1
|
A chemo-enzymatic transformation of linalyl acetate to estragole, a phenyl propanoid ether using recombinant esterase in acetone reaction system. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Nazarian Z, Arab SS. Discovery of carboxylesterases via metagenomics: Putative enzymes that contribute to chemical kinetic resolution. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Nagaroor V, Gummadi SN. An overview of mammalian and microbial hormone-sensitive lipases (lipolytic family IV): biochemical properties and industrial applications. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36154870 DOI: 10.1080/02648725.2022.2127071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Abstract
In mammals, hormone-sensitive lipase (EC 3.1.1.79) is an intracellular lipase that significantly regulates lipid metabolism. Mammalian HSL is more active towards diacylglycerol but lacks a lid covering the active site. Dyslipidemia, hepatic steatosis, cancer, and cancer-associated cachexia are symptoms of HSL pathophysiology. Certain microbial proteins show a sequence homologous to the catalytic domain of mammalian HSL, hence called microbial HSL. They possess a funnel-shaped substrate-binding pocket and restricted length of acyl chain esters, thus known as esterases. These enzymes have broad substrate specificities and are capable of stereo, regio, and enantioselective, making them attractive biocatalysts in a wide range of industrial applications in the production of flavors, pharmaceuticals, biosensors, and fine chemicals. This review will provide insight into mammalian and microbial HSLs, their sources, structural features related to substrate specificity, thermal stability, and their applications.
Collapse
Affiliation(s)
- Vijayalakshmi Nagaroor
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Sathyanarayana N Gummadi
- Applied and Industrial Microbiology laboratory (AIM lab), Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
4
|
Sustainable Biosynthesis of Esterase Enzymes of Desired Characteristics of Catalysis for Pharmaceutical and Food Industry Employing Specific Strains of Microorganisms. SUSTAINABILITY 2022. [DOI: 10.3390/su14148673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Reactions catalysed by sustainably produced enzymes can contribute to the bioeconomy supporting several industries. Low-value compounds can be transformed into added-value products or high-resolution chemicals could be prepared in reactions catalysed by biocatalyst esterase enzymes. These enzymes can be synthesised by purposely isolated or genetically modified strains of microorganisms. Enzymes belonging to the hydrolase family catalyse the formation and hydrolysis of ester bonds to produce the desired esterified molecule. The synthesis of homo-chiral compounds can be accomplished either by chemical or biocatalytic processes, the latter being preferred with the use of microbial esterases. For varied applications, esterases with high stability and retained activity at lower and higher temperatures have been produced with strains isolated from extreme environments. For sustainable production of enzymes, higher productivity has been achieved by employing fast-growing Escherichia coli after incorporating plasmids of required characteristics from specific isolates. This is a review of the isolated and engineered strains used in the biosynthesis of esterase of the desired property, with the objective of a sustainable supply of enzymes, to produce products of industrial importance contributing to the economy.
Collapse
|
5
|
Bhattacharyya M, Basu S, Dhar R, Dutta TK. Phthalate hydrolase: distribution, diversity and molecular evolution. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:333-346. [PMID: 34816599 DOI: 10.1111/1758-2229.13028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/12/2023]
Abstract
The alpha/beta-fold superfamily of hydrolases is rapidly becoming one of the largest groups of structurally related enzymes with diverse catalytic functions. In this superfamily of enzymes, esterase deserves special attention because of their wide distribution in biological systems and importance towards environmental and industrial applications. Among various esterases, phthalate hydrolases are the key alpha/beta enzymes involved in the metabolism of structurally diverse estrogenic phthalic acid esters, ubiquitously distributed synthetic chemicals, used as plasticizer in plastic manufacturing processes. Although they vary both at the sequence and functional levels, these hydrolases use a similar acid-base-nucleophile catalytic mechanism to catalyse reactions on structurally different substrates. The current review attempts to present insights on phthalate hydrolases, describing their sources, structural diversities, phylogenetic affiliations and catalytically different types or classes of enzymes, categorized as diesterase, monoesterase and diesterase-monoesterase, capable of hydrolysing phthalate diester, phthalate monoester and both respectively. Furthermore, available information on in silico analyses and site-directed mutagenesis studies revealing structure-function integrity and altered enzyme kinetics have been highlighted along with the possible scenario of their evolution at the molecular level.
Collapse
Affiliation(s)
| | - Suman Basu
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Rinita Dhar
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Liu X, Zhao M, Fan X, Fu Y. Enhanced Production of (S)-2-arylpropionic Acids by Protein Engineering and Whole-Cell Catalysis. Front Bioeng Biotechnol 2021; 9:697677. [PMID: 34307324 PMCID: PMC8293918 DOI: 10.3389/fbioe.2021.697677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
Esterases are important biocatalysts for chemical synthesis. Several bHSL family esterases have been used to prepare (S)-2-arylpropionic acids with stronger anti-inflammatory effects via kinetic resolution. Here, we presented the discovery of key residues that controlled the enantioselectivity of bHSL family esterases to ethyl 2-arylpropionates, through careful analysis of the structural information and molecular docking. A new bHSL family esterase, Est924, was identified as a promising catalyst for kinetic resolution of racemic ethyl 2-arylpropionates with slight (R)-stereopreference. Using Est924 as the starting enzyme, protein engineering was conducted at hotspots, and the substitution of A203 was proved to enhance the enantioselectivity. The stereopreference of the mutant M1 (A203W) was inverted to ethyl (S)-2-arylpropionates, and this stereopreference was further improved in variant M3 (I202F/A203W/G208F). In addition, the optimal variant, M3, was also suitable for the resolution of ibuprofen ethyl ester and ketoprofen ethyl ester, and their efficient (S)-isomers were synthesized. Next, the whole-cell catalyst harboring M3 was used to prepare (S)-ketoprofen. (S)-ketoprofen with 86%ee was produced by whole-cell catalyst with a single freeze-thaw cycle, and the cells could be reused for at least five cycles. Our results suggested that Est924 variants could kinetically resolve economically important racemates for industrial production and further offer the opportunity for the rational design of enzyme enantioselectivity. Moreover, it is an economical process to prepare optically pure (S)-ketoprofen and (S)-naproxen by using an engineered strain harboring M3 as the catalyst.
