly accelerated over the last decade. There was no evidence of increased or cumulative toxic effects with each PDT treatment. Many modifications have been made to enhance the effects. Clinically, bladder cancer remains one of the deadliest urological diseases of the urinary system. The subject of this review is the anti-cancer use of PDT, its benefits and possible modifications that may lead to more effective treatments for bladder cancer. Bladder cancer, if localized, would seem to be a good candidate for PDT therapy since this does not involve the toxicity of systemic chemotherapy and can spare normal tissues from damage if properly carried out. It is clear that PDT deserves more investment in clinical research, especially for plant-based photosensitizers. Natural PS isolated from plants and other biological sources can be considered a green approach to PDT in cancer therapy. Currently, PDT is widely used in the treatment of skin cancer, but numerous studies show the advantages of related therapeutic strategies that can help eliminate various types of cancer, including bladder cancer. PDT for bladder cancer in which photosensitizer is locally activated and generates cytotoxic reactive oxygen species and causing cell death, is a modern treatment. Moreover, PDT is an innovative technique in oncologic urology.
Collapse
Affiliation(s)
- Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Michał Karakuła
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Marcin Czop
- Department of Clinical Genetics, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland;
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| |
Collapse
|
3
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
4
|
Kawczyk-Krupka A, Bartusik-Aebisher D, Latos W, Cieślar G, Sieroń K, Kwiatek S, Oleś P, Kwiatek B, Aebisher D, Krupka M, Wiench R, Skaba D, Olek M, Kasperski J, Czuba Z, Sieroń A. Clinical Trials and Basic Research in Photodynamic Diagnostics and Therapies from the Center for Laser Diagnostics and Therapy in Poland. Photochem Photobiol 2020; 96:539-549. [PMID: 32112419 DOI: 10.1111/php.13243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to present an overview of the development of photodiagnostic and photodynamic therapy (PDD and PDT) techniques in Poland. The paper discusses the principles of PDD, including fluorescent techniques in determining precancerous conditions and cancers of the skin, digestive tract, bladder and respiratory tract. Methods of PDT of cancer will be discussed and the current state of knowledge as well as future trends in the development of photodynamic techniques will be presented, including the possibility of using photodynamic antimicrobial therapy. Research pioneers in photodynamic medicine such as Thomas Dougherty are an inspiration for the development of methods of PDD and PDT in our Clinic. The Center for Laser Diagnostics and Therapy in Bytom, Poland, promotes the propagation of PDD and PDT through the training of clinicians and raising awareness among students in training and the general public. Physicians at the Center are engaged in photomedical research aimed at clinical implementation and exploration of new avenues in photomedicine while optimizing existing modalities. The Center promotes dissemination of clinical results from a wide range of topics in PDD and PDT and serving as representative authorities of photodynamic medicine in Poland and Europe.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | | | - Wojciech Latos
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Karolina Sieroń
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Physical Medicine, Chair of Physiotherapy, Medical University of Silesia, Katowice, Poland
| | - Sebastian Kwiatek
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Piotr Oleś
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Beata Kwiatek
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - David Aebisher
- Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
| | - Magdalena Krupka
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland
| | - Rafał Wiench
- Department of Periodontal Diseases and Oral Mucosa Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Dariusz Skaba
- Department of Periodontal Diseases and Oral Mucosa Diseases, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Marcin Olek
- Department of Prosthetic Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Jacek Kasperski
- Department of Prosthetic Dentistry, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon Czuba
- Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Aleksander Sieroń
- Department of Internal Medicine, Angiology, and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Bytom, Poland.,Department of Physiotherapy, Jan Dlugosz University in Częstochowa, Częstochowa, Poland
| |
Collapse
|
5
|
Shi L, Liu P, Liu J, Yang Y, Chen Q, Zhang Y, Zhang H, Wang X. Application of 5‐aminolevulinic acid‐photodynamic therapy in common skin diseases. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.201900028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Qi Chen
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Yunfeng Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine Shanghai China
| |
Collapse
|
6
|
Avalos-Navarro G, Muñoz-Valle JF, Daneri-Navarro A, Quintero-Ramos A, Franco-Topete RA, Morán-Mendoza ADJ, Oceguera-Villanueva A, Bautista-Herrera LA, Topete-Camacho A, Del Toro-Arreola A. Circulating soluble levels of MIF in women with breast cancer in the molecular subtypes: relationship with Th17 cytokine profile. Clin Exp Med 2019; 19:385-391. [PMID: 31102004 DOI: 10.1007/s10238-019-00559-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022]
Abstract
Breast cancer (BC) is a health problem worldwide; there is evidence that inflammatory cytokines are increased in BC. Macrophage migration inhibitory factor (MIF) has multiple effects on immune cells, inflammation and cancer. Besides, in previous studies, contradictory and uncertain results have been presented on the implication of Th17 cytokine profile in BC. The aim of this study was to evaluate the plasma levels of MIF and the Th17 cytokine profile in BC and their association with their molecular subtypes and clinical stage. A total of 150 women with BC of Ella Binational Breast Cancer Study and 60 healthy women (HW) were evaluated in cross-sectional study. The molecular subtypes were identified by immunohistochemistry. The plasma levels of MIF were quantified by ELISA and Th17 cytokine profile by multiplex system. MIF and IL-17 were significantly increased in BC versus HW (11.1 vs. 5.2 ng/mL and 14.8 pg/mL vs. 2.5 pg/mL p < 0.001, respectively). Our analysis showed that both MIF and IL-17A were associated with increased risk of breast cancer (OR 3.85 CI 95% 1.98-7.50 and OR 4.51 95% 1.83-11.15, respectively), higher in aggressive subtypes Luminal B, HER2 and TN. Likewise, we observed positive correlation between MIF and IL-17A (p < 0.001). In addition, IL-17E was lower in BC versus HW (p <0.001). Likewise, we observed a positive correlation between MIF and IL-17A (p < 0.001). In conclusion, both MIF and IL-17A were associated with high risk for breast cancer and aggressive molecular subtypes.
Collapse
Affiliation(s)
- Guadalupe Avalos-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - Adrian Daneri-Navarro
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Antonio Quintero-Ramos
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Ramon Antonio Franco-Topete
- Laboratorio de Patología, Departamento de Patología y Microbiología, CUCS, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico.,OPD Hospital Civil de Guadalajara, "Nuevo Hospital Civil, Juan I. Menchaca", Guadalajara, Jalisco, Mexico
| | | | | | - Luis Alberto Bautista-Herrera
- Instituto de Investigación en Ciencias Biomédicas (IICB), Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Sierra Mojada 950, Col. Independencia, C.P. 44340, Guadalajara, Jalisco, Mexico
| | - Antonio Topete-Camacho
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico
| | - Alicia Del Toro-Arreola
- Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Sierra Mojada # 950, Colonia Independencia, CP 44340, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
7
|
Kaleta-Richter M, Kawczyk-Krupka A, Aebisher D, Bartusik-Aebisher D, Czuba Z, Cieślar G. The capability and potential of new forms of personalized colon cancer treatment: Immunotherapy and Photodynamic Therapy. Photodiagnosis Photodyn Ther 2019; 25:253-258. [PMID: 30611864 DOI: 10.1016/j.pdpdt.2019.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/19/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION PDT can interfere with cytokine-mediated responses that play an important role in the processes of cancer progression, tumor angiogenesis and metastasis. Therefore, based on the identification of these cancer biomarkers, the therapy of combining various forms of treatment, including immunotherapy and PDT, may be a justified strategy for colorectal cancer treatment that focuses on individualized comprehensive therapy. METHOD We reviewed the major approaches on the use of immunotherapy in colorectal cancer, with the special regard to photodynamic therapy, its immunological effect and new oncological treatment directions, connected with adjuvant immunotherapy including use of nanoparticles. Databases such as PubMed, ScienceDirect and Springer were utilized to search the literature for relevant articles. PURPOSE To review studies of the immunotherapy in colon cancer and immune response to PDT. CONCLUSION Based on the identification of immunological cancer biomarkers, the therapy of combining various forms of treatment, including immunotherapy and PDT, may be a justified strategy for colorectal cancer treatment that focuses on individualized comprehensive therapy.
Collapse
Affiliation(s)
- Marta Kaleta-Richter
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland; School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, Marii Curie - Skłodowskiej Street 10, 41-800 Zabrze, Poland.
| | - Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland.
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Tadeusza Rejtana Avenue 16 C, 35-310 Rzeszów, Poland.
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszów, Tadeusza Rejtana Avenue 16 C, 35-310 Rzeszów, Poland.
| | - Zenon Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Department of Microbiology and Immunology, Medical University of Silesia in Katowice, 19 Jordana St., 41- 808 Zabrze, Poland.
| | - Grzegorz Cieślar
- School of Medicine with the Division of Dentistry in Zabrze, Department of Internal Diseases, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego Street 15, 41-902 Bytom, Poland.
| |
Collapse
|
8
|
Pawlitzki M, Sweeney-Reed CM, Meuth SG, Reinhold D, Neumann J. CSF macrophage migration inhibitory factor levels did not predict steroid treatment response after optic neuritis in patients with multiple sclerosis. PLoS One 2018; 13:e0207726. [PMID: 30475854 PMCID: PMC6261107 DOI: 10.1371/journal.pone.0207726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/04/2018] [Indexed: 01/18/2023] Open
Abstract
Glucocorticoid (GC) refractory relapses in patients with multiple sclerosis (MS) or clinically isolated syndrome (CIS), who are in potential need of treatment escalation, are a key challenge in routine clinical practice. The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) has been shown to be an endogenous counter-regulator of GC, and potentiates autoimmune-mediated neuroinflammation. In order to evaluate whether MIF levels are elevated in the cerebrospinal fluid (CSF) of MS patients (CSF-MIF), and whether they are higher still during a GC refractory relapse, we compared CSF-MIF concentrations of CIS/MS patients with acute optic neuritis as their first inflammatory episode (ON, n = 20), CIS/MS patients with a stable disease progression/without relapse (CIS/MS w/o, n = 18), and healthy controls (HC, n = 20) using ANOVA. Mean CSF-MIF concentrations in CIS/MS w/o patients were significantly higher than in ON patients and HCs, whereas ON patients and HCs did not differ. A subgroup analysis of the ON group revealed 10 patients to be responsive to GC-treatment (GC-ON) and 10 patients refractory under GC-treatment (rGC-ON). However, mean CSF-MIF concentrations did not differ between GC-ON and rGC-ON cases. We therefore conclude that MIF is not suitable for distinguishing GC responders from non-responders in a group of patients with acute optic neuritis, but it rather mirrors the ongoing inflammation in long-term MS disease progression.
Collapse
Affiliation(s)
- Marc Pawlitzki
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | | | - Sven G. Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, Muenster, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens Neumann
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
9
|
Gao H, Shi L, Yin H, Wang H, Shen J, Wang C, Niu Q, Li Y, Li W, Dong M, Lu Y. Evaluation of the effect of photodynamic therapy with hematoporphyrin monomethyl ether on VX2 tumors implanted in the rectal submucosa of rabbits. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:162-9. [DOI: 10.1016/j.jphotobiol.2016.08.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
10
|
Kawczyk-Krupka A, Latos W, Latos M, Czuba ZP, Sieroń A. ALA-induced photodynamic effect on viability, apoptosis and secretion of S100 protein, secreted by colon cancer cells in vitro. Photodiagnosis Photodyn Ther 2016; 15:218-27. [PMID: 27469201 DOI: 10.1016/j.pdpdt.2016.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND S100 protein is a proven prognostic factor in cancers. In colorectal cancers, its secretion correlates with clinical stage of the disease. Photodynamic therapy (PDT) is used as a supporting therapy in treatment of this particular cancer. The main aim of our study was to estimate the effect of photodynamic therapy with 5-aminolevulinic acid (ALA) in sublethal doses (ALA-PDT) on the secretion of S100 protein by colon cancer cells. METHODS Investigations were performed on two colon cancer cell lines. The SW480 cell line is a culture containing locally malignant cancer. The SW620 line is characterized by high metastatic activity. Each line was exposed to different concentrations of photosensitizer's precursor-ALA, and various level of light radiation. Afterwards, cell viability, using MTT and LDH assays and apoptosis of both lines was assessed. Then measurement of S100 protein concentration was performed using a 2-step enzyme immunoassay. RESULTS After application of ALA PDT the S100 protein concentration was reduced by 27% in SW480 cell line and by 30% in SW620 cell line. At the same time there has been no increase in the concentration of S100 protein in cells exposed to the light alone. It was demonstrated that the more aggressive line SW620 releases higher levels of S100 proteins in comparison with the line SW480. CONCLUSION The outcome of this study presented beneficial effect of ALA-PDT on persistent colon cancer cells. This therapy leads to decrease of S100 protein concentration in both colon cancer cell lines: SW480 and SW620.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego 15, 41-902, Bytom, Poland.
| | - Wojciech Latos
- Center for Laser Diagnostics and Therapy, Specialist Hospital No 2 Batorego 15, 41-902, Bytom, Poland
| | - Magdalena Latos
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland
| | - Zenon P Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland
| | - Aleksander Sieroń
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego 15, 41-902, Bytom, Poland
| |
Collapse
|
11
|
Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS One 2016; 11:e0146482. [PMID: 26741693 PMCID: PMC4704778 DOI: 10.1371/journal.pone.0146482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/17/2015] [Indexed: 12/22/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF) has been increasingly implicated in cancer development and progression by promoting inflammation, angiogenesis, tumor cell survival and immune suppression. MIF is overexpressed in a variety of solid tumor types in part due to its responsiveness to hypoxia inducible factor (HIF) driven transcriptional activation. MIF secretion, however, is a poorly understood process owing to the fact that MIF is a leaderless polypeptide that follows a non-classical secretory pathway. Better understanding of MIF processing and release could have therapeutic implications. Here, we have discovered that ionizing radiation (IR) and other DNA damaging stresses can induce robust MIF secretion in several cancer cell lines. MIF secretion by IR appears independent of ABCA1, a cholesterol efflux pump that has been implicated previously in MIF secretion. However, MIF secretion is robustly induced by oxidative stress. Importantly, MIF secretion can be observed both in cell culture models as well as in tumors in mice in vivo. Rapid depletion of MIF from tumor cells observed immunohistochemically is coincident with elevated circulating MIF detected in the blood sera of irradiated mice. Given the robust tumor promoting activities of MIF, our results suggest that an innate host response to genotoxic stress may mitigate the beneficial effects of cancer therapy, and that MIF inhibition may improve therapeutic responses.
Collapse
|
12
|
Wawrzyniec K, Kawczyk-Krupka A, Czuba ZP, Król W, Sieroń A. The influence of ALA-mediated photodynamic therapy on secretion of selected growth factors by colon cancer cells in hypoxia-like environment in vitro. Photodiagnosis Photodyn Ther 2015; 12:598-611. [DOI: 10.1016/j.pdpdt.2015.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023]
|
13
|
Broekgaarden M, Kos M, Jurg FA, van Beek AA, van Gulik TM, Heger M. Inhibition of NF-κB in Tumor Cells Exacerbates Immune Cell Activation Following Photodynamic Therapy. Int J Mol Sci 2015; 16:19960-77. [PMID: 26307977 PMCID: PMC4581334 DOI: 10.3390/ijms160819960] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023] Open
Abstract
Although photodynamic therapy (PDT) yields very good outcomes in numerous types of superficial solid cancers, some tumors respond suboptimally to PDT. Novel treatment strategies are therefore needed to enhance the efficacy in these therapy-resistant tumors. One of these strategies is to combine PDT with inhibitors of PDT-induced survival pathways. In this respect, the transcription factor nuclear factor κB (NF-κB) has been identified as a potential pharmacological target, albeit inhibition of NF-κB may concurrently dampen the subsequent anti-tumor immune response required for complete tumor eradication and abscopal effects. In contrast to these postulations, this study demonstrated that siRNA knockdown of NF-κB in murine breast carcinoma (EMT-6) cells increased survival signaling in these cells and exacerbated the inflammatory response in murine RAW 264.7 macrophages. These results suggest a pro-death and immunosuppressive role of NF-κB in PDT-treated cells that concurs with a hyperstimulated immune response in innate immune cells.
Collapse
Affiliation(s)
- Mans Broekgaarden
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Milan Kos
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Freek A Jurg
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Adriaan A van Beek
- Department of Cell Biology and Immunology, Wageningen University, 6709 PG Wageningen, The Netherlands.
| | - Thomas M van Gulik
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| | - Michal Heger
- Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Photodynamic therapy in colorectal cancer treatment--The state of the art in preclinical research. Photodiagnosis Photodyn Ther 2015; 13:158-174. [PMID: 26238625 DOI: 10.1016/j.pdpdt.2015.07.175] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used in many different oncologic fields. Also in gastroenterology, where have been a few attempts to treat both the premalignant lesion and advanced colorectal cancer (CRC). This review aims to give a general overview of preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment to emphasize their potential in study of PDT mechanism, safety and efficiency to translate these results into clinical benefit in CRC treatment. MATERIALS AND METHOD Literature on in vitro preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment with the fallowing medical subject headings search terms: colorectal cancer, photodynamic therapy, photosensitizer(s), in vitro, cell culture(s), in vivo, animal experiment(s). The articles were selected by their relevance to the topic. RESULTS The majority of preclinical studies concerning possibility of PDT application in colon and rectal cancer is focused on phototoxic action of photosensitizers toward cultured colorectal tumor cells in vitro. The purposes of animal experiments are usually elucidation of mechanisms of observed photodynamic effects in scale of organism, estimation of PDT safety and efficiency and translation of these results into clinical benefit. CONCLUDING REMARKS In vitro photodynamic studies and animal experiments can be useful for studies of mechanisms and efficiency of photodynamic method as a start point on PDT clinical research. The primary disadvantage of in vitro experiments is a risk of over-interpretation of their results during extrapolation to the entire CRC.
Collapse
|