1
|
Karimi S, Bakhshali R, Bolandi S, Zahed Z, Mojtaba Zadeh SS, Kaveh Zenjanab M, Jahanban Esfahlan R. For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy. Mater Today Bio 2025; 31:101626. [PMID: 40124335 PMCID: PMC11926801 DOI: 10.1016/j.mtbio.2025.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is challenged by the tumor microenvironment (TME), which promotes drug resistance and cancer cell growth. This review offers a comprehensive and innovative perspective on how nanomedicine can modify the TME to enhance therapy. Strategies include using nanoparticles to improve oxygenation, adjust acidity, and alter the extracellular matrix, making treatments more effective. Additionally, nanoparticles can enhance immune responses by activating immune cells and reducing suppression within tumors. By integrating these approaches with existing therapies, such as chemotherapy and radiotherapy, nanoparticles show promise in overcoming traditional treatment barriers. The review discusses how changes in the TME can enhance the effectiveness of nanomedicine itself, creating a reciprocal relationship that boosts overall efficacy. We also highlight novel strategies aimed at exploiting and overcoming the TME, leveraging nanoparticle-based approaches for targeted cancer therapy through precise TME modulation.
Collapse
Affiliation(s)
- Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Yang T, Guo L. Advancing gastric cancer treatment: nanotechnology innovations and future prospects. Cell Biol Toxicol 2024; 40:101. [PMID: 39565472 PMCID: PMC11579161 DOI: 10.1007/s10565-024-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide, particularly prevalent in Asia, especially in China, where both its incidence and mortality rates are significantly high. Meanwhile, nanotechnology has demonstrated great potential in the treatment of GC. In particular, nanodrug delivery systems have improved therapeutic efficacy and targeting through various functional modifications, such as targeting peptides, tumor microenvironment responsiveness, and instrument-based methods. For instance, silica (SiO2) has excellent biocompatibility and can be used as a drug carrier, with its porous structure enhancing drug loading capacity. Polymer nanoparticles regulate drug release rates and mechanisms by altering material composition and preparation methods. Lipid nanoparticles efficiently encapsulate hydrophilic drugs and promote cellular uptake, while carbon-based nanoparticles can be used in biosensors and drug delivery. Targets such as integrins, HER2 receptors, and the tumor microenvironment have been used to improve drug efficacy in GC treatment. Nanodrug delivery techniques not only enhance drug efficacy and delivery capabilities but also selectively target tumor cells. Currently, there is a lack of systematic summarization and synthesis regarding the relationship between nanodrug delivery systems and GC treatment, which to some extent hinders researchers and clinicians from efficiently searching for and referencing related studies, thereby reducing work efficiency. This study aims to systematically summarize the existing research on the relationship between nanodrug delivery systems and GC treatment, making it easier for professionals to search and reference, and thereby promoting further research on the role of nanodrug delivery systems and their clinical applications in GC. This review discusses the applications of functionalized nanocarriers in the treatment of GC in recent years, including surface modifications with targeted markers, the combination of phototherapy, chemotherapy, and immunotherapy, along with their advantages and challenges. It also examines the future prospects of targeted nanomaterials in GC treatment. The review particularly focuses on the combined application of nanocarriers in multiple treatment modalities, such as phototherapy, chemotherapy, and immunotherapy, demonstrating their potential in multimodal treatments. Furthermore, it thoroughly explores the specific challenges that nanocarriers face in GC treatment, such as biocompatibility, drug release control, and clinical translation issues, while providing a systematic outlook on future developments. Additionally, this study emphasizes the potential value and feasibility of nanocarriers in clinical applications, contrasting with most reviews that focus on basic research. Through these innovations, we offer new perspectives and directions for the development of nanotechnology in the treatment of GC.
Collapse
Affiliation(s)
- Tengfei Yang
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, P. R. China
| | - Lin Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, P. R. China.