Collapse
Affiliation(s)
- Xiaolong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, China
| | - Meng Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinjiong Fan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, China
| |
Collapse
|
7
|
Sander D, Yu Y, Sukul P, Schäkermann S, Bandow JE, Mukherjee T, Mukhopadhyay SK, Leichert LI. Metaproteomic Discovery and Characterization of a Novel Lipolytic Enzyme From an Indian Hot Spring. Front Microbiol 2021; 12:672727. [PMID: 34149658 PMCID: PMC8212958 DOI: 10.3389/fmicb.2021.672727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022] Open
Abstract
Lipolytic enzymes are produced by animals, plants and microorganisms. With their chemo-, regio-, and enantio-specific characteristics, lipolytic enzymes are important biocatalysts useful in several industrial applications. They are widely used in the processing of fats and oils, detergents, food processing, paper and cosmetics production. In this work, we used a new functional metaproteomics approach to screen sediment samples of the Indian Bakreshwar hot spring for novel thermo- and solvent-stable lipolytic enzymes. We were able to identify an enzyme showing favorable characteristics. DS-007 showed high hydrolytic activity with substrates with shorter chain length (C10, significantly less hydrolytic activity was observed. A preference for short chain acyl groups is characteristic for esterases, suggesting that DS-007 is an esterase. Consistent with the high temperature at its site of isolation, DS-007 showed a temperature optimum at 55°C and retained 80% activity even after prolonged exposure to temperatures as high as 60°C. The enzyme showed optimum activity at pH 9.5, with more than 50% of its optimum activity between pH 8.0 and pH 9.5. DS-007 also exhibited tolerance toward organic solvents at a concentration of 1% (v/v). One percent of methanol increased the activity of DS-007 by 40% in comparison to the optimum conditions without solvent. In the presence of 10% methanol, DMSO or isopropanol DS-007 still showed around 50% activity. This data indicates that DS-007 is a temperature- and solvent-stable thermophilic enzyme with reasonable activity even at lower temperatures as well as a catalyst that can be used at a broad range of pH values with an optimum in the alkaline range, showing the adaptation to the habitat's temperature and alkaline pH.
Collapse
Affiliation(s)
- Dennis Sander
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yanfei Yu
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Premankur Sukul
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Trinetra Mukherjee
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Department of Microbiology, The University of Burdwan, Burdwan, India
| | | | - Lars I. Leichert
- Department of Microbial Biochemistry, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
8
|
Maki K, Hossain MS, Tanaka T, Takeda Y, Takagi K, Wakayama M. l-tryptophan-histidine synthesis by Pseudomonas serine peptidase, an amino acid ester hydrolase of the peptidase family S9. Enzyme Microb Technol 2021; 147:109785. [PMID: 33992407 DOI: 10.1016/j.enzmictec.2021.109785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas sp. KM1 produces an amino acid ester hydrolase (KM1AEH) that catalyzes peptide bond formation by acting on carboxylic ester bonds. The KM1AEH gene was cloned from genomic DNA and expressed in Escherichia coli. The recombinant enzyme (rKM1AEH) was purified, and gel filtration showed that it is a 68 kDa monomeric protein. rKM1AEH can synthesize the vasoactive dipeptide tryptophan-histidine from tryptophan methyl ester and histidine as acyl donor and acceptor, respectively. The enzyme showed maximum activity at pH 9.5 and 45 °C and was specifically inhibited by silver (Ag+). Mutation of the catalytic Ser459 residue in the active site of rKM1AEH with Ala, Cys, or Thr eliminated all catalytic activity. The enzyme is a novel ester hydrolase that belongs to the peptidase family S9 based on the phylogenetic analysis.
