1
|
Pehlivan D, Huang C, Harris HK, Coquery C, Mahat A, Maletic‐Savatic M, Mignon L, Aras S, Glaze DG, Layne CS, Sahelijo L, Zoghbi HY, McGinley MJ, Suter B. Comprehensive assessment reveals numerous clinical and neurophysiological differences between MECP2-allelic disorders. Ann Clin Transl Neurol 2025; 12:433-447. [PMID: 39838601 PMCID: PMC11822789 DOI: 10.1002/acn3.52269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) result from under- and overexpression of MECP2, respectively. Preclinical studies using genetic-based treatment showed robust phenotype recovery for both MDS and RTT. However, there is a risk of converting MDS to RTT, or vice versa, if accurate MeCP2 levels are not achieved. The aim of this study was to identify biomarkers distinguishing RTT from MDS. MATERIALS AND METHODS We prospectively enrolled 11 MDS and 6 male RTT like (MRL) individuals for a panel of clinical and neurophysiological assessments over two visits, 8-10 months apart. RESULTS We identified numerous clinical and physiological features as promising biomarkers. MRL individuals exhibited large amplitude whole body tremor, midline stereotypies (vs. hand flapping at sides in MDS), earlier neuromotor regression, and earlier onset but less commonly refractory epilepsy. In the neurophysiological domain, we observed several marked differences in sleep physiology between MDS/MRL and typically developing (TD) individuals including reduced sleeping time, increased delta power during rapid eye movement (REM) sleep, decreased occipital alpha and increased brain-wide delta power during wakefulness, and reduced spindle density and duration. MRL individuals also had much lower delta power during NREM 2 and 3 stages than the TD group. We found differences in spindle duration in the temporal lobes and spindle amplitude in the frontal lobes between MDS and MRL. DISCUSSION Our study revealed distinct clinical features of MDS and MRL that can be monitored during a clinical trial and may serve as target engagement, disease progression, or safety biomarkers for interventional studies.
Collapse
Affiliation(s)
- Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of PediatricsBaylor College of MedicineHoustonTexas77030USA
- Blue Bird Circle Rett CenterTexas Children's HospitalHoustonTexas77030USA
- Texas Children's HospitalHoustonTexas77030USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonTexas77030USA
| | - Chengjun Huang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonTexas77030USA
- Present address:
University of Health and Rehabilitation SciencesQingdao CityShandong ProvinceChina
| | - Holly K. Harris
- Texas Children's HospitalHoustonTexas77030USA
- Section of Developmental Pediatrics, Department of PediatricsBaylor College of MedicineHoustonTexas77054USA
| | | | - Aditya Mahat
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonTexas77030USA
| | - Mirjana Maletic‐Savatic
- Section of Pediatric Neurology and Developmental Neuroscience, Department of PediatricsBaylor College of MedicineHoustonTexas77030USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonTexas77030USA
| | | | - Sukru Aras
- Section of Pediatric Neurology and Developmental Neuroscience, Department of PediatricsBaylor College of MedicineHoustonTexas77030USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonTexas77030USA
| | - Daniel G. Glaze
- Section of Pediatric Neurology and Developmental Neuroscience, Department of PediatricsBaylor College of MedicineHoustonTexas77030USA
- Blue Bird Circle Rett CenterTexas Children's HospitalHoustonTexas77030USA
- Texas Children's HospitalHoustonTexas77030USA
| | - Charles S. Layne
- Department of Health and Human PerformanceUniversity of HoustonHoustonTexasUSA
- Center for Neuromotor and Biomechanics ResearchUniversity of HoustonHoustonTexasUSA
- Center for NeuroEngineering and Cognitive ScienceUniversity of HoustonHoustonTexasUSA
| | | | - Huda Y. Zoghbi
- Section of Pediatric Neurology and Developmental Neuroscience, Department of PediatricsBaylor College of MedicineHoustonTexas77030USA
- Blue Bird Circle Rett CenterTexas Children's HospitalHoustonTexas77030USA
- Texas Children's HospitalHoustonTexas77030USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonTexas77030USA
| | - Matthew J. McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's HospitalHoustonTexas77030USA
- Department of NeuroscienceBaylor College of MedicineHoustonTexas77030USA
| | - Bernhard Suter
- Section of Pediatric Neurology and Developmental Neuroscience, Department of PediatricsBaylor College of MedicineHoustonTexas77030USA
- Blue Bird Circle Rett CenterTexas Children's HospitalHoustonTexas77030USA
- Texas Children's HospitalHoustonTexas77030USA
| |
Collapse
|
2
|
Yang D, Wu X, Yao Y, Duan M, Wang X, Li G, Guo A, Wu M, Liu Y, Zheng J, Zhang R, Li T, Luk A, Yao X, Shi L, Xu C, Yang H. An RNA editing strategy rescues gene duplication in a mouse model of MECP2 duplication syndrome and nonhuman primates. Nat Neurosci 2025; 28:72-83. [PMID: 39668251 DOI: 10.1038/s41593-024-01838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/24/2024] [Indexed: 12/14/2024]