| |
Collapse
|
3
|
Wang X, Sun X, Liu W, Li H, Wang J, Wang D. Amino acid-mediated amorphous copper sulphide with enhanced photothermal conversion efficiency for antibacterial application. J Colloid Interface Sci 2024; 657:142-154. [PMID: 38035417 DOI: 10.1016/j.jcis.2023.11.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/10/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Pathogenic bacteria in daily life, such as Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), often seriously affect human life and health. The extensive use of antibiotics has led to the emergence of drug-resistant bacteria, so it is urgent to develop efficient and non-drug-resistant sterilization methods. Here, we use small-molecule cysteine (Cys) as an auxiliary agent to synthesize spherical porous amorphous CuS-Cysteine (CuS-C) nanoparticles, which have good dispersion in aqueous solutions, and explore the reaction mechanism of Cys-induced CuS synthesis. The synthesized composite nanomaterials have strong near-infrared light absorption ability and efficient photothermal conversion ability and can effectively ablate pathogenic bacteria under the irradiation of an 808 nm laser. In addition, antibacterial experiments showed that CuS-C composites had no bactericidal effect without near-infrared light, but they had a good photothermal bactericidal effect on S. aureus and E. coli under radiation conditions. Considering the simple synthesis process, strong photothermal conversion ability, low cost, and suitability for large-scale production, CuS-C nanocomposites, as a promising antibacterial material, will provide a feasible scheme for the treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Xinhao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiaoyan Sun
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao 266000, Shandong, China
| | - Wenliang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiqian Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Dong Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
4
|
Premji TP, Dash BS, Das S, Chen JP. Functionalized Nanomaterials for Inhibiting ATP-Dependent Heat Shock Proteins in Cancer Photothermal/Photodynamic Therapy and Combination Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:112. [PMID: 38202567 PMCID: PMC10780407 DOI: 10.3390/nano14010112] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Phototherapies induced by photoactive nanomaterials have inspired and accentuated the importance of nanomedicine in cancer therapy in recent years. During these light-activated cancer therapies, a nanoagent can produce heat and cytotoxic reactive oxygen species by absorption of light energy for photothermal therapy (PTT) and photodynamic therapy (PDT). However, PTT is limited by the self-protective nature of cells, with upregulated production of heat shock proteins (HSP) under mild hyperthermia, which also influences PDT. To reduce HSP production in cancer cells and to enhance PTT/PDT, small HSP inhibitors that can competitively bind at the ATP-binding site of an HSP could be employed. Alternatively, reducing intracellular glucose concentration can also decrease ATP production from the metabolic pathways and downregulate HSP production from glucose deprivation. Other than reversing the thermal resistance of cancer cells for mild-temperature PTT, an HSP inhibitor can also be integrated into functionalized nanomaterials to alleviate tumor hypoxia and enhance the efficacy of PDT. Furthermore, the co-delivery of a small-molecule drug for direct HSP inhibition and a chemotherapeutic drug can integrate enhanced PTT/PDT with chemotherapy (CT). On the other hand, delivering a glucose-deprivation agent like glucose oxidase (GOx) can indirectly inhibit HSP and boost the efficacy of PTT/PDT while combining these therapies with cancer starvation therapy (ST). In this review, we intend to discuss different nanomaterial-based approaches that can inhibit HSP production via ATP regulation and their uses in PTT/PDT and cancer combination therapy such as CT and ST.
Collapse
Affiliation(s)
- Thejas P. Premji
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Suprava Das
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; (T.P.P.); (B.S.D.); (S.D.)
- Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Kwei-San, Taoyuan 33305, Taiwan
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan
| |
Collapse
|
5
|
Wen S, Shi Y, Zhang Y, Chang Q, Hu H, Deng X, Xie Y. pH-Activated Ce-Doped Molybdenum Oxide Nanoclusters for Tumor Microenvironment Responsive Photothermal and Chemodynamic Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37436959 DOI: 10.1021/acs.langmuir.3c01075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Molybdenum-based nanomaterials have shown promise for anticancer treatment due to their strong photothermal and redox-activated capabilities. Herein, we have fabricated cerium-doped MoOx (Ce-MoOv) with tunable Mo/Ce molar ratios by a one-pot method and investigated their effect on chemodynamic therapy (CDT) and photothermal therapy (PTT). It is found that Ce-MoOv can self-assemble into nanoclusters in acidic conditions and the increasing Ce amount will generate oxygen vacancy defects and induce the valence change of Mo6+/Mo5+ and Ce4+/Ce3+, which leads to strong near-infrared absorption with high photothermal conversion efficiency of 71.31 and 49.86% for 808 and 1064 nm. Other than photothermal conversion, the materials demonstrate pH-/glutathione (GSH)-activated photoacoustic (PA) imaging capability in vitro. In addition, Ce-MoOv acts as a CDT reagent capable of converting endogenous H2O2 to two types of reactive oxygen species (•OH, 1O2) while depleting GSH. Ce-MoOv demonstrates an excellent therapeutic effect against HCT116 cells and effectively reduces the intracellular GSH level and significantly increases the number of reactive radicals under 1064 nm laser irradiation as compared with the no-laser group in vitro. This work provides a new paradigm using lanthanide-doped polymetallic oxides for pH-/GSH-responsive photothermal/chemodynamic therapy with PA imaging ability.
