1
|
Kim Y, Mondal S, Shin H, Tak S, Doan VHM, Oh J, Kang HW. Advanced Precision Dual Photothermal and Photodynamic Therapy for Prostate Cancer Using PSMA-ICG-Conjugated Gold Nanorods. ACS Biomater Sci Eng 2025. [PMID: 40340375 DOI: 10.1021/acsbiomaterials.5c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Prostate cancer is the second most common cancer among men globally. In this study, we developed a prostate-cancer-targeted gold nanoparticle-based photothermal and photodynamic complex (GNR-ICG-FA@PSMA) to enhance the targeting efficiency of prostate cancer cells and simultaneously deliver photothermal therapy (PTT) and photodynamic therapy (PDT). For the in vitro tests, ROS assays, annexin V/PI staining, and MTT assays were conducted. In the in vivo tests, fluorescence and photoacoustic imaging systems were used to track the distribution of nanoparticles in animal models. Tumor tissues were analyzed post-treatment using Triphenyl tetrazolium chloride (TTC) staining, Hematoxylin and Eosin (HE) staining, and Immunohistochemistry (IHC) staining. The in vitro results showed that GNR-ICG with laser irradiation produced high levels of ROS, the highest rate of apoptosis, and the lowest cell viability. In the in vivo tests, tail-injected GNR-ICG-FA@PSMA reached the tumor within 9 h. During laser irradiation, GNRs increased the temperature (<50 °C), inducing necrosis, while ICGs generated ROS, leading to apoptosis. The results demonstrated that folic acid (FA) and PSMA antibodies improved prostate cancer-specific targeting. GNRs and ICGs contributed to the photothermal and photodynamic effects, respectively. This study confirms the potential of GNR-ICG-FA@PSMA for targeted photothermal and photodynamic therapy of prostate cancer.
Collapse
Affiliation(s)
- Yeongeun Kim
- Biomedical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Korea
| | - Hwarang Shin
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Korea
| | - Junghwan Oh
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Korea
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea
- Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
2
|
Jiang Y, Wang C, Zu C, Rong X, Yu Q, Jiang J. Synergistic Potential of Nanomedicine in Prostate Cancer Immunotherapy: Breakthroughs and Prospects. Int J Nanomedicine 2024; 19:9459-9486. [PMID: 39371481 PMCID: PMC11456300 DOI: 10.2147/ijn.s466396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Given the global prevalence of prostate cancer in men, it is crucial to explore more effective treatment strategies. Recently, immunotherapy has emerged as a promising cancer treatment due to its unique mechanism of action and potential long-term effectiveness. However, its limited efficacy in prostate cancer has prompted renewed interest in developing strategies to improve immunotherapy outcomes. Nanomedicine offers a novel perspective on cancer treatment with its unique size effects and surface properties. By employing targeted delivery, controlled release, and enhanced immunogenicity, nanoparticles can be synergized with nanomedicine platforms to amplify the effectiveness of immunotherapy in treating prostate cancer. Simultaneously, nanotechnology can address the limitations of immunotherapy and the challenges of immune escape and tumor microenvironment regulation. Additionally, the synergistic effects of combining nanomedicine with other therapies offer promising clinical outcomes. Innovative applications of nanomedicine include smart nanocarriers, stimulus-responsive systems, and precision medicine approaches to overcome translational obstacles in prostate cancer immunotherapy. This review highlights the transformative potential of nanomedicine in enhancing prostate cancer immunotherapy and emphasizes the need for interdisciplinary collaboration to drive research and clinical applications forward.
Collapse
Affiliation(s)
- Yueyao Jiang
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chengran Wang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Chuancheng Zu
- China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Xin’ao Rong
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Qian Yu
- Department of Pharmacy, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| | - Jinlan Jiang
- Department of Scientific Research Center, China–Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People’s Republic of China
| |
Collapse
|
3
|
Fattahi MR, Dehghani M, Paknahad S, Rahiminia S, Zareie D, Hoseini B, Oroomi TR, Motedayyen H, Arefnezhad R. Clinical insights into nanomedicine and biosafety: advanced therapeutic approaches for common urological cancers. Front Oncol 2024; 14:1438297. [PMID: 39193389 PMCID: PMC11347329 DOI: 10.3389/fonc.2024.1438297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Urological cancers including those of the prostate, bladder, and kidney, are prevalent and often lethal malignancies besides other less common ones like testicular and penile cancers. Current treatments have major limitations like side effects, recurrence, resistance, high costs, and poor quality of life. Nanotechnology offers promising solutions through enhanced diagnostic accuracy, targeted drug delivery, controlled release, and multimodal imaging. This review reflects clinical challenges and nanomedical advances across major urological cancers. In prostate cancer, nanoparticles improve delineation and radiosensitization in radiation therapy, enable fluorescent guidance in surgery, and enhance chemotherapy penetration in metastatic disease. Nanoparticles also overcome bladder permeability barriers to increase the residence time of intravesical therapy and chemotherapy agents. In renal cancer, nanocarriers potentiate tyrosine kinase inhibitors and immunotherapy while gene vectors and zinc oxide nanoparticles demonstrate antiproliferative effects. Across modalities, urological applications of nanomedicine include polymeric, liposomal, and metal nanoparticles for targeted therapy, prodrug delivery, photodynamic therapy, and thermal ablation. Biosafety assessments reveal favorable profiles but clinical translation remains limited, necessitating further trials. In conclusion, nanotechnology holds significant potential for earlier detection, precise intervention, and tailored treatment of urological malignancies, warranting expanded research to transform patient outcomes.