Collapse
Affiliation(s)
- Keiko Maki
- Dept of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Md Saddam Hossain
- Dept of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Takahiro Tanaka
- Dept of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yoichi Takeda
- Dept of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kazuyoshi Takagi
- Dept of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Mamoru Wakayama
- Dept of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
9
|
Shin WR, Um HJ, Kim YC, Kim SC, Cho BK, Ahn JY, Min J, Kim YH. Biochemical characterization and molecular docking analysis of novel esterases from Sphingobium chungbukense DJ77. Int J Biol Macromol 2020; 168:403-411. [PMID: 33321136 DOI: 10.1016/j.ijbiomac.2020.12.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 10/22/2022]
Abstract
We identified three novel microbial esterase (Est1, Est2, and Est3) from Sphingobium chungbukense DJ77. Multiple sequence alignment showed the Est1 and Est3 have distinct motifs, such as tetrapeptide motif HGGG, a pentapeptide sequence motif GXSXG, and catalytic triad residues Ser-Asp-His, indicating that the identified enzymes belong to family IV esterases. Interestingly, Est1 exhibited strong activity toward classical esterase substrates, p-nitrophenyl ester of short-chain fatty acids and long-chain. However, Est3 did not exhibit any activity despite having high sequence similarity and sharing the identical catalytic active residues with Est1. Est3 only showed hydrolytic degradation activity to polycaprolactone (PCL). MOE-docking prediction also provided the parameters consisting of binding energy, molecular docking score, and molecular distance between substrate and catalytic nucleophilic residue, serine. The engineered mutEst3 has hydrolytic activity for a variety of esters ranging from p-nitrophenyl esters to PCL. In the present study, we demonstrated that MOE-docking simulation provides a valuable insight for facilitating biocatalytic performance.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Hyun-Ju Um
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Young-Chang Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644, South Korea.
| |
Collapse
|
10
|
Bhardwaj KK, Mehta A, Thakur L, Gupta R. Influence of Culture Conditions on the Production of Extracellular Esterase from Bacillus licheniformis and Its Characterization. J Oleo Sci 2020; 69:467-477. [PMID: 32378550 DOI: 10.5650/jos.ess19261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Esterases catalyze the hydrolysis of ester bonds in fatty acid esters with short-chain acyl groups. In the present study, thirty-seven bacterial isolates were isolated from soil contaminated with waste cooking oil, dairy waste etc. from Shimla and Solan district of H.P. Out of 37 isolates, the isolate RL-1, which gave maximum activity, was identified as Bacillus licheniformis MH061919. The optimization of various production parameters resulted in maximum activity at inoculum age of 24 h and inoculum size of 1.5% (v/v). Esterase gave considerable activity in production medium containing sodium chloride (0.5 % w/v), galactose (1%, w/v), coconut oil (2.0%, v/v) and beef extract (0.3%, w/v) at a temperature of 45℃ and pH 8.5.The enzyme production was enhanced by 3-fold after optimization of production parameters. Further, on optimizing reaction conditions, enzyme gave maximum activity at a temperature of 45℃ and pH 8.5. The para-nitrophenyl acetate (p-NPA) was found to be optimum substrate and metal ions and detergents have inhibitory effect on esterase activity.
Collapse
Affiliation(s)
| | - Akshita Mehta
- Department of Biotechnology, Himachal Pradesh University
| | - Lalit Thakur
- Department of Biotechnology, Himachal Pradesh University
| | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University
| |
Collapse
|
11
|
Kirubakaran R, ArulJothi KN, Revathi S, Shameem N, Parray JA. Emerging priorities for microbial metagenome research. BIORESOURCE TECHNOLOGY REPORTS 2020; 11:100485. [PMID: 32835181 PMCID: PMC7319936 DOI: 10.1016/j.biteb.2020.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Overwhelming anthropogenic activities lead to deterioration of natural resources and the environment. The microorganisms are considered desirable, due to their suitability for easy genetic manipulation and handling. With the aid of modern biotechnological techniques, the culturable microorganisms have been widely exploited for the benefit of mankind. Metagenomics, a powerful tool to access the abundant biodiversity of the environmental samples including the unculturable microbes, to determine microbial diversity and population structure, their ecological roles and expose novel genes of interest. This review focuses on the microbial adaptations to the adverse environmental conditions, metagenomic techniques employed towards microbial biotechnology. Metagenomic approach helps to understand microbial ecology and to identify useful microbial derivatives like antibiotics, toxins, and enzymes with diverse and enhanced function. It also summarizes the application of metagenomics in clinical diagnosis, improving microbial ecology, therapeutics, xenobiotic degradation and impact on agricultural crops.
Collapse
Affiliation(s)
| | - K N ArulJothi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chennai, India
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | | | - Nowsheen Shameem
- Department of Environmental Science, Cluster University Srinagar, J&K, India
| | - Javid A Parray
- Department of Environmental Science, Govt SAM Degree College Budgam, J&K, India
| |
Collapse
|
12
|
Soumya P, Kochupurackal J. Pineapple Peel Extract as an Effective Substrate for Esterase Production from Bacillus subtilis E9. Curr Microbiol 2020; 77:3024-3034. [PMID: 32683467 DOI: 10.1007/s00284-020-02073-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
Esterase, belonging to hydrolase class of enzymes catalyzes the cleavage and formation of ester bonds. Esterase producing isolates E9 and E46, isolated from pineapple waste enriched soil were identified as Bacillus subtilis E9 and Bacillus sp. E46 respectively. Bacillus subtilis E9 with 10 U/mg esterase activity in basal media was further chosen for media optimization studies. Several factors including the effect of organic solvents and fruit peel extracts were studied by one factor at a time optimization method and statistical models. An enhanced enzyme production of 250.50 U/mg could be obtained under the optimal conditions of pH 6.5, incubation time 25 h and 1.8%v/v of acetone extract of pineapple peel. The four-stage purification improved the purity of the enzyme by 1.5-fold with 5.3% recovery and specific activity of 384 U/mg. The monomeric nature and the molecular weight (45 KDa) of the enzyme were determined by performing SDS PAGE and its activity was confirmed by zymogram analysis. The substrate specificity of the purified fraction exhibited a higher activity towards lower chain length esters, indicating the enzyme as esterase. The partially purified esterase showed an optimal temperature of 40 °C at an optimum pH of 7. Km and Vmax of the enzyme were 1.12 mM and 1.18 mM of released pNP · min-1 respectively.
