1
|
Howley R, Olsen J, Chen B. Effectiveness of lapatinib for enhancing 5-aminolevulinic acid-mediated protoporphyrin IX fluorescence and photodynamic therapy in human cancer cell lines with varied ABCG2 activities. Photochem Photobiol 2024; 100:1579-1589. [PMID: 38477138 PMCID: PMC11393173 DOI: 10.1111/php.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
5-Aminolevulinic acid (ALA) is a prodrug for protoporphyrin IX (PpIX)-mediated photodynamic therapy (PDT) and fluorescence-guided tumor surgery. We previously reported that lapatinib, a repurposed ABCG2 inhibitor, enhanced ALA-induced PpIX fluorescence and PDT by blocking ABCG2-mediated PpIX efflux. In the present study, we evaluated how the variation in ABCG2 activities/protein levels affected tumor cell response to the enhancement of PpIX/PDT by lapatinib and Ko143, an ABCG2 tool inhibitor. ABCG2 activities and protein levels were determined in a panel of human cancer cell lines. Effects of lapatinib and Ko143 on enhancing ALA-PpIX fluorescence and PDT were evaluated and correlated with tumor cell ABCG2 activities. We found that both lapatinib and Ko143 enhanced ALA-PpIX fluorescence and PDT in a dose-dependent manner, although lapatinib exhibited lower efficacy and potency than Ko143 in nearly all cancer cell lines. The EC50 of ABCG2 inhibitors for enhancing ALA-PpIX and PDT had a positive correlation with tumor cell ABCG2 activities, indicating that tumor cell lines with lower ABCG2 activities were more sensitive to ABCG2 inhibitors for PpIX/PDT enhancement. Our results suggest that, for optimal therapeutic enhancement, the dose of ABCG2 inhibitors needs to be tailored based on the ABCG2 expression/activity in tumors.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania
| | - Jordyn Olsen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351:122808. [PMID: 38852796 DOI: 10.1016/j.lfs.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Münster University, 48149 Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran.
| |
Collapse
|
3
|
Lin S, Ota U, Imazato H, Takahashi K, Ishizuka M, Osaki T. In vitro evaluation of the efficacy of photodynamic therapy using 5-ALA on homologous feline mammary tumors in 2D and 3D culture conditions and a mouse subcutaneous model with 3D cultured cells. Photodiagnosis Photodyn Ther 2024; 45:103993. [PMID: 38280675 DOI: 10.1016/j.pdpdt.2024.103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND Numerous studies have shown that photodynamic therapy (PDT) has a therapeutic effect on mammary tumor cells, with 5-aminolevulinic acid (5-ALA-HCL) being a commonly used photosensitizer for PDT. Feline mammary tumors (FMTs) are relatively common. However, the cytotoxic and antitumor effects of 5-ALA-PDT on FMTs have not been clarified. To this end, we evaluated the therapeutic effect of 5-ALA-PDT on FMTs through in vitro experiments using an FMT FKR cell line established for this study. METHODS We performed 5-ALA-PDT in 2D-cultured FKR-A (adherent cells) and 3D-cultured FKR-S (spheroid cells) cells and performed a series of studies to evaluate the cell viability and determine the protoporphyrin IX (PpIX) content in the cells as well as the expression levels of mRNAs associated with PpIX production and release. An in vivo study was performed to assess the effectiveness of 5-ALA-PDT. RESULTS There was a significant difference in the concentration of PpIX in FMT cells under different incubation culture modes (2D versus 3D culture). The concentration of PpIX in FMT cells was correlated with the differences in cell culture (2D and 3D) as well as the expression levels of genes such as PEPT1, PEPT2, FECH, and HO-1. CONCLUSIONS In the in vitro study, 5-ALA-PDT had a stronger inhibitory effect on 3D-cultured FKR-S cells, which resemble the internal environment of organisms more closely. We also observed a significant inhibitory effect of 5-ALA-PDT on FMT cells in vivo. To our knowledge, this is the first study on 5-ALA-PDT for FMTs under both 2D and 3D conditions.