Abstract
Duplication of methyl-CpG-binding protein 2 (MECP2) gene causes MECP2 duplication syndrome (MDS). To normalize the duplicated MECP2 in MDS, we developed a high-fidelity Cas13Y (hfCas13Y) system capable of targeting the MECP2 (hfCas13Y-gMECP2) messenger RNA for degradation and reducing protein levels in the brain of humanized MECP2 transgenic mice. Moreover, the intracerebroventricular adeno-associated virus (AAV) delivery of hfCas13Y-gMECP2 in newborn or adult MDS mice restored dysregulated gene expression and improved behavior deficits. Notably, treatment with AAV9-hfCas13Y-gMECP2 extended the median survival of MECP2 transgenic mice from 156.5 to 226 d. Furthermore, studies with monkeys showed a single injection of AAV9-hfCas13Y-gMECP2 was sufficient to drive robust expression of hfCas13Y in widespread brain regions, with MECP2 knockdown efficiency reaching 52.19 ± 0.03% and significantly decreased expression of biomarker gene GDF11. Our results demonstrate that the RNA-targeting hfCas13Y-gMECP2 system is an effective intervention for MDS, providing a potential strategy for treating other dosage-sensitive diseases.
Collapse
Affiliation(s)
- Dong Yang
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xiaoqing Wu
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Yinan Yao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Mengsi Duan
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xing Wang
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Guoling Li
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Aiguo Guo
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Meixian Wu
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Yuanhua Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zheng
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Renxia Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Li
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Alvin Luk
- HuidaGene Therapeutics Inc., Shanghai, China
| | - Xuan Yao
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Linyu Shi
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Hui Yang
- HuidaGene Therapeutics Inc., Shanghai, China.
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| |
Collapse
|
3
|
Buckle N, Doyle O, Kodate N, Kinch M, Somanadhan S. Caregiver-Reported Economic Impacts of Pediatric Rare Diseases-A Scoping Review. Healthcare (Basel) 2024; 12:2578. [PMID: 39766005 PMCID: PMC11727781 DOI: 10.3390/healthcare12242578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025] Open
Abstract
Background/Objectives: Rare diseases are conditions that are individually rare but collectively common. These diseases can incur significant direct and indirect costs with a combination of high medical expenses, loss of income, and additional non-medical costs. Despite this, research into the economic cost for families of children with a rare disease is lacking. This scoping review aimed to document the evidence on the economic impacts of living with a rare disease for children and their families. Methods: Six electronic databases were searched to identify relevant peer-reviewed literature that discussed the family costs (direct medical, direct non-medical, and indirect) of having a child with a rare disease, published between January 1983 and April 2023. The geographical location, type of rare disease, and language were not limited. Data were extracted from the included studies following the screening process and are reported following the PAGER framework for reporting scoping review results. Results: The final analysis included 28 studies. The studies highlighted areas of high costs, including visits to healthcare professionals (n = 36), medication costs (n = 11), presenteeism (n = 17), and informal care (n = 11). However, gaps in the existing research, such as the focus on metabolic or musculoskeletal rare diseases and the lack of a distinction between rare and ultra-rare diseases, were apparent. Conclusions: Having a child with a rare disease can significantly impact a family's financial health, and these costs extend beyond healthcare costs. Understanding the costs experienced by the rare disease population is important to better define and comprehend the economic impact of rare diseases.
Collapse
Affiliation(s)
- Niamh Buckle
- School of Nursing, Midwifery and Health Systems, University College Dublin, D04 V1W8 Dublin, Leinster, Ireland; (M.K.); (S.S.)
| | - Orla Doyle
- School of Economics, University College Dublin, D04 N9Y1 Dublin, Leinster, Ireland;
| | - Naonori Kodate
- School of Social Policy, Social Work and Social Justice, University College Dublin, D04 N9Y1 Dublin, Leinster, Ireland;
- UCD Centre for Interdisciplinary Research, Education and Innovation in Health Systems (UCD IRIS), University College Dublin, D04 V1W8 Dublin, Leinster, Ireland
| | - Melissa Kinch
- School of Nursing, Midwifery and Health Systems, University College Dublin, D04 V1W8 Dublin, Leinster, Ireland; (M.K.); (S.S.)