Collapse
|
13
|
Noor H, Satti SM, Din SU, Farman M, Hasan F, Khan S, Badshah M, Shah AA. Insight on esterase from Pseudomonas aeruginosa strain S3 that depolymerize poly(lactic acid) (PLA) at ambient temperature. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Almeida JM, Alnoch RC, Souza EM, Mitchell DA, Krieger N. Metagenomics: Is it a powerful tool to obtain lipases for application in biocatalysis? BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140320. [PMID: 31756433 DOI: 10.1016/j.bbapap.2019.140320] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
In recent years, metagenomic strategies have been widely used to isolate and identify new enzymes from uncultivable components of microbial communities. Among these enzymes, various lipases have been obtained from metagenomic libraries from different environments and characterized. Although many of these lipases have characteristics that could make them interesting for application in biocatalysis, relatively little work has been done to evaluate their potential to catalyze industrially important reactions. In the present article, we highlight the latest research on lipases obtained through metagenomic tools, focusing on studies of activity and stability and investigations of application in biocatalysis. We also discuss the challenges of metagenomic approaches for the bioprospecting of new lipases.
Collapse
Affiliation(s)
- Janaina Marques Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Robson Carlos Alnoch
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Emanuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx.P. 19032 Centro Politécnico, Curitiba 81531-980, Paraná, Brazil.
| |
Collapse
|
15
|
Nan F, Jiang J, Wu S, Zhang Y, Qiu J, Qiao B, Li S, Xin Z. A Novel VIII Carboxylesterase with High Hydrolytic Activity Against Ampicillin from a Soil Metagenomic Library. Mol Biotechnol 2019; 61:892-904. [PMID: 31664703 DOI: 10.1007/s12033-019-00220-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A novel carboxylesterase gene, named dlfae4, was discovered and sequenced from a soil metagenomic library. The dlfae4 gene was composed of 1017 base pairs encoding 338 amino acid residues with a predicted molecular mass of 37.2 kDa. DLFae4 exhibited strong hydrolytic activity towards methyl ferulate under optimum pH and temperature conditions (pH 8.6, 50 °C) and displayed remarkable thermostability, with residual activity as high as 50% after incubation for 3 h at 60 °C. A family VIII esterase DLFae4 was found to contain a typical serine residue within the S-X-X-K motif, which serves as a catalytic nucleophile in class C β-lactamases and family VIII esterases. As a consequence of its high sequence similarity with β-lactamases, DLFae4 exhibited significant hydrolytic activity towards ampicillin. In addition, DLFae4 was found to be the first known member of family VIII carboxylesterases with phthalate-degrading ability. Site-directed mutagenesis studies revealed that Ser11, Lys14, and Tyr121 residues play an essential catalytic role in DLFae4. These new findings, which are of great importance for further in-depth research and engineering development of carboxylesterases, should advance the implementation of biotechnological applications.
Collapse
Affiliation(s)
- Fang Nan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junwei Jiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shenglu Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yueqi Zhang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiarong Qiu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Beibei Qiao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shan Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
16
|
Ngara TR, Zhang H. Recent Advances in Function-based Metagenomic Screening. GENOMICS PROTEOMICS & BIOINFORMATICS 2018; 16:405-415. [PMID: 30597257 PMCID: PMC6411959 DOI: 10.1016/j.gpb.2018.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
Abstract
Metagenomes from uncultured microorganisms are rich resources for novel enzyme genes. The methods used to screen the metagenomic libraries fall into two categories, which are based on sequence or function of the enzymes. The sequence-based approaches rely on the known sequences of the target gene families. In contrast, the function-based approaches do not involve the incorporation of metagenomic sequencing data and, therefore, may lead to the discovery of novel gene sequences with desired functions. In this review, we discuss the function-based screening strategies that have been used in the identification of enzymes from metagenomes. Because of its simplicity, agar plate screening is most commonly used in the identification of novel enzymes with diverse functions. Other screening methods with higher sensitivity are also employed, such as microtiter plate screening. Furthermore, several ultra-high-throughput methods were developed to deal with large metagenomic libraries. Among these are the FACS-based screening, droplet-based screening, and the in vivo reporter-based screening methods. The application of these novel screening strategies has increased the chance for the discovery of novel enzyme genes.
