1
|
Cao J, Ma Q, Shi J, Wang X, Ye D, Liang J, Zou J. Cariogenic Microbiota and Emerging Antibacterial Materials to Combat Dental Caries: A Literature Review. Pathogens 2025; 14:111. [PMID: 40005488 PMCID: PMC11858515 DOI: 10.3390/pathogens14020111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Dental caries is the most common oral disease in the world and a chronic infectious disease. The cariogenic microbiome plays an important role in the process of caries. The ecological imbalance of microbiota leads to low pH, which causes caries. Therefore, antibacterial materials have always been a hot topic. Traditional antibacterial materials such as cationic antibacterial agents, metal ion antibacterial agents, and some natural extract antibacterial agents have good antibacterial effects. However, they can cause bacterial resistance and have poor biological safety when used for long-term purposes. Intelligent antibacterial materials, such as pH-responsive materials, nanozymes, photoresponsive materials, piezoelectric materials, and living materials are emerging antibacterial nano-strategies that can respond to the caries microenvironment or other specific stimuli to exert antibacterial effects. Compared with traditional antibacterial materials, these materials are less prone to bacterial resistanceand have good biological safety. This review summarizes the characteristics of cariogenic microbiota and some traditional or emerging antibacterial materials. These emerging antibacterial materials can accurately act on the caries microenvironment, showing intelligent antibacterial effects and providing new ideas for caries management.
Collapse
Affiliation(s)
- Jingwei Cao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jia Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
| | - Xinyue Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dingwei Ye
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610064, China; (J.C.); (Q.M.); (J.S.); (X.W.); (D.Y.)
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Niu Q, Chen S, Bai R, Lu Y, Peng L, Han B, Yu T. Dynamics of the oral microbiome during orthodontic treatment and antimicrobial advances for orthodontic appliances. iScience 2024; 27:111458. [PMID: 39720528 PMCID: PMC11667053 DOI: 10.1016/j.isci.2024.111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
The oral microbiome plays an important role in human health, and an imbalance of the oral microbiome could lead to oral and systemic diseases. Orthodontic treatment is an effective method to correct malocclusion. However, it is associated with many adverse effects, including white spot lesions, caries, gingivitis, periodontitis, halitosis, and even some systematic diseases. Undoubtedly, increased difficulty in oral hygiene maintenance and oral microbial disturbances are the main factors in developing these adverse effects. The present article briefly illustrates the characteristics of different ecological niches (including saliva, soft tissue surfaces of the oral mucosa, and hard tissue surfaces of the teeth) inhabited by oral microorganisms. According to the investigations conducted since 2014, we comprehensively elucidate the alterations of the oral microbiome in saliva, dental plaque, and other ecological niches after the introduction of orthodontic appliances. Finally, we provide a detailed review of recent advances in the antimicrobial properties of different orthodontic appliances. This article will provide researchers with a profound understanding of the underlying mechanisms of the effects of orthodontic appliances on human health and provide direction for further research on the antimicrobial properties of orthodontic appliances.
Collapse
Affiliation(s)
- Qin Niu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Si Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Yuntao Lu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Liying Peng
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, No.22, Zhongguancun South Avenue, Haidian District, Beijing 100081, P.R. China
| |
Collapse
|
3
|
Pires BRB, de Paoli F, Mencalha AL, de Souza da Fonseca A. Photodynamic therapy on mRNA levels in bacteria. Lasers Med Sci 2024; 39:229. [PMID: 39214913 DOI: 10.1007/s10103-024-04179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Antimicrobial photodynamic therapy (aPDT) has shown efficacy in inactivating different bacterial species by photosensitizer-induced free radical production. Despite aPDT is considered unable to cause resistant strains, enzymatic pathways for detoxification of reactive oxygen species and transmembrane photosensitizer efflux systems could cause resistance to aPDT. Resistance mechanisms can be evaluated by measurement of mRNA from by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Thus, the aim of this study was to access the mRNA level data obtained by RT-qPCR in bacterial cells submitted to photodynamic therapy. Studies performed on mRNA levels in bacteria after PDT were assessed on MEDLINE/Pubmed. The mRNA levels from genes related to various functions have been successfully evaluated in both Gram-positive and -negative bacteria after aPDT by RT-qPCR. Such an approach has improved the understanding of aPDT-induced effects, and reinforced the effectiveness of aPDT on bacteria, which can cause infections in different human tissues.
Collapse
Affiliation(s)
- Bruno Ricardo Barreto Pires
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, 36036900, Minas Gerais, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil
| | - Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, Vila Isabel, Rio de Janeiro, 20551030, Brazil.
- Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro, 20211040, Brazil.
- Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro, 25964004, Brazil.
| |
Collapse
|
4
|
Ghanemi M, Salehi-Vaziri A, Pourhajibagher M, Bahador A. Physico-mechanical and antimicrobial properties of an elastomeric ligature coated with reduced nanographene oxide-nano curcumin subjected to dual-modal photodynamic and photothermal inactivation against Streptococcus mutans biofilms. Photodiagnosis Photodyn Ther 2023; 44:103866. [PMID: 37890811 DOI: 10.1016/j.pdpdt.2023.103866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND White spot lesions (WSLs) are a common side effect of fixed orthodontic treatment. Streptococcus mutans is the primary causative agent of WSLs and dental caries on the teeth during treatment. According to the unique features of reduced graphene oxide-nano curcumin (rGO-nCur), this study aimed to investigate the mechanical properties and antimicrobial potency of rGO-nCur coated orthodontic elastomeric ligatures as a novel coating composite following dual-modal photodynamic inactivation (PDI) and photothermal inactivation (PTI) against S. mutans biofilms. METHODS After confirmation of rGO-nCur synthesis and coating elastomeric ligatures with different concentration levels of 1.25, 2.5, 5, 7.5, and 10 % of rGO-nCur, tensile strength, force decay, extension to tensile strength, and contact angle of the coated elastomeric ligatures were measured using universal testing machine and sessile drop method, respectively. To investigate the mechanism through which irradiated rGO-nCur can inhibit the formation of S. mutans biofilms, intracellular reactive oxygen species (ROS) generation, and increase in temperature of rGO-nCur solutions under the 450 and 980 nm laser irradiation, respectively, were measured. The anti-biofilm activity and inhibition of water-insoluble extracellular polysaccharide (EPS) production ability of irradiated rGO-nCur coated elastomeric ligatures using a 450 nm diode laser (195 J/cm2), a 980 nm diode laser (195 J/cm2), and a combination of both (78 J/cm2 of irradiation from each one) (i.e., PDI, PTI, and dual-modal PDI/PTI, respectively) were determined. Also, the expression of virulence genes involved in biofilm formation (comDE, gtfD, and smuT) was assessed by quantitative real-time polymerase chain reaction (RT-qPCR) following the mentioned treatment. One-way ANOVA test and Tukey post-hoc test at a p-value equal to/or less than 0.05 were used to analyze the obtained data. RESULTS The synthesis of GO nano-sheets in a layered structure with a thickness of 0.76 nm was confirmed by AFM analysis. FESEM showed that the exfoliated sheet of synthesized GO had several micrometers in lateral size. DLS revealed that the mean particle size and density index of synthesized nCur were 57.47 ± 2.14 nm and 10 % respectively. In DLS analysis, rGO-nCur showed more positive surface charge (24 mV) than the nano-sheets of GO. FESEM confirmed the coating of rGO-nCur on elastomeric ligatures. ANOVA revealed that tensile strength of 1.25, 2.5, and 5 % rGO-nCur coated elastomeric ligatures were not decreased statistically significantly (P > 0.05). Mean tensile strength and recorded force of 7.5 and 10 % rGO-nCur coated elastomeric ligatures decreased significantly after 14 days' immersion in the artificial saliva (P < 0.05). On the 28th day of the study, the mean of the tensile strength of elastomeric ligatures coated with 10 % rGO-nCur (13.03 ± 0.10 N) was recorded as 55.90 % of the initial tensile strength (23.31 ± 0.41 N in uncoated elastomeric ligatures), while the mean tensile strength of elastomeric ligatures coated with 7.5 % rGO-nCur (16.01 ± 0.10 N) was measured as 68.94 % of the initial tensile strength (23.22 ± 0.09 N in uncoated elastomeric ligatures). When comparing the coated elastomeric ligatures at 7.5 % and 10 % to the original uncoated elastomeric ligatures at similar time intervals, statistically significant decreases in extension to tensile strength (0.42 to 0.71 mm or 3.02 to 5.05 %; all P < 0.05) were observed. The largest contact angle was measured in elastomeric ligatures coated by 10 % rGO-nCur followed by 7.5 and 5 % rGO-nCur (128 ± 2.19°, 117 ± 2.23°, and 99 ± 1.83°; respectively). The results revealed a rise of 6.4-fold in intracellular ROS and an 11.2 °C increase in the temperature of rGO-nCur solutions following the 450 nm and 980 nm laser irradiation, respectively. The 5 % rGO-nCur coated elastomeric ligature mediated dual-modal PDI/PTI showed the most inhibition of the biofilm formation of S. mutans by 83.62 % (P = 0.00). Significant reductions in water-insoluble EPS were detected in biofilm cultures of S. mutans on 1.25 % rGO-nCur coated elastomeric ligatures following irradiation with dual waves of the 450 nm and 980 nm diode lasers (i.e., dual-modal PDI/PTI; 96.17 %; P = 0.00). The expression levels of comDE, gtfD, and smuT virulence genes were significantly downregulated (7.52-, 13.92-, and 8.23-fold, respectively) in the biofilm cultures of S. mutans on 1.25 % rGO-nCur coated elastomeric ligatures following dual-modal PDI/PTI in comparison with biofilm cultures on non-coated elastomeric ligatures. CONCLUSION 5 % rGO-nCur coated elastomeric ligatures following irradiation with dual waves of the 450 and 980 nm diode lasers (dual-modal PDI/PTI), without adverse effects on the physico-mechanical properties of elastomeric ligatures, can be used to inhibit the formation of S. mutans biofilms on the coated elastomeric ligatures around orthodontic brackets.