Collapse
Affiliation(s)
- Siyao Lin
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan
| | - Urara Ota
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | - Hideo Imazato
- SBI Pharmaceuticals Co., Ltd., Tokyo 106-6020, Japan
| | | | | | - Tomohiro Osaki
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori 680-8553, Japan.
| |
Collapse
|
4
|
Chandratre S, Olsen J, Howley R, Chen B. Targeting ABCG2 transporter to enhance 5-aminolevulinic acid for tumor visualization and photodynamic therapy. Biochem Pharmacol 2023; 217:115851. [PMID: 37858868 PMCID: PMC10842008 DOI: 10.1016/j.bcp.2023.115851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
5-Aminolevulinic acid (ALA) has been approved by the U. S. FDA for fluorescence-guided resection of high-grade glioma and photodynamic therapy (PDT) of superficial skin precancerous and cancerous lesions. As a prodrug, ALA administered orally or topically is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX), the active drug with red fluorescence and photosensitizing property. Preferential accumulation of PpIX in tumors after ALA administration enables the use of ALA for PpIX-mediated tumor fluorescence diagnosis and PDT, functioning as a photo-theranostic agent. Extensive research is currently underway to further enhance ALA-mediated PpIX tumor disposition for better tumor visualization and treatment. Particularly, the discovery of PpIX as a specific substrate of ATP binding cassette subfamily G member 2 (ABCG2) opens the door to therapeutic enhancement with ABCG2 inhibitors. Studies with human tumor cell lines and human tumor samples have demonstrated ABCG2 as an important biological determinant of reduced ALA-PpIX tumor accumulation, inhibition of which greatly enhances ALA-PpIX fluorescence and PDT response. These studies strongly support targeting ABCG2 as an effective therapeutic enhancement approach. In this review, we would like to summarize current research of ABCG2 as a drug efflux transporter in multidrug resistance, highlight previous works on targeting ABCG2 for therapeutic enhancement of ALA, and provide future perspectives on how to translate this ABCG2-targeted therapeutic enhancement strategy from bench to bedside.
Collapse
Affiliation(s)
- Sharayu Chandratre
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Jordyn Olsen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA, USA; Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Di Cristofori A, Carone G, Rocca A, Rui CB, Trezza A, Carrabba G, Giussani C. Fluorescence and Intraoperative Ultrasound as Surgical Adjuncts for Brain Metastases Resection: What Do We Know? A Systematic Review of the Literature. Cancers (Basel) 2023; 15:cancers15072047. [PMID: 37046709 PMCID: PMC10092992 DOI: 10.3390/cancers15072047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
(1) Background: brain metastases (BMs) are the most common neoplasm of the central nervous system; despite the high incidence of this type of tumour, to date there is no universal consensus on the most effective treatment in patients with BMs, even if surgery still plays a primary role. Despite this, the adjunct systems that help to reach the GTR, which are well structured for other tumour forms such as ultrasound and fluorescence systems, are not yet well employed and standardised in surgical practice. The aim of this review is to provide a picture of the current state-of-art of the roles of iOUS and intraoperative fluorescence to better understand their potential roles as surgical tools. (2) Methods: to reach this goal, the PubMed database was searched using the following string as the keyword: (((Brain cerebral metastasis [MeSH Major Topic])OR (brain metastasis, [MeSH Major Topic])) AND ((5-ala, [MeSH Terms]) OR (Aminolevulinicacid [All fields]) OR (fluorescein, [MeSH Terms]) OR (contrast enhanced ultrasound [MeSH Terms])OR ((intraoperative ultrasound. [MeSH Terms]))) AND (english [Filter]) AND ((english [Filter]) AND (2010:2022 [pdat])) AND (english [Filter]). (3) Results: from our research, a total of 661 articles emerged; of these, 57 were selected. 21 of these included BMs generically as a secondary class for comparisons with gliomas, without going deeply into specific details. Therefore, for our purposes, 36 articles were considered. (4) Conclusions: with regard to BMs treatment and their surgical adjuncts, there is still much to be explored. This is mainly related to the heterogeneity of patients, the primary tumour histology and the extent of systemic disease; regardless, surgery plays a paramount role in obtaining a local disease control, and more standardised surgical protocols need to be made, with the aim of optimizing the use of the available surgical adjuncts and in order to increase the rate of GTR.
Collapse
Affiliation(s)
- Andrea Di Cristofori
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Giovanni Carone
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Alessandra Rocca
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Chiara Benedetta Rui
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Andrea Trezza
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
| | - Giorgio Carrabba
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Carlo Giussani
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| |
Collapse
|
6
|
Shah HA, Leskinen S, Khilji H, Narayan V, Ben-Shalom N, D’Amico RS. Utility of 5-ALA for fluorescence-guided resection of brain metastases: a systematic review. J Neurooncol 2022; 160:669-675. [DOI: 10.1007/s11060-022-04188-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022]
|
7
|
Harada Y, Murayama Y, Takamatsu T, Otsuji E, Tanaka H. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges. Int J Mol Sci 2022; 23:ijms23126478. [PMID: 35742921 PMCID: PMC9223645 DOI: 10.3390/ijms23126478] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a natural amino acid and a precursor of heme and chlorophyll. Exogenously administered 5-ALA is metabolized into protoporphyrin IX (PpIX). PpIX accumulates in cancer cells because of the low activity of ferrochelatase, an enzyme that metabolizes PpIX to heme. High expression of 5-ALA influx transporters, such as peptide transporters 1/2, in cancer cells also enhances PpIX production. Because PpIX radiates red fluorescence when excited with blue/violet light, 5-ALA has been used for the visualization of various tumors. 5-ALA photodynamic diagnosis (PDD) has been shown to improve the tumor removal rate in high-grade gliomas and non-muscular invasive bladder cancers. However, 5-ALA PDD remains a challenge as a diagnostic method because tissue autofluorescence interferes with PpIX signals in cases where tumors emit only weak signals, and non-tumorous lesions, such as inflammatory sites, tend to emit PpIX fluorescence. Here, we review the current outline of 5-ALA PDD and strategies for improving its diagnostic applicability for tumor detection, focusing on optical techniques and 5-ALA metabolic pathways in both viable and necrotic tumor tissues.