Collapse
Affiliation(s)
- Tanyaradzwa Rodgers Ngara
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
17
|
Rong Z, Huo YY, Jian SL, Wu YH, Xu XW. Characterization of a novel alkaline esterase from Altererythrobacter epoxidivorans CGMCC 1.7731 T. Prep Biochem Biotechnol 2018; 48:113-120. [PMID: 29099313 DOI: 10.1080/10826068.2017.1387559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel esterase gene (e25) was identified from Altererythrobacter epoxidivorans CGMCC 1.7731T by genome sequence screening. The e25 gene is 948 nucleotides in length and encodes a 315 amino acid protein (E25) with a predicted molecular mass of 33,683 Da. A phylogenetic tree revealed that E25 belongs to the hormone-sensitive lipase (HSL) family of lipolytic enzymes. An activity assay of E25 showed that it exhibited the highest catalytic efficiency when using p-nitrophenyl caproate (C6) as a substrate. The optimum pH and temperature were determined to be approximately pH 9 and 45°C, and the Km and Vmax values were 0.12 mM and 1,772 µmol/min/mg, respectively. After an incubation at 40°C for 80 min, E25 retained 75% of its basal activity. The enzyme exhibited good tolerance to metal cations, such as Ba2+, Ca2+, and Cu2+ (10 mM), but its activity was strongly inhibited by Co2+, Ni2+, Mn2+, and Zn2+. The E25 enzyme was stimulated by glycerol and retained over 60% of its basal activity in the presence of 1% Tween-80 and Triton X-100. Overall, the activity of E25 under alkaline conditions and its organic solvent and detergent tolerance indicate that E25 could be useful as a novel industrial catalyst in biotechnological applications.
Collapse
Affiliation(s)
- Zhen Rong
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Ying-Yi Huo
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Shu-Ling Jian
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Yue-Hong Wu
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| | - Xue-Wei Xu
- a Key Laboratory of Marine Ecosystem and Biogeochemistry , Second Institute of Oceanography, State Oceanic Administration , Hangzhou , China
| |
Collapse
|
18
|
Relationships between Substrate Promiscuity and Chiral Selectivity of Esterases from Phylogenetically and Environmentally Diverse Microorganisms. Catalysts 2018. [DOI: 10.3390/catal8010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Substrate specificity and selectivity of a biocatalyst are determined by the protein sequence and structure of its active site. Finding versatile biocatalysts acting against multiple substrates while at the same time being chiral selective is of interest for the pharmaceutical and chemical industry. However, the relationships between these two properties in natural microbial enzymes remain underexplored. Here, we performed an experimental analysis of substrate promiscuity and chiral selectivity in a set of 145 purified esterases from phylogenetically and environmentally diverse microorganisms, which were assayed against 96 diverse esters, 20 of which were enantiomers. Our results revealed a negative correlation between substrate promiscuity and chiral selectivity in the evaluated enzymes. Esterases displaying prominent substrate promiscuity and large catalytic environments are characterized by low chiral selectivity, a feature that has limited commercial value. Although a low level of substrate promiscuity does not guarantee high chiral selectivity, the probability that esterases with smaller active sites possess chiral selectivity factors of interest for industry (>25) is significantly higher than for promiscuous enzymes. Together, the present study unambiguously demonstrates that promiscuous and selective esterases appear to be rare in nature and that substrate promiscuity can be used as an indicator of the chiral selectivity level of esterases, and vice versa.
Collapse
|
19
|
Achari GA, Ramesh R. Characterization of quorum quenching enzymes from endophytic and rhizosphere colonizing bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Ufarté L, Laville E, Duquesne S, Morgavi D, Robe P, Klopp C, Rizzo A, Pizzut-Serin S, Potocki-Veronese G. Discovery of carbamate degrading enzymes by functional metagenomics. PLoS One 2017; 12:e0189201. [PMID: 29240834 PMCID: PMC5730166 DOI: 10.1371/journal.pone.0189201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 11/21/2017] [Indexed: 01/15/2023] Open
Abstract
Bioremediation of pollutants is a major concern worldwide, leading to the research of new processes to break down and recycle xenobiotics and environment contaminating polymers. Among them, carbamates have a very broad spectrum of uses, such as toxinogenic pesticides or elastomers. In this study, we mined the bovine rumen microbiome for carbamate degrading enzymes. We isolated 26 hit clones exhibiting esterase activity, and were able to degrade at least one of the targeted polyurethane and pesticide carbamate compounds. The most active clone was deeply characterized. In addition to Impranil, this clone was active on Tween 20, pNP-acetate, butyrate and palmitate, and on the insecticide fenobucarb. Sequencing and sub-cloning of the best target revealed a novel carboxyl-ester hydrolase belonging to the lipolytic family IV, named CE_Ubrb. This study highlights the potential of highly diverse microbiota such as the ruminal one for the discovery of promiscuous enzymes, whose versatility could be exploited for industrial uses.
Collapse
Affiliation(s)
- Lisa Ufarté
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | - Sophie Duquesne
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | | - Christophe Klopp
- Plateforme Bio-informatique Toulouse Genopole, UBIA INRA, Castanet-Tolosan, France
| | - Angeline Rizzo
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
| | | | | |
Collapse
|
21
|
Toledo MV, Briand LE. Relevance and bio-catalytic strategies for the kinetic resolution of ketoprofen towards dexketoprofen. Crit Rev Biotechnol 2017; 38:778-800. [PMID: 29124963 DOI: 10.1080/07388551.2017.1399249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This review presents the most relevant investigations concerning the biocatalytic kinetic resolution of racemic ketoprofen to dexketoprofen for the last 22 years. The advantages related to the administration of the dex-enantiomer in terms of human health, the so called "chiral switch" in the pharmaceutical industry and the sustainability of biotransformations have been the driving forces to develop innovative technology to obtain dexketoprofen. In particular, the kinetic resolution of racemic ketoprofen through enantiomeric esterification and hydrolysis using lipases as biocatalysts are thoroughly revised and commented upon. In this context, the biocatalysts, acyl-acceptors (alcohols), reaction conditions, conversion, enantiomeric excess, and enantiomeric ratio among others are discussed. Moreover, the investigations concerning scaling up processes in order to obtain an optically pure enantiomer of the profen are presented. Finally, some guidelines about perspectives of the technology and research opportunities are given.