Collapse
Affiliation(s)
- Shuangyan Wen
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yanan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Honggang Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Huang Y, Ruan Y, Ma Y, Chen D, Zhang T, Fan S, Lin W, Huang Y, Lu H, Xu JF, Pi J, Zheng B. Immunomodulatory activity of manganese dioxide nanoparticles: Promising for novel vaccines and immunotherapeutics. Front Immunol 2023; 14:1128840. [PMID: 36926351 PMCID: PMC10011163 DOI: 10.3389/fimmu.2023.1128840] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Manganese (Mn), a nutrient inorganic trace element, is necessary for a variety of physiological processes of animal body due to their important roles in oxidative regulation effects and other aspects of activities. Moreover, manganese ion (Mn2+) has widely reported to be crucial for the regulations of different immunological responses, thus showing promising application as potential adjuvants and immunotherapeutics. Taking the advantages of Mn-based biological and immunological activities, Manganese dioxide nanoparticles (MnO2 NPs) are a new type of inorganic nanomaterials with numerous advantages, including simple preparation, low cost, environmental friendliness, low toxicity, biodegradable metabolism and high bioavailability. MnO2 NPs, as a kind of drug carrier, have also shown the ability to catalyze hydrogen peroxide (H2O2) to produce oxygen (O2) under acidic conditions, which can enhance the efficacy of radiotherapy, chemotherapy and other therapeutics for tumor treatment by remodeling the tumor microenvironment. More importantly, MnO2 NPs also play important roles in immune regulations both in innate and adaptive immunity. In this review, we summarize the biological activities of Manganese, followed by the introduction for the biological and medical functions and mechanisms of MnO2 NPs. What's more, we emphatically discussed the immunological regulation effects and mechanisms of MnO2 NPs, as well as their potentials to serve as adjuvants and immunomodulators, which might benefit the development of novel vaccines and immunotherapies for more effective disease control.
Collapse
Affiliation(s)
- Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Biying Zheng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China.,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
7
|
Zheng W, Zhou Z, Lv Q, Song X, Zhang W, Cui H. Oxygen‐generated Hierarchical‐Structured AuNRs@MnO
2
@SiO
2
Nanocarrier for Enhanced NIR‐ and H
2
O
2
‐Responsive Mild‐hyperthermia Photodynamic/photothermal Combined Tumor Therapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Jie Zheng
- School of Life Sciences Zhengzhou University Science Avenue 100# Zhengzhou 450001 China
| | - Ze‐Lei Zhou
- School of Life Sciences Zhengzhou University Science Avenue 100# Zhengzhou 450001 China
| | - Qi‐Yan Lv
- School of Life Sciences Zhengzhou University Science Avenue 100# Zhengzhou 450001 China
| | - Xiaojie Song
- School of Life Sciences Zhengzhou University Science Avenue 100# Zhengzhou 450001 China
| | - Wen‐Xing Zhang
- School of Life Sciences Zhengzhou University Science Avenue 100# Zhengzhou 450001 China
| | - Hui‐Fang Cui
- School of Life Sciences Zhengzhou University Science Avenue 100# Zhengzhou 450001 China
| |
Collapse
|
8
|
Raju GSR, Pavitra E, Varaprasad GL, Bandaru SS, Nagaraju GP, Farran B, Huh YS, Han YK. Nanoparticles mediated tumor microenvironment modulation: current advances and applications. J Nanobiotechnology 2022; 20:274. [PMID: 35701781 PMCID: PMC9195263 DOI: 10.1186/s12951-022-01476-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
The tumor microenvironment (TME) plays a key role in cancer development and emergence of drug resistance. TME modulation has recently garnered attention as a potential approach for reprogramming the TME and resensitizing resistant neoplastic niches to existing cancer therapies such as immunotherapy or chemotherapy. Nano-based solutions have important advantages over traditional platform and can be specifically targeted and delivered to desired sites. This review explores novel nano-based approaches aimed at targeting and reprogramming aberrant TME components such as macrophages, fibroblasts, tumor vasculature, hypoxia and ROS pathways. We also discuss how nanoplatforms can be combined with existing anti-tumor regimens such as radiotherapy, immunotherapy, phototherapy or chemotherapy to enhance clinical outcomes in solid tumors.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Ganji Lakshmi Varaprasad
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | | | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|