1
|
Gou L, Liu D, Fan TP, Deng H, Cai Y. Efficient spermidine production using a multi-enzyme cascade system utilizing methionine adenosyltransferase from Lactobacillus fermentum with Reduced Product Inhibition and Acidic pH Preference. J Biotechnol 2025; 399:141-152. [PMID: 39864752 DOI: 10.1016/j.jbiotec.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Methionine adenosyltransferases (MATs; EC 2.5.1.6) are key enzymes that catalyze a crucial step in the spermidine biosynthesis pathway. Due to MAT's significant product inhibition, S-adenosylmethionine (SAM) and spermidine production faces challenges. We evaluated MATs from 20 lactic acid bacteria (LAB) to identify enzymes with acidic preference and lower susceptibility to product inhibition. Lactobacillus fermentum's MAT (LfMAT) emerged as a candidate with desirable characteristics. LfMAT exhibited strong activity in acidic environments, maintaining over 85 % activity between pH 6.0-8.5 for 60 min, with peak efficacy at pH 7.0. LfMAT produced 4.2 mM SAM from 5 mM substrate, indicating reduced product inhibition. Ultimately, using an in vitro multi-enzyme cascade system containing LfMAT, S-adenosylmethionine decarboxylase, and spermidine synthase, we successfully produced 12.9 g·L-1 of spermidine. This study establishes a cascade reaction platform, offering a novel approach for the efficient synthesis of spermidine and other polyamines.
Collapse
Affiliation(s)
- Linbo Gou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK; School of Health Sciences, Fuyao University of Science & Technology, Fuzhou, Fujian Province, China
| | - Huaxiang Deng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Health Sciences, Fuyao University of Science & Technology, Fuzhou, Fujian Province, China.
| |
Collapse
|
2
|
Ravi J, Anantharaman V, Chen SZ, Brenner EP, Datta P, Aravind L, Gennaro ML. The phage shock protein (PSP) envelope stress response: discovery of novel partners and evolutionary history. mSystems 2024; 9:e0084723. [PMID: 38809013 PMCID: PMC11237479 DOI: 10.1128/msystems.00847-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/20/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial phage shock protein (PSP) systems stabilize the bacterial cell membrane and protect against envelope stress. These systems have been associated with virulence, but despite their critical roles, PSP components are not well characterized outside proteobacteria. Using comparative genomics and protein sequence-structure-function analyses, we systematically identified and analyzed PSP homologs, phyletic patterns, domain architectures, and gene neighborhoods. This approach underscored the evolutionary significance of the system, revealing that its core protein PspA (Snf7 in ESCRT outside bacteria) was present in the last universal common ancestor and that this ancestral functionality has since diversified into multiple novel, distinct PSP systems across life. Several novel partners of the PSP system were identified: (i) the Toastrack domain, likely facilitating assembly of sub-membrane stress-sensing and signaling complexes, (ii) the newly defined HTH-associated α-helical signaling domain-PadR-like transcriptional regulator pair system, and (iii) multiple independent associations with ATPase, CesT/Tir-like chaperone, and Band-7 domains in proteins thought to mediate sub-membrane dynamics. Our work also uncovered links between the PSP components and other domains, such as novel variants of SHOCT-like domains, suggesting roles in assembling membrane-associated complexes of proteins with disparate biochemical functions. Results are available at our interactive web app, https://jravilab.org/psp.IMPORTANCEPhage shock proteins (PSP) are virulence-associated, cell membrane stress-protective systems. They have mostly been characterized in Proteobacteria and Firmicutes. We now show that a minimal PSP system was present in the last universal common ancestor that evolved and diversified into newly identified functional contexts. Recognizing the conservation and evolution of PSP systems across bacterial phyla contributes to our understanding of stress response mechanisms in prokaryotes. Moreover, the newly discovered PSP modularity will likely prompt new studies of lineage-specific cell envelope structures, lifestyles, and adaptation mechanisms. Finally, our results validate the use of domain architecture and genetic context for discovery in comparative genomics.