Collapse
Affiliation(s)
- María Victoria Toledo
- a Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco (CINDECA) , Universidad Nacional de La Plata, CONICET , La Plata , Buenos Aires , Argentina
| | - Laura Estefanía Briand
- a Centro de Investigación y Desarrollo en Ciencias Aplicadas-Dr. Jorge J. Ronco (CINDECA) , Universidad Nacional de La Plata, CONICET , La Plata , Buenos Aires , Argentina
| |
Collapse
|
22
|
Ottoni JR, Cabral L, de Sousa STP, Júnior GVL, Domingos DF, Soares Junior FL, da Silva MCP, Marcon J, Dias ACF, de Melo IS, de Souza AP, Andreote FD, de Oliveira VM. Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest. World J Microbiol Biotechnol 2017; 33:141. [DOI: 10.1007/s11274-017-2307-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
|
23
|
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 2017; 63:179-192. [DOI: 10.1139/cjm-2016-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.
Collapse
Affiliation(s)
- L. Ramnath
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| | - B. Sithole
- Forestry and Forest Products Research Centre, Council for Scientific and Industrial Research, Durban 4000, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - R. Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
24
|
Yan W, Li F, Wang L, Zhu Y, Dong Z, Bai L. Discovery and characterizaton of a novel lipase with transesterification activity from hot spring metagenomic library. ACTA ACUST UNITED AC 2016; 14:27-33. [PMID: 28459005 PMCID: PMC5397106 DOI: 10.1016/j.btre.2016.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023]
Abstract
Eryuan Niujie Hot spring BAC library of Yunnan Province was constructed for the first time. Lipase gene lip-1 was a novel gene. Lip-1 was expressed and the fusion protein had transesterification activity. Lipase lip-1 has a high tolerance to methanol and organic solvent and can be used in biodiesel produce.
A new gene encoding a lipase (designated as Lip-1) was identified from a metagenomic bacterial artificial chromosome(BAC) library prepared from a concentrated water sample collected from a hot spring field in Niujie, Eryuan of Yunnan province in China. The open reading frame of this gene encoded 622 amino acid residues. It was cloned, fused with the oleosin gene and over expressed in Escherichia coli to prepare immobilized lipase artificial oil body AOB-sole-lip-1. The monomeric Sole-lip-1 fusion protein presented a molecular mass of 102.4 kDa. Enzyme assays using olive oil and methanol as the substrates in petroleum ether confirmed its transesterification activity. Hexadecanoic acid methyl ester, 8,11-Octadecadienoic acid methyl ester, 8-Octadecenoic acid methyl ester, and Octadecanoic acid methyl ester were detected. It showed favorable transesterification activity with optimal temperature 45 °C. Besides, the maximal biodiesel yield was obtained when the petroleum ether system as the organic solvent and the substrate methanol in 350 mmol/L (at a molar ratio of methanol of 10.5:1) and the water content was 1%. In light of these advantages, this lipase presents a promising resource for biodiesel production.
Collapse
Affiliation(s)
- Wei Yan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Furong Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Li Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Science, Beijing, 100101, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Science, Beijing, 100101, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology Chinese Academy of Science, Beijing, 100101, China
| | - Linhan Bai
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
25
|
Kim J, Seok SH, Hong E, Yoo TH, Seo MD, Ryu Y. Crystal structure and characterization of esterase Est25 mutants reveal improved enantioselectivity toward (S)-ketoprofen ethyl ester. Appl Microbiol Biotechnol 2016; 101:2333-2342. [PMID: 27915377 DOI: 10.1007/s00253-016-7989-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/25/2016] [Accepted: 11/05/2016] [Indexed: 11/25/2022]
Abstract
Esterases comprise a group of enzymes that catalyze the cleavage and synthesis of ester bonds. They are important in biotechnological applications owing to their enantioselectivity, regioselectivity, broad substrate specificity, and the fact that they do not require cofactors. In a previous study, we isolated the esterase Est25 from a metagenomic library. Est25 showed catalytic activity toward the (R,S)-ketoprofen ethyl ester but had low enantioselectivity toward the (S)-ketoprofen ethyl ester. Because (S)-ketoprofen has stronger anti-inflammatory effects and fewer side effects than (R)-ketoprofen, enantioselectivity of this esterase is important. In this study, we generated Est25 mutants with improved enantioselectivity toward the (S)-ketoprofen ethyl ester; improved enantioselectivity of mutants was established by analysis of their crystal structures. The enantioselectivity of mutants was influenced by substitution of Phe72 and Leu255. Substituting these residues changed the size of the binding pocket and the entrance hole that leads to the active site. The enantioselectivity of Est25 (E = 1.1 ± 0.0) was improved in the mutants F72G (E = 1.9 ± 0.2), L255W (E = 16.1 ± 1.1), and F72G/L255W (E = 60.1 ± 0.5). Finally, characterization of Est25 mutants was performed by determining the optimum reaction conditions, thermostability, effect of additives, and substrate specificity after substituting Phe72 and Leu255.