Collapse
Affiliation(s)
- Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5322
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan; (Y.M.); (E.O.)
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan; (Y.M.); (E.O.)
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
8
|
Wang X, Chen Y, Wang Y, Wang B, Zhang J, Jian X. Expression, Regulation, and Role of an Oligopeptide Transporter: PEPT1 in Tumors. Curr Med Chem 2022; 29:1596-1605. [PMID: 35546503 DOI: 10.2174/0929867328666210707170214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
:
PEPT1 is a vital member of the proton-dependent oligopeptide transporters
family (POTs). Many studies have confirmed that PEPT1 plays a critical role in the absorption
of dipeptides, tripeptides, and pseudopeptides in the intestinal tract. In recent
years, several studies have found that PEPT1 is highly expressed in malignant tumor tissues
and cells. The abnormal expression of PEPT1 in tumors may be closely related to the
progress of tumors, and hence, could be considered as a potential molecular biomarker for
the diagnosis, treatment, and prognosis in malignant tumors. Furthermore, PEPT1 can be
used to mediate the targeted delivery of anti-tumor drugs. Herein, the expression, regulation,
and role of PEPT1 in tumors in recent years have been reviewed.
Collapse
Affiliation(s)
- Xi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
- Tianjin Baodi Hospital/Baodi Clinical College of Tianjin
Medical University, Tianjin 300052, China
| | - Yiming Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
| | - Yongjuan Wang
- Department of Gastroenterology and Hepatology, The Second
Affiliated Hospital of Hebei Medical University, Hebei, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute
of Digestive Disease, Tianjin 300052, China
| | - Xu Jian
- Central Laboratory, Tianjin Medical University
General Hospital, Tianjin, 300052, China
| |
Collapse
|
9
|
Targeting glioblastoma stem cells: The first step of photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102585. [PMID: 34687963 DOI: 10.1016/j.pdpdt.2021.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma is one of the most malignant types of brain cancer. Evidence suggests that within gliomas there is a small subpopulation of cells with the capacity for self-renewal, called glioma stem cells. These cells could be responsible for tumorigenesis, chemo and radioresistance, and finally for the recurrence of the tumor. Fluorescence-guided resection have improved the results of treatment against this disease, prolonging the survival of patients by a few months. Also, clinical trials have reported potential improvements in the therapeutic response after photodynamic therapy. Thus far, there are few published works that show the response of glioblastoma stem-like cells to photodynamic therapy. Here, we present a brief review exclusively commenting on the therapeutic approaches to eliminate glioblastoma stem cells and on the research publications about this topic of glioblastoma stem cells in relation to photodynamic therapy. It is our hope that this review will be useful to provide an overview about what is known to date on the topic and to promote the generation of new ideas for the eradication of glioblastoma stem cells by photodynamic treatment.