Collapse
Affiliation(s)
- Marzieh Ghanemi
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Abbas Salehi-Vaziri
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
5
|
Rygas J, Matys J, Wawrzyńska M, Szymonowicz M, Dobrzyński M. The Use of Graphene Oxide in Orthodontics-A Systematic Review. J Funct Biomater 2023; 14:500. [PMID: 37888164 PMCID: PMC10607887 DOI: 10.3390/jfb14100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Graphene-based materials have great prospects for application in dentistry and medicine due to their unique properties and biocompatibility with tissues. The literature on the use of graphene oxide in orthodontic treatment was reviewed. METHODS This systematic review followed the PRISMA protocol and was conducted by searching the following databases: PubMed, Scopus, Web of Science, and Cochrane. The following search criteria were used to review the data on the topic under study: (Graphene oxide) AND (orthodontic) ALL FIELDS. For the Scopus database, results were narrowed to titles, authors, and keywords. A basic search structure was adopted for each database. Initially, a total of 74 articles were found in the considered databases. Twelve articles met the inclusion criteria and were included in the review. RESULTS Nine studies demonstrated the antibacterial properties of graphene oxide, which can reduce the demineralization of enamel during orthodontic treatment. Seven studies showed that it is biocompatible with oral tissues. Three studies presented that graphene oxide can reduce friction in the arch-bracket system. Two studies showed that it can improve the mechanical properties of orthodontic adhesives by reducing ARI (Adhesive Remnant Index). Three studies demonstrated that the use of graphene oxide in the appropriate concentration can also increase the SBS (shear bond strength) parameter. One research study showed that it can increase corrosion resistance. One research study suggested that it can be used to accelerate orthodontic tooth movement. CONCLUSION The studies included in the systematic review showed that graphene oxide has numerous applications in orthodontic treatment due to its properties.
Collapse
Affiliation(s)
- Joanna Rygas
- Dental Practice, Wojciecha z Brudzewa 10, 51-601 Wroclaw, Poland;
| | - Jacek Matys
- Oral Surgery Department, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
- Department of Orthodontics, Technische Universitat Dresden, 01307 Dresden, Germany
| | - Magdalena Wawrzyńska
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (M.W.); (M.S.)
| | - Maria Szymonowicz
- Pre-Clinical Research Centre, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland; (M.W.); (M.S.)
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| |
Collapse
|
6
|
Xu VW, Nizami MZI, Yin IX, Lung CYK, Yu OY, Chu CH. Caries Management with Non-Metallic Nanomaterials: A Systematic Review. Int J Nanomedicine 2022; 17:5809-5824. [PMID: 36474525 PMCID: PMC9719741 DOI: 10.2147/ijn.s389038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/23/2022] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Non-metallic nanomaterials do not stain enamel or dentin. Most have better biocompatibility than metallic nanomaterials do for management of dental caries. OBJECTIVE The objective of this study is to review the types, properties and potential uses of non-metallic nanomaterials systematically for managing dental caries. METHODS Two researchers independently performed a literature search of publications in English using PubMed, Scopus and Web of Science. The keywords used were (nanoparticles OR nanocomposites OR nanomaterials) AND (caries OR tooth decay). They screened the titles and abstracts to identify potentially eligible publications of original research reporting non-metallic nanomaterials for caries management. Then, they retrieved and studied the full text of the identified publications for inclusion in this study. RESULTS Out of 2497 resulting publications, this study included 75 of those. The non-metallic nanomaterials used in these publications were categorized as biological organic nanomaterials (n=45), synthetic organic nanomaterials (n=15), carbon-based nanomaterials (n=13) and selenium nanomaterials (n=2). They inhibited bacteria growth and/or promoted remineralization. They could be incorporated in topical agents (29/75, 39%), dental adhesives (11/75, 15%), restorative fillers (4/75, 5%), dental sealant (3/75, 4%), oral drugs (3/75, 4%), toothpastes (2/75, 3%) and functional candies (1/75, 1%). Other publications (22/75, 29%) do not mention specific applications. However, most publications (67/75, 89%) were in vitro studies. Six publications (6/75, 8%) were animal studies, and only two publications (2/75, 3%) were clinical studies. CONCLUSION The literature showed non-metallic nanomaterials have antibacterial and/or remineralising properties. The most common type of non-metallic nanomaterials for caries management is organic nanomaterials. Non-metallic nanomaterials can be incorporated into dental sealants, toothpaste, dental adhesives, topical agents and even candies and drugs. However, the majority of the publications are in vitro studies, and only two publications are clinical studies.
Collapse
Affiliation(s)
- Veena Wenqing Xu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | | | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Christie Ying Kei Lung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| |
Collapse
|