1
|
Xu T, Mi L, Namulinda T, Yan YJ, Meerovich GA, Reshetov IV, Kogan EA, Chen ZL. Quaternary ammonium cations conjugated 5,15-diaryltetranaphtho[2,3]porphyrins as photosensitizers for photodynamic therapy. Eur J Med Chem 2024; 267:116228. [PMID: 38354521 DOI: 10.1016/j.ejmech.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
In quest for new photosensitizers (PSs) with remarkable antitumor photodynamic efficacy, a series of fifteen quaternary ammonium (QA) cations conjugated 5,15-diaryltetranaphtho[2,3]porphyrins (Ar2TNPs) was synthesized and evaluated in vitro and in vivo to understand how variations in the length of the alkoxy group and the kind of QA cations on meso-phenyl influence the photodynamic antitumor activity. All final compounds (I1-5, II1-5, and III1-5) exhibited robust absorption at 729 nm with significant bathochromic shift and high molar extinction coefficients (1.16 × 105-1.41 × 105 M-1 cm-1), as well as other absorptions at 445, 475, 651, and 714 nm for tumors and other diseases of diverse sizes and depths. Upon exposure to 474 nm light, they displayed intense fluorescence emission with fluorescence quantum yields ranging from 0.32 to 0.43. The ability to generate reactive oxygen species (ROS) was also quantified, attaining a maximum rate of up to 0.0961 s-1. The IC50 values of all the compounds regarding phototoxicity and dark toxicity were determined using KYSE-150 cells, and the phototoxicity indices were calculated. Among these compounds, III1 demonstrated the highest phototoxic index with minimal dark toxicity, and suppressed successfully the growth of esophageal carcinoma xenograft with favorable tolerance in vivo. Furthermore, the histological results showed III1-mediated PDT had a significant cytotoxic effect on the tumor. These outcomes underscore the potential of III1 as a highly effective antitumor photosensitizer drug in photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Tao Xu
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Le Mi
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai, 201620, China.
| | - Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Evgeniy Altarovna Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119992, Russia
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
2
|
Kogan EA, Meerovich GA, Karshieva SS, Makarova EA, Romanishkin ID, Akhlyustina EV, Meerovich IG, Zharkov NV, Koudan EV, Demura TA, Loschenov VB. Photodynamic therapy of lung cancer with photosensitizers based on polycationic derivatives of synthetic bacteriochlorin (experimental study). Photodiagnosis Photodyn Ther 2023; 42:103647. [PMID: 37271489 DOI: 10.1016/j.pdpdt.2023.103647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND One of the tasks of anticancer photodynamic therapy is increasing the efficacy of treatment of cancer nodes with large (clinically relevant) sizes using near-infrared photosensitizers (PS). METHODS The anticancer efficacy and mechanisms of the photodynamic action of PS based on polycationic derivatives of synthetic bacteriochlorin against Lewis lung carcinoma were studied in vitro and in vivo. RESULTS It was found that studied PS have high phototoxicity against Lewis lung carcinoma cells: the IC50 values were about 0.8 μM for tetracationic PS and 0.5 μM for octacationic PS. In vivo studies have shown that these PS provide effective inhibition of the tumor growth with an increase in the lifespan of mice in the group by more than 130%, and more than 50% survival of mice in the group. CONCLUSIONS Photosensitizers based on polycationic derivatives of synthetic bacteriochlorin have high photodynamic efficacy caused by the induction of necrosis and apoptosis of cancer cells, including cancer stem cells, and a sharp decrease of mitotic and proliferative activity. Studied polycationic photosensitizers are much more effective at destroying cancer stem cells and newly formed cancer vessels in comparison with anionic photosensitizers, and ensure the cessation of tumor blood flow without hemorrhages and thrombosis.
Collapse
Affiliation(s)
- Evgeniya A Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | - Saida Sh Karshieva
- N.N. Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia; National University of Science and Technology MISIS, Moscow 119049, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Meerovich
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Nikolai V Zharkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Moscow 119049, Russia
| | - Tatiana A Demura
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| |
Collapse
|
3
|
Karshieva SS, Glinskaya EG, Dalina AA, Akhlyustina EV, Makarova EA, Khesuani YD, Chmelyuk NS, Abakumov MA, Khochenkov DA, Mironov VA, Meerovich GA, Kogan EA, Koudan EV. Antitumor activity of photodynamic therapy with tetracationic derivative of synthetic bacteriochlorin in spheroid culture of liver and colon cancer cells. Photodiagnosis Photodyn Ther 2022; 40:103202. [PMID: 36400167 DOI: 10.1016/j.pdpdt.2022.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth. Although PS accumulated more efficiently in HCT-116 cells, characterized by more aggressive growth and high proliferative potential, they were less susceptible to the photodynamic therapy (PDT) compared to the slower growing Huh7 cells. We also showed that 3D models of spheroids were less sensitive to BC4 than conventional 2D cultures with relatively identical kinetics of drug accumulation. Our findings suggest that BC4 is a perspective agent for photodynamic therapy against cancer cells.
Collapse
Affiliation(s)
- Saida Sh Karshieva
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia
| | - Elizaveta G Glinskaya
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Alexandra A Dalina
- The Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Vavilov st. 32, Moscow 119991, Russia
| | | | - Elena A Makarova
- Organic Intermediates and Dyes Institute, B. Sadovaya st. 1/4, Moscow 123001, Russia
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Kashirskoe shosse 68, Moscow 115409, Russia
| | - Nelly S Chmelyuk
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Maxim A Abakumov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Ostrovityanova st. 1, Moscow 117997, Russia
| | - Dmitriy A Khochenkov
- N N Blokhin National Medical Research Center of Oncology, Kashirskoe shosse 24, Moscow 115478, Russia; Togliatti State University, Belorusskaya st. 14, Togliatti 445667, Russia
| | - Vladimir A Mironov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia
| | - Gennady A Meerovich
- National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Vavilov st. 38, Moscow 119991, Russia
| | - Evgeniya A Kogan
- I M Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8-2, Moscow 119992, Russia
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russia; National Research Nuclear University "MEPhI", Kashirskoe shosse 31, Moscow 115409, Russia.
| |
Collapse
|