Collapse
Affiliation(s)
- Mohammad Reza Fattahi
- Student Research Committee, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Shafa Rahiminia
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Deniz Zareie
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Behzad Hoseini
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024; 29:3704. [PMID: 39125107 PMCID: PMC11314065 DOI: 10.3390/molecules29153704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the immune system in patients and achieve a sustained immune response. Combining photothermal, photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent reviews have concentrated on diverse materials and their function in cancer therapy. In this review, we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer therapies and the connected role of cGAS-STING agonists in treating cancer.
Collapse
Affiliation(s)
- Kelan Fang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Huiling Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunli Ma
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Tianchan Xiong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tengyao Qin
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
5
|
Güleryüz B, Işık A, Gülsoy M. Synergistic effect of mesoporous silica nanocarrier-assisted photodynamic therapy and anticancer agent activity on lung cancer cells. Lasers Med Sci 2024; 39:91. [PMID: 38491201 PMCID: PMC10942901 DOI: 10.1007/s10103-023-03969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/28/2023] [Indexed: 03/18/2024]
Abstract
Investigating combined treatment methodologies is crucial for addressing the complex nature of cancer. As an emerging strategy, nano-biotechnology encourages the design of unique nanocarriers possessing simultaneous therapeutic application properties. This study aims to explore the combined effects of photodynamic and anticancer treatments using a multifunctional nanocarrier system co-administering the photosensitizer IR780 and the anticancer agent curcumin (Cur) on lung cancer cells. Nanocarriers were prepared by encapsulation IR780 and Cur inside polyethylene glycol-capped mesoporous silica nanoparticles (Cur&IR780@MSN). Various concentrations of nanocarriers were evaluated on A549 cells following 5 min NIR laser light (continuous wave, 785 nm, 500 mW/cm2) irradiation. The internalization of nanocarriers was observed through the fluorescence of Cur. Changes in cell viability were determined using the MTT assay and AO/PI staining. A scratch assay analysis was also performed to examine the impact of combined treatments on cell migration. Characterization of the nanocarriers revealed adequate hydrophobic drug loading, temperature-inhibited feature, enhanced reactive oxygen species generation, a pH-dependent curcumin release profile, and high biocompatibility. Cur&IR780@MSN, which enabled the observation of synergistic treatment efficacy, successfully reduced cell viability by up to 78%. In contrast, monotherapies with curcumin-loaded nanocarriers (Cur@MSN) and IR780-loaded nanocarriers (IR780@MSN) resulted in a 38% and 56% decrease in cell viability, respectively. The constructed Cur&IR780@MSN nanocarrier has demonstrated remarkable performance in the application of combination therapies for lung cancer cells. These nanocarriers have the potential to inspire future studies in tumor treatment methods.
Collapse
Affiliation(s)
- Burcu Güleryüz
- Institute of Biomedical Engineering, Bogazici University, Uskudar, Istanbul, 34684, Turkey.
- Department of Molecular Biology and Genetics, Halic University, Eyupsultan, Istanbul, 34060, Turkey.
| | - Ayşe Işık
- Institute of Biomedical Engineering, Bogazici University, Uskudar, Istanbul, 34684, Turkey.
| | - Murat Gülsoy
- Institute of Biomedical Engineering, Bogazici University, Uskudar, Istanbul, 34684, Turkey
| |
Collapse
|
6
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
7
|
Tian Y, Liu Z, Wang J, Li L, Wang F, Zhu Z, Wang X. Nanomedicine for Combination Urologic Cancer Immunotherapy. Pharmaceutics 2023; 15:546. [PMID: 36839868 PMCID: PMC9960671 DOI: 10.3390/pharmaceutics15020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Urologic cancers, particularly kidney, bladder, and prostate cancer, have a growing incidence and account for about a million annual deaths worldwide. Treatments, including surgery, chemotherapy, radiotherapy, hormone therapy, and immunotherapy are the main therapeutic options in urologic cancers. Immunotherapy is now a clinical reality with marked success in solid tumors. Immunological checkpoint blockade, non-specific activation of the immune system, adoptive cell therapy, and tumor vaccine are the main modalities of immunotherapy. Immunotherapy has long been used to treat urologic cancers; however, dose-limiting toxicities and low response rates remain major challenges in the clinic. Herein, nanomaterial-based platforms are utilized as the "savior". The combination of nanotechnology with immunotherapy can achieve precision medicine, enhance efficacy, and reduce toxicities. In this review, we highlight the principles of cancer immunotherapy in urology. Meanwhile, we summarize the nano-immune technology and platforms currently used for urologic cancer treatment. The ultimate goal is to help in the rational design of strategies for nanomedicine-based immunotherapy in urologic cancer.
Collapse
Affiliation(s)
- Yun Tian
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhenzhu Liu
- Department of Cardiovascular, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Jianbo Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Linan Li
- Department of Orthopedics, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Zheng Zhu
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuejian Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| |
Collapse
|