Collapse
Affiliation(s)
- Janani Ravi
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Samuel Zorn Chen
- Computer Science Engineering Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Evan Pierce Brenner
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pratik Datta
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
3
|
Abstract
In the ocean surface layer and cell culture, the polyamine transport protein PotD of SAR11 bacteria is often one of the most abundant proteins detected. Polyamines are organic cations at seawater pH produced by all living organisms and are thought to be an important component of dissolved organic matter (DOM) produced in planktonic ecosystems. We hypothesized that SAR11 cells uptake and metabolize multiple polyamines and use them as sources of carbon and nitrogen. Metabolic footprinting and fingerprinting were used to measure the uptake of five polyamine compounds (putrescine, cadaverine, agmatine, norspermidine, and spermidine) in two SAR11 strains that represent the majority of SAR11 cells in the surface ocean environment, “Candidatus Pelagibacter” strain HTCC7211 and “Candidatus Pelagibacter ubique” strain HTCC1062. Both strains took up all five polyamines and concentrated them to micromolar or millimolar intracellular concentrations. Both strains could use most of the polyamines to meet their nitrogen requirements, but polyamines did not fully substitute for their requirements of glycine (or related compounds) or pyruvate (or related compounds). Our data suggest that potABCD transports all five polyamines and that spermidine synthase, speE, is reversible, catalyzing the breakdown of spermidine and norspermidine, in addition to its usual biosynthetic role. These findings provide support for the hypothesis that enzyme multifunctionality enables streamlined cells in planktonic ecosystems to increase the range of DOM compounds they metabolize.
Collapse
|
4
|
A two-enzyme cascade system for the bio-production of spermidine from putrescine. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Evolution of biosynthetic diversity. Biochem J 2017; 474:2277-2299. [DOI: 10.1042/bcj20160823] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
Abstract
Since the emergence of the last common ancestor from which all extant life evolved, the metabolite repertoire of cells has increased and diversified. Not only has the metabolite cosmos expanded, but the ways in which the same metabolites are made have diversified. Enzymes catalyzing the same reaction have evolved independently from different protein folds; the same protein fold can produce enzymes recognizing different substrates, and enzymes performing different chemistries. Genes encoding useful enzymes can be transferred between organisms and even between the major domains of life. Organisms that live in metabolite-rich environments sometimes lose the pathways that produce those same metabolites. Fusion of different protein domains results in enzymes with novel properties. This review will consider the major evolutionary mechanisms that generate biosynthetic diversity: gene duplication (and gene loss), horizontal and endosymbiotic gene transfer, and gene fusion. It will also discuss mechanisms that lead to convergence as well as divergence. To illustrate these mechanisms, one of the original metabolisms present in the last universal common ancestor will be employed: polyamine metabolism, which is essential for the growth and cell proliferation of archaea and eukaryotes, and many bacteria.
Collapse
|
6
|
Zhang H, Au SWN. Helicobacter pylori does not use spermidine synthase to produce spermidine. Biochem Biophys Res Commun 2017. [PMID: 28648602 DOI: 10.1016/j.bbrc.2017.06.132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Helicobacter pylori is the primary pathogen associated to gastritis and gastric cancer. Growth of H. pylori depends on the availability of spermidine in vivo. Interestingly, the genome of H. pylori contains an incomplete set of genes for the classical pathway of spermidine biosynthesis. It is thus not clear whether some other genes remained in the pathway would have any functions in spermidine biosynthesis. Here, we study spermidine synthase, which is responsible for the final catalytic process in the classical route. Protein sequence alignment reveals that H. pylori SpeE (HpSpeE) lacks key residues for substrate binding. By using isothermal titration calorimetry, we show that purified recombinant HpSpeE does not interact with the putative substrates putrescine and decarboxylated S-adenosylmethionine, and the product spermidine. High performance liquid chromatography analysis further demonstrates that HpSpeE has no detectable in vitro enzymatic activity. Additionally, intracellular spermidine level in speE-null mutant strain is comparable to that in the wild type strain. Collectively, our results suggest that HpSpeE is functionally distinct from spermidine production. H. pylori may instead employ the alternative pathway for spermidine synthesis which is dominantly exploited by other human gut microbes.
Collapse
Affiliation(s)
- Huawei Zhang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Shannon Wing Ngor Au
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
7
|
Pothipongsa A, Jantaro S, Salminen TA, Incharoensakdi A. Molecular characterization and homology modeling of spermidine synthase from Synechococcus sp. PCC 7942. World J Microbiol Biotechnol 2017; 33:72. [PMID: 28299555 DOI: 10.1007/s11274-017-2242-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Spermidine synthase (Spds) catalyzes the formation of spermidine by transferring the aminopropyl group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine. The Synechococcus spds gene encoding Spds was expressed in Escherichia coli. The purified recombinant enzyme had a molecular mass of 33 kDa and showed optimal activity at pH 7.5, 37 °C. The enzyme had higher affinity for dcSAM (K m, 20 µM) than for putrescine (K m, 111 µM) and was highly specific towards the diamine putrescine with no activity observed towards longer chain diamines. The three-dimensional structural model for Synechococcus Spds revealed that most of the ligand binding residues in Spds from Synechococcus sp. PCC 7942 are identical to those of human and parasite Spds. Based on the model, the highly conserved acidic residues, Asp89, Asp159 and Asp162, are involved in the binding of substrates putrescine and dcSAM and Pro166 seems to confer substrate specificity towards putrescine.
Collapse
Affiliation(s)
- Apiradee Pothipongsa
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Saowarath Jantaro
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Aran Incharoensakdi
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
8
|
Nelson TM, Borgogna JLC, Brotman RM, Ravel J, Walk ST, Yeoman CJ. Vaginal biogenic amines: biomarkers of bacterial vaginosis or precursors to vaginal dysbiosis? Front Physiol 2015; 6:253. [PMID: 26483694 PMCID: PMC4586437 DOI: 10.3389/fphys.2015.00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Bacterial vaginosis (BV) is the most common vaginal disorder among reproductive age women. One clinical indicator of BV is a “fishy” odor. This odor has been associated with increases in several biogenic amines (BAs) that may serve as important biomarkers. Within the vagina, BA production has been linked to various vaginal taxa, yet their genetic capability to synthesize BAs is unknown. Using a bioinformatics approach, we show that relatively few vaginal taxa are predicted to be capable of producing BAs. Many of these taxa (Dialister, Prevotella, Parvimonas, Megasphaera, Peptostreptococcus, and Veillonella spp.) are more abundant in the vaginal microbial community state type (CST) IV, which is depleted in lactobacilli. Several of the major Lactobacillus species (L. crispatus, L. jensenii, and L. gasseri) were identified as possessing gene sequences for proteins predicted to be capable of putrescine production. Finally, we show in a small cross sectional study of 37 women that the BAs putrescine, cadaverine and tyramine are significantly higher in CST IV over CSTs I and III. These data support the hypothesis that BA production is conducted by few vaginal taxa and may be important to the outgrowth of BV-associated (vaginal dysbiosis) vaginal bacteria.
Collapse
Affiliation(s)
- Tiffanie M Nelson
- Department of Animal and Range Sciences, Montana State University Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | | | - Rebecca M Brotman
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Epidemiology and Public Health, University of Maryland School of Medicine Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine Baltimore, MD, USA
| | - Seth T Walk
- Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| | - Carl J Yeoman
- Department of Animal and Range Sciences, Montana State University Bozeman, MT, USA ; Department of Microbiology and Immunology, Montana State University Bozeman, MT, USA
| |
Collapse
|
9
|
Tsai YH, Lin KL, Huang YP, Hsu YC, Chen CH, Chen Y, Sie MH, Wang GJ, Lee MJ. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. FEBS Lett 2015; 589:2058-65. [DOI: 10.1016/j.febslet.2015.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 06/08/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022]
|
10
|
Lee MJ, Yang YT, Lin V, Huang H. Site-directed mutations of the gatekeeping loop region affect the activity of Escherichia coli spermidine synthase. Mol Biotechnol 2012; 54:572-80. [PMID: 23001854 DOI: 10.1007/s12033-012-9599-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spermidine synthase catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM), and plays a crucial role in cell proliferation and differentiation. The gatekeeping loop identified in the structure of spermidine synthase was predicted to contain residues important for substrate binding, but its correlation with enzyme catalysis has not been fully understood. In this study, recombinant Escherichia coli spermidine synthase (EcSPDS) was produced and its enzyme kinetics was characterized. Site-directed mutants of EcSPDS were obtained to demonstrate the importance of the amino acid residues in the gatekeeping loop. Substitution of Asp158 and Asp161 with alanine completely abolished EcSPDS activity, suggesting that these residues are absolutely required for substrate interaction. Reduction in enzyme activity was observed in the C159A, T160A, and P165Q variants, indicating that hydrophobic interactions contributed by Cys159, Thr160, and Pro165 are important for enzyme catalysis as well. On the other hand, replacement of Pro162 and Ile163 had no influence on EcSDPS activity. These results indicate that residues in the gatekeeping loop of spermidine synthase are indispensable for the catalytic reaction of EcSPDS. To the best of our knowledge, this is the first functional study on the gatekeeping loop of EcSPDS by site-directed mutagenesis.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Tainan, Taiwan
| | | | | | | |
Collapse
|
11
|
Difluoromethylornithine is a novel inhibitor of Helicobacter pylori growth, CagA translocation, and interleukin-8 induction. PLoS One 2011; 6:e17510. [PMID: 21386987 PMCID: PMC3046249 DOI: 10.1371/journal.pone.0017510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/04/2011] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori infects half the world's population, and carriage is lifelong without antibiotic therapy. Current regimens prescribed to prevent infection-associated diseases such as gastroduodenal ulcers and gastric cancer can be thwarted by antibiotic resistance. We reported that administration of 1% d,l-α-difluoromethylornithine (DFMO) to mice infected with H. pylori reduces gastritis and colonization, which we attributed to enhanced host immune response due to inhibition of macrophage ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. Although no ODC has been identified in any H. pylori genome, we sought to determine if DFMO has direct effects on the bacterium. We found that DFMO significantly reduced the growth rate of H. pylori in a polyamine-independent manner. Two other Gram-negative pathogens possessing ODC, Escherichia coli and Citrobacter rodentium, were resistant to the DFMO effect. The effect of DFMO on H. pylori required continuous exposure to the drug and was reversible when removed, with recovery of growth rate in vitro and the ability to colonize mice. H. pylori exposed to DFMO were significantly shorter in length than those untreated and they contained greater internal levels of ATP, suggesting severe effects on bacterial metabolism. DFMO inhibited expression of the H. pylori virulence factor cytotoxin associated gene A, and its translocation and phosphorylation in gastric epithelial cells, which was associated with a reduction in interleukin-8 expression. These findings suggest that DFMO has effects on H. pylori that may contribute to its effectiveness in reducing gastritis and colonization and may be a useful addition to anti-H. pylori therapies.
Collapse
|
12
|
Chaturvedi R, Asim M, Hoge S, Lewis ND, Singh K, Barry DP, de Sablet T, Piazuelo MB, Sarvaria AR, Cheng Y, Closs EI, Casero RA, Gobert AP, Wilson KT. Polyamines Impair Immunity to Helicobacter pylori by Inhibiting L-Arginine Uptake Required for Nitric Oxide Production. Gastroenterology 2010; 139:1686-98, 1698.e1-6. [PMID: 20600019 PMCID: PMC2967614 DOI: 10.1053/j.gastro.2010.06.060] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 05/26/2010] [Accepted: 06/24/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Helicobacter pylori-induced immune responses fail to eradicate the bacterium. Nitric oxide (NO) can kill H pylori. However, translation of inducible NO synthase (iNOS) and NO generation by H pylori-stimulated macrophages is inhibited by the polyamine spermine derived from ornithine decarboxylase (ODC), and is dependent on availability of the iNOS substrate L-arginine (L-Arg). We determined if spermine inhibits iNOS-mediated immunity by reducing L-Arg uptake into macrophages. METHODS Levels of the inducible cationic amino acid transporter (CAT)2, ODC, and iNOS were measured in macrophages and H pylori gastritis tissues. L-Arg uptake, iNOS expression, and NO levels were assessed in cells with small interfering RNA knockdown of CAT2 or ODC, and in gastric macrophages. The ODC inhibitor, α-difluoromethylornithine, was administered to H pylori-infected mice for 4 months after inoculation. RESULTS H pylori induced CAT2 and uptake of L-Arg in RAW 264.7 or primary macrophages. Addition of spermine or knockdown of CAT2 inhibited L-Arg uptake, NO production, and iNOS protein levels, whereas knockdown of ODC had the opposite effect. CAT2 and ODC were increased in mouse and human H pylori gastritis tissues and localized to macrophages. Gastric macrophages from H pylori-infected mice showed increased ODC expression, and attenuated iNOS and NO levels upon ex vivo H pylori stimulation versus cells from uninfected mice. α-Difluoromethylornithine treatment of infected mice restored L-Arg uptake, iNOS protein expression, and NO production in gastric macrophages, and significantly reduced both H pylori colonization levels and gastritis severity. CONCLUSIONS Up-regulation of ODC in gastric macrophages impairs host defense against H pylori by suppressing iNOS-derived NO production.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Svea Hoge
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Department of General, Abdominal and Vascular Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Nuruddeen D. Lewis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN
| | - Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Aditya R. Sarvaria
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Yulan Cheng
- Division of Gastroenterology, University of Maryland School of Medicine, Baltimore, MD
| | - Ellen I. Closs
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Robert A. Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Institut National de la Recherche Agronomique, Unité de Microbiologie UR454, Saint-Genès-Champanelle, France
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN
| |
Collapse
|
13
|
Identification and biochemical characterization of a unique Mn2+-dependent UMP kinase from Helicobacter pylori. Arch Microbiol 2010; 192:739-46. [PMID: 20602229 DOI: 10.1007/s00203-010-0600-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Revised: 05/20/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Uridine monophosphate (UMP) kinase converts UMP to the corresponding UDP in the presence of metal ions and ATP and is allosterically regulated by nucleotides such as UTP and GTP. Although the UMP kinase reported to date is Mg(2+)-dependent, we found in this study that the UMP kinase of Helicobacter pylori had a preference for Mn(2+) over Mg(2+), which may be related to a conformational difference between the Mn(2+)-bound and Mg(2+)-bound UMP kinase. Similar to previous findings, the UMP kinase activity of H. pylori UMP kinase was inhibited by UTP and activated by GTP. However, a relatively low GTP concentration (0.125 mM) was required to activate H. pylori UMP kinase to a level similar to other bacterial UMP kinases using a higher GTP concentration (0.5 mM). In addition, depending on the presence of either Mg(2+) or Mn(2+), a significant difference in the level of GTP activation was observed. It is therefore hypothesized that the Mg(2+)-bound and Mn(2+)-bound H. pylori UMP kinase may be activated by GTP through different mechanisms.
Collapse
|
14
|
Saw JH, Mountain BW, Feng L, Omelchenko MV, Hou S, Saito JA, Stott MB, Li D, Zhao G, Wu J, Galperin MY, Koonin EV, Makarova KS, Wolf YI, Rigden DJ, Dunfield PF, Wang L, Alam M. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1. Genome Biol 2008; 9:R161. [PMID: 19014707 PMCID: PMC2614493 DOI: 10.1186/gb-2008-9-11-r161] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 10/08/2008] [Accepted: 11/17/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. RESULTS We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. CONCLUSIONS Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.
Collapse
Affiliation(s)
- Jimmy H Saw
- Department of Microbiology, University of Hawai'i, 2538 The Mall, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The trypanocidal activity of the ODC (ornithine decarboxylase) inhibitor DFMO (difluoromethylornithine) has validated polyamine biosynthesis as a target for chemotherapy. As DFMO is one of only two drugs used to treat patients with late-stage African trypanosomiasis, the requirement for additional drug targets is paramount. Here, we report the biochemical properties of TbSpSyn (Trypanosoma brucei spermidine synthase), the enzyme immediately downstream of ODC in this pathway. Recombinant TbSpSyn was purified and shown to catalyse the formation of spermidine from putrescine and dcSAM (decarboxylated S-adenosylmethionine). To determine the functional importance of TbSpSyn in BSF (bloodstream form) parasites, we used a tetracycline-inducible RNAi (RNA interference) system. Down-regulation of the corresponding mRNA correlated with a decrease in intracellular spermidine and cessation of growth. This phenotype could be complemented by expressing the SpSyn (spermidine synthase) gene from Leishmania major in cells undergoing RNAi, but could not be rescued by addition of spermidine to the medium due to the lack of a spermidine uptake capacity. These results therefore genetically validate TbSpSyn as a target for drug development and indicate that in the absence of a functional biosynthetic pathway, BSF T. brucei cannot scavenge sufficient spermidine from their environment to meet growth requirements.
Collapse
|
16
|
Knott JM, Römer P, Sumper M. Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Lett 2007; 581:3081-6. [PMID: 17560575 DOI: 10.1016/j.febslet.2007.05.074] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/23/2007] [Accepted: 05/27/2007] [Indexed: 11/16/2022]
Abstract
Polyamines are involved in many fundamental cellular processes. Common polyamines are putrescine, spermidine and spermine. Spermine is synthesized by transfer of an aminopropyl residue derived from decarboxylated S-adenosylmethionine to spermidine. Thermospermine is an isomer of spermine and assumed to be synthesized by an analogous mechanism. However, none of the recently described spermine synthases was investigated for their possible activity as thermospermine synthases. In this work, putative spermine synthases from the diatom Thalassiosira pseudonana and from Arabidopsis thaliana could be identified as thermospermine synthases. These findings may explain the previous result that two putative spermine synthase genes in Arabidopsis produce completely different phenotypes in knock-out experiments. Likely, part of putative spermine synthases identifiable by sequence comparisons represents in fact thermospermine synthases.
Collapse
Affiliation(s)
- Jürgen M Knott
- Lehrstuhl Biochemie I, Universität Regensburg, Regensburg, Germany
| | | | | |
Collapse
|
17
|
Changes in the content of biologically active polyamines during pork loin storage and culinary treatments. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-007-0625-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Lu PK, Tsai JY, Chien HY, Huang H, Chu CH, Sun YJ. Crystal structure of Helicobacter pylori spermidine synthase: A Rossmann-like fold with a distinct active site. Proteins 2007; 67:743-54. [PMID: 17357156 DOI: 10.1002/prot.21315] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermidine synthase (putrescine aminopropyltransferase, PAPT) catalyzes the transfer of the aminopropyl group from decarboxylated S-adenosylmethionine to putrescine during spermidine biosynthesis. Helicobacter pylori PAPT (HpPAPT) has a low sequence identity with other PAPTs and lacks the signature sequence found in other PAPTs. The crystal structure of HpPAPT, determined by multiwavelength anomalous dispersion, revealed an N-terminal beta-stranded domain and a C-terminal Rossmann-like domain. Structural comparison with other PAPTs showed that HpPAPT has a unique binding pocket between two domains, numerous non-conserved residues, a less acidic electrostatic surface potential, and a large buried space within the structure. HpPAPT lacks the gatekeeping loop that facilitates substrate binding in other PAPTs. PAPTs are essential for bacterial cell viability; thus, HpPAPT may be a potential antimicrobial drug target for H. pylori owing to its characteristic PAPT sequence and distinct conformation.
Collapse
Affiliation(s)
- Po Kai Lu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Lee MJ, Liu CH, Wang SY, Huang CT, Huang H. Characterization of the Soj/Spo0J chromosome segregation proteins and identification of putative parS sequences in Helicobacter pylori. Biochem Biophys Res Commun 2006; 342:744-50. [PMID: 16494844 DOI: 10.1016/j.bbrc.2006.01.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Accepted: 01/26/2006] [Indexed: 11/22/2022]
Abstract
The Soj and Spo0J proteins, together with one or more parS sequences, are crucial to chromosome segregation and the progression of cell cycle in many bacteria. In Helicobacter pylori, genes coding for Soj and a plasmid replication-partition-related protein containing a Spo0J or ParB conserved domain, together with two putative parS sites identified in this study, were found to be located within the origin-proximal 20-30% of the circular chromosome. Recombinant H. pylori Spo0J bound specifically to the two putative parS sequences and that of Bacillus subtilis. In addition, hydrolysis of ATP by H. pylori Soj was accelerated in the presence of parS and/or Spo0J. Protein-protein interactions, intracellular levels, and subcellular localization of Soj and Spo0J were analyzed through polyclonal antibodies directed against recombinant Soj and Spo0J. This study was the first implication of the existence of a functional parABS system in H. pylori.
Collapse
Affiliation(s)
- Mon-Juan Lee
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Ikeguchi Y, Bewley MC, Pegg AE. Aminopropyltransferases: Function, Structure and Genetics. ACTA ACUST UNITED AC 2006; 139:1-9. [PMID: 16428313 DOI: 10.1093/jb/mvj019] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aminopropyltransferases use decarboxylated S-adenosylmethionine as an aminopropyl donor and an amine acceptor to form polyamines. This review covers their structure, mechanism of action, inhibition, regulation and function. The best known aminopropyltransferases are spermidine synthase and spermine synthase but other members of this family including an N(1)-aminopropylagmatine synthase have been characterized. Spermidine synthase is an essential gene in eukaryotes and is very widely distributed. Key regions in the active site, which are very highly conserved, were identified by structural studies with spermidine synthase from Thermotoga maritima bound to S-adenosyl-1,8-diamino-3-thiooctane, a multisubstrate analog inhibitor. A general mechanism for catalysis by aminopropyltransferases can be proposed based on these studies. Spermine synthase is less widely distributed and is not essential for growth in yeast. However, Gy mice lacking spermine synthase have multiple symptoms including a profound growth retardation, sterility, deafness, neurological abnormalities and a propensity to sudden death, which can all be prevented by transgenic expression of spermine synthase. A large reduction in spermine synthase in human males due to a splice site variant causes Snyder-Robinson syndrome with mental retardation, hypotonia and skeletal abnormalities.
Collapse
Affiliation(s)
- Yoshihiko Ikeguchi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295
| | | | | |
Collapse
|