Collapse
Affiliation(s)
- Jinyeong Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | | | - Eunsoo Hong
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea. .,College of Pharmacy, Ajou University, Suwon, 16499, South Korea.
| | - Yeonwoo Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
26
|
Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure. Antonie van Leeuwenhoek 2016; 109:1217-33. [DOI: 10.1007/s10482-016-0723-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/07/2016] [Indexed: 10/21/2022]
|
27
|
Ferrer M, Bargiela R, Martínez-Martínez M, Mir J, Koch R, Golyshina OV, Golyshin PN. Biodiversity for biocatalysis: A review of the α/β-hydrolase fold superfamily of esterases-lipases discovered in metagenomes. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.3109/10242422.2016.1151416] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
O'Mahony MM, Henneberger R, Selvin J, Kennedy J, Doohan F, Marchesi JR, Dobson ADW. Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome. Bioengineered 2016; 6:89-98. [PMID: 25692994 PMCID: PMC4601227 DOI: 10.1080/21655979.2015.1018493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
A functional metagenomics based approach exploiting the microbiota of suppressive soils from an organic field site has succeeded in the identification of a clone with the ability to inhibit the growth of Bacillus subtilis DSM10. Sequencing of the fosmid identified a putative β-lactamase-like gene abgT. Transposon mutagenesis of the abgT gene resulted in a loss in ability to inhibit the growth of B. subtilis DSM10. Further analysis of the deduced amino acid sequence of AbgT revealed moderate homology to esterases, suggesting that the protein may possess hydrolytic activity. Weak lipolytic activity was detected; however the clone did not appear to produce any β-lactamase activity. Phylogenetic analysis revealed the protein is a member of the family VIII group of lipase/esterases and clusters with a number of proteins of metagenomic origin. The abgT gene was sub-cloned into a protein expression vector and when introduced into the abgT transposon mutant clones restored the ability of the clones to inhibit the growth of B. subtilis DSM10, clearly indicating that the abgT gene is involved in the antibacterial activity. While the precise role of this protein has yet to fully elucidated, it may be involved in the generation of free fatty acid with antibacterial properties. Thus functional metagenomic approaches continue to provide a significant resource for the discovery of novel functional proteins and it is clear that hydrolytic enzymes, such as AbgT, may be a potential source for the development of future antimicrobial therapies.
Collapse
Affiliation(s)
- Mark M O'Mahony
- a School of Microbiology and Marine Biotechnology Center; Environmental Research Institute; University College Cork ; Cork , Ireland
| | | | | | | | | | | | | |
Collapse
|
29
|
Cloning and characterization of a novel thermostable esterase from Bacillus gelatini KACC 12197. Protein Expr Purif 2015; 116:90-7. [DOI: 10.1016/j.pep.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 11/20/2022]
|
30
|
An unusual feruloyl esterase belonging to family VIII esterases and displaying a broad substrate range. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. Biotechnological applications of functional metagenomics in the food and pharmaceutical industries. Front Microbiol 2015; 6:672. [PMID: 26175729 PMCID: PMC4485178 DOI: 10.3389/fmicb.2015.00672] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022] Open
Abstract
Microorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Paul D Cotter
- Teagasc Food Research Centre Cork, Ireland ; Alimentary Pharmabiotic Centre Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre Cork, Ireland ; School of Microbiology, University College Cork Cork, Ireland
| | | |
Collapse
|
32
|
Rodríguez MC, Loaces I, Amarelle V, Senatore D, Iriarte A, Fabiano E, Noya F. Est10: A Novel Alkaline Esterase Isolated from Bovine Rumen Belonging to the New Family XV of Lipolytic Enzymes. PLoS One 2015; 10:e0126651. [PMID: 25973851 PMCID: PMC4431682 DOI: 10.1371/journal.pone.0126651] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 04/04/2015] [Indexed: 11/18/2022] Open
Abstract
A metagenomic fosmid library from bovine rumen was used to identify clones with lipolytic activity. One positive clone was isolated. The gene responsible for the observed phenotype was identified by in vitro transposon mutagenesis and sequencing and was named est10. The 367 amino acids sequence harbors a signal peptide, the conserved secondary structure arrangement of alpha/beta hydrolases, and a GHSQG pentapeptide which is characteristic of esterases and lipases. Homology based 3D-modelling confirmed the conserved spatial orientation of the serine in a nucleophilic elbow. By sequence comparison, Est10 is related to hydrolases that are grouped into the non-specific Pfam family DUF3089 and to other characterized esterases that were recently classified into the new family XV of lipolytic enzymes. Est10 was heterologously expressed in Escherichia coli as a His-tagged fusion protein, purified and biochemically characterized. Est10 showed maximum activity towards C4 aliphatic chains and undetectable activity towards C10 and longer chains which prompted its classification as an esterase. However, it was able to efficiently catalyze the hydrolysis of aryl esters such as methyl phenylacetate and phenyl acetate. The optimum pH of this enzyme is 9.0, which is uncommon for esterases, and it exhibits an optimal temperature at 40°C. The activity of Est10 was inhibited by metal ions, detergents, chelating agents and additives. We have characterized an alkaline esterase produced by a still unidentified bacterium belonging to a recently proposed new family of esterases.