- UCD Centre for Interdisciplinary Research, Education and Innovation in Health Systems (UCD IRIS), University College Dublin, D04 V1W8 Dublin, Leinster, Ireland
| | - Suja Somanadhan
- School of Nursing, Midwifery and Health Systems, University College Dublin, D04 V1W8 Dublin, Leinster, Ireland; (M.K.); (S.S.)
- UCD Centre for Interdisciplinary Research, Education and Innovation in Health Systems (UCD IRIS), University College Dublin, D04 V1W8 Dublin, Leinster, Ireland
| |
Collapse
|
4
|
Allison K, Maletic-Savatic M, Pehlivan D. MECP2-related disorders while gene-based therapies are on the horizon. Front Genet 2024; 15:1332469. [PMID: 38410154 PMCID: PMC10895005 DOI: 10.3389/fgene.2024.1332469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
The emergence of new genetic tools has led to the discovery of the genetic bases of many intellectual and developmental disabilities. This creates exciting opportunities for research and treatment development, and a few genetic disorders (e.g., spinal muscular atrophy) have recently been treated with gene-based therapies. MECP2 is found on the X chromosome and regulates the transcription of thousands of genes. Loss of MECP2 gene product leads to Rett Syndrome, a disease found primarily in females, and is characterized by developmental regression, motor dysfunction, midline hand stereotypies, autonomic nervous system dysfunction, epilepsy, scoliosis, and autistic-like behavior. Duplication of MECP2 causes MECP2 Duplication Syndrome (MDS). MDS is found mostly in males and presents with developmental delay, hypotonia, autistic features, refractory epilepsy, and recurrent respiratory infections. While these two disorders share several characteristics, their differences (e.g., affected sex, age of onset, genotype/phenotype correlations) are important to distinguish in the light of gene-based therapy because they require opposite solutions. This review explores the clinical features of both disorders and highlights these important clinical differences.
Collapse
Affiliation(s)
- Katherine Allison
- Royal College of Surgeons in Ireland, School of Medicine, Dublin, Ireland
| | - Mirjana Maletic-Savatic
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Davut Pehlivan
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
- Blue Bird Circle Rett Center, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
5
|
John Cherian D, Ta D, Smith J, Downs J, Leonard H. How Families Manage the Complex Medical Needs of Their Children with MECP2 Duplication Syndrome. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1202. [PMID: 37508699 PMCID: PMC10377896 DOI: 10.3390/children10071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
MECP2 duplication syndrome (MDS) is a rare, X-linked, neurodevelopmental disorder resulting from the duplication of the methyl-CpG-binding protein 2 (MECP2) gene. The clinical features of MDS include severe intellectual disability, global developmental delay, seizures, recurrent respiratory infections, and gastrointestinal problems. The aim of this qualitative study was to explore how the parents of children with MDS manage their child's seizures, recurrent respiratory infections, and gastrointestinal symptoms, and the impact on them as parents. The data were coded into three categories: (1) complex care needs in the home, (2) highly skilled caregivers, and (3) impact on caregivers and families. Complex 24 h care was required and parents developed complex skillsets to ensure that this was delivered well to their child. The provision of extensive complex medical care in the home had an impact on parent mental and physical health, family dynamics, and finances. This study captures the management of high-burden comorbidities in MDS at home. Investigations into how best to support caregiver wellbeing to reduce their stresses, whilst maintaining optimal child health and wellbeing, are needed.
Collapse
Affiliation(s)
- Dani John Cherian
- School of Human Sciences, University of Western Australia, Perth 6009, Australia
- Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, Perth 6872, Australia
| | - Daniel Ta
- Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, Perth 6872, Australia
- School of Medicine, University of Western Australia, Perth 6009, Australia
| | - Jeremy Smith
- School of Human Sciences, University of Western Australia, Perth 6009, Australia
| | - Jenny Downs
- Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, Perth 6872, Australia
- Curtin School of Allied Health, Curtin University, Perth 6845, Australia
| | - Helen Leonard
- Telethon Kids Institute, Centre for Child Health Research, University of Western Australia, Perth 6872, Australia
| |
Collapse
|