Collapse
|
10
|
Labib PL, Yaghini E, Davidson BR, MacRobert AJ, Pereira SP. 5-Aminolevulinic acid for fluorescence-guided surgery in pancreatic cancer: Cellular transport and fluorescence quantification studies. Transl Oncol 2021; 14:100886. [PMID: 33059124 PMCID: PMC7566921 DOI: 10.1016/j.tranon.2020.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
5-Aminolevulinic acid (ALA) is a potential contrast agent for fluorescence-guided surgery in pancreatic ductal adenocarcinoma (PDAC). However, factors influencing ALA uptake in PDAC have not been adequately assessed. We investigated ALA-induced porphyrin fluorescence in PDAC cell lines CFPAC-1 and PANC-1 and pancreatic ductal cell line H6c7 following incubation with 0.25-1.0 mM ALA for 4-48 h. Fluorescence was assessed qualitatively by microscopy and quantitatively by plate reader and flow cytometry. Haem biosynthesis enzymes and transporters were measured by quantitative polymerase chain reaction (qPCR). CFPAC-1 cells exhibited intense fluorescence under microscopy at low concentrations whereas PANC-1 cells and pancreatic ductal cell line H6c7 showed much lower fluorescence. Quantitative fluorescence studies demonstrated fluorescence saturation in the two PDAC cell lines at 0.5 mM ALA, whereas H6c7 cells showed increasing fluorescence with increasing ALA. Based on the PDAC:H6c7 fluorescence ratio studies, lower ALA concentrations provide better contrast between PDAC and benign pancreatic cells. Studies with qPCR showed upregulation of ALA influx transporter PEPT1 in CFPAC-1, whereas PANC-1 upregulated the efflux transporter ABCG2. We conclude that PEPT1 and ABCG2 expression may be key contributory factors for variability in ALA-induced fluorescence in PDAC.
Collapse
Affiliation(s)
- P L Labib
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - E Yaghini
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - B R Davidson
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - A J MacRobert
- UCL Division of Surgery & Interventional Science, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| | - S P Pereira
- UCL Institute for Liver & Digestive Health, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
11
|
Sánchez-Ortega JF, Aguas-Valiente J, Sota-Ochoa P, Calatayud-Pérez J. Glioblastoma with primitive neuronal component: A case report and considerations of fluorescence-guided surgery. Surg Neurol Int 2020; 11:178. [PMID: 32754353 PMCID: PMC7395537 DOI: 10.25259/sni_272_2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background: Glioblastoma with primitive neuronal components (GB/PNC) is an extremely rare type of glioblastoma characterized by presenting histological and cytogenetic features of both entities. The mixed nature of these tumors limits the imaging diagnosis and supposes a therapeutic dilemma. Case Description: We present the case of a 77-year-old female with a GB/PNC who is treated with surgery and adjuvant radiochemotherapy according to the STUPP protocol, where an abnormal uptake of 5-aminolevulinic acid (5-ALA) is evident during surgery in probable relation to the mixed nature of GB/PNC. Conclusion: GB/PNC is extremely rare tumors. Given its low prevalence, there are no studies that refer to the macroscopic characteristics of the tumor as well as evidence of the effectiveness of adjuvant treatment. Fluorescence-guided resection with 5-ALA is the surgical treatment of choice in surgery for high-grade gliomas; however, in GB/PNC, it may not be as useful since PNC may have less fluorescent marker uptake and be more dimly visualized when excited by light using the surgical microscope.
Collapse
Affiliation(s)
| | - Jesús Aguas-Valiente
- Departments of Neurosurgery, Lozano Blesa University Clinical Hospital, Av. San Juan Bosco, nº 15, Zaragoza, Spain
| | - Patricia Sota-Ochoa
- Departments of Pathology, Lozano Blesa University Clinical Hospital, Av. San Juan Bosco, nº 15, Zaragoza, Spain
| | - Juan Calatayud-Pérez
- Departments of Neurosurgery, Lozano Blesa University Clinical Hospital, Av. San Juan Bosco, nº 15, Zaragoza, Spain
| |
Collapse
|
12
|
McNicholas K, MacGregor MN, Gleadle JM. In order for the light to shine so brightly, the darkness must be present-why do cancers fluoresce with 5-aminolaevulinic acid? Br J Cancer 2019; 121:631-639. [PMID: 31406300 PMCID: PMC6889380 DOI: 10.1038/s41416-019-0516-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis and therapy have emerged as a promising tool in oncology. Using the visible fluorescence from photosensitisers excited by light, clinicians can both identify and treat tumour cells in situ. Protoporphyrin IX, produced in the penultimate step of the haem synthesis pathway, is a naturally occurring photosensitiser that visibly fluoresces when exposed to light. This fluorescence is enhanced considerably by the exogenous administration of the substrate 5-aminolaevulinic acid (5-ALA). Significantly, 5-ALA-induced protoporphyrin IX accumulates preferentially in cancer cells, and this enhanced fluorescence has been harnessed for the detection and photodynamic treatment of brain, skin and bladder tumours. However, surprisingly little is known about the mechanistic basis for this phenomenon. This review focuses on alterations in the haem pathway in cancer and considers the unique features of the cancer environment, such as altered glucose metabolism, oncogenic mutations and hypoxia, and their potential effects on the protoporphyrin IX phenomenon. A better understanding of why cancer cells fluoresce with 5-ALA would improve its use in cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Kym McNicholas
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia. .,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Melanie N MacGregor
- Future Industries Institute, School of Engineering, University of South Australia, Adelaide, SA, 5095, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|