Collapse
Affiliation(s)
- María Cecilia Rodríguez
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| | - Inés Loaces
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| | - Vanesa Amarelle
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| | - Daniella Senatore
- Laboratorio de Ecología Microbiana, Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| | - Andrés Iriarte
- Departamento de Genómica, Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| | - Elena Fabiano
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| | - Francisco Noya
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas "Clemente Estable", Montevideo, Uruguay
| |
Collapse
|
33
|
Martini VP, Glogauer A, Müller-Santos M, Iulek J, de Souza EM, Mitchell DA, Pedrosa FO, Krieger N. First co-expression of a lipase and its specific foldase obtained by metagenomics. Microb Cell Fact 2014; 13:171. [PMID: 25510188 PMCID: PMC4305245 DOI: 10.1186/s12934-014-0171-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/20/2014] [Indexed: 11/10/2022] Open
Abstract
Background Metagenomics is a useful tool in the search for new lipases that might have characteristics that make them suitable for application in biocatalysis. This paper reports the cloning, co-expression, purification and characterization of a new lipase, denominated LipG9, and its specific foldase, LifG9, from a metagenomic library derived from a fat-contaminated soil. Results Within the metagenomic library, the gene lipg9 was cloned jointly with the gene of the foldase, lifg9. LipG9 and LifG9 have 96% and 84% identity, respectively, with the corresponding proteins of Aeromonas veronii B565. LipG9 and LifG9 were co-expressed, both in N-truncated form, in Escherichia coli BL21(DE3), using the vectors pET28a(+) and pT7-7, respectively, and then purified by affinity chromatography using a Ni2+ column (HiTrap Chelating HP). The purified enzyme eluted from the column complexed with its foldase. The molecular masses of the N-truncated proteins were 32 kDa for LipG9, including the N-terminal His-tag with 6 residues, and 23 kDa for LifG9, which did not have a His-tag. The biochemical and kinetic characteristics of the purified lipase-foldase preparation were investigated. This preparation was active and stable over a wide range of pH values (6.5-9.5) and temperatures (10-40°C), with the highest specific activity, of 1500 U mg−1, being obtained at pH 7.5 at 30°C. It also had high specific activities against tributyrin, tricaprylin and triolein, with values of 1852, 1566 and 817 U mg−1, respectively. A phylogenetic analysis placed LipG9 in the lipase subfamily I.1. A comparison of the sequence of LipG9 with those of other bacterial lipases in the Protein Data Bank showed that LipG9 contains not only the classic catalytic triad (Ser103, Asp250, His272), with the catalytic Ser occurring within a conserved pentapeptide, Gly-His-Ser-His-Gly, but also a conserved disulfide bridge and a conserved calcium binding site. The homology-modeled structure presents a canonical α/β hydrolase folding type I. Conclusions This paper is the first to report the successful co-expression of a lipase and its associated foldase from a metagenomic library. The high activity and stability of Lip-LifG9 suggest that it has a good potential for use in biocatalysis. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0171-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Viviane Paula Martini
- Departamento de Química, Universidade Federal do Paraná, Cx. P. 19081 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil. .,Instituto Federal do Paraná - Campus Irati, Rua Pedro Koppe, 100, Irati, 84500-000, Paraná, Brazil.
| | - Arnaldo Glogauer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046, Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil. .,Agência Tecpar de Inovação, Instituto de Tecnologia do Paraná - Tecpar, Curitiba, 81350-010, Paraná, Brazil.
| | - Marcelo Müller-Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046, Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil.
| | - Jorge Iulek
- Departamento de Química, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, 84070-900, Paraná, Brazil.
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046, Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil.
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046, Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil.
| | - Fabio Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx. P. 19046, Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil.
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx. P. 19081 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil.
| |
Collapse
|
34
|
Narihiro T, Suzuki A, Yoshimune K, Hori T, Hoshino T, Yumoto I, Yokota A, Kimura N, Kamagata Y. The combination of functional metagenomics and an oil-fed enrichment strategy revealed the phylogenetic diversity of lipolytic bacteria overlooked by the cultivation-based method. Microbes Environ 2014; 29:154-61. [PMID: 24859309 PMCID: PMC4103521 DOI: 10.1264/jsme2.me14002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Metagenomic screening and conventional cultivation have been used to exploit microbial lipolytic enzymes in nature. We used an indigenous forest soil (NS) and oil-fed enriched soil (OS) as microbial and genetic resources. Thirty-four strains (17 each) of lipolytic bacteria were isolated from the NS and OS microcosms. These isolates were classified into the (sub)phyla Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria, all of which are known to be the main microbial resources of commercially available lipolytic enzymes. Seven and 39 lipolytic enzymes were successfully retrieved from the metagenomic libraries of the NS and OS microcosms, respectively. The screening efficiency (a ratio of positive lipolytic clones to the total number of environmental clones) was markedly higher in the OS microcosm than in the NS microcosm. Moreover, metagenomic clones encoding the lipolytic enzymes associated with Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Armatimonadetes, and Planctomycetes and hitherto-uncultivated microbes were recovered from these libraries. The results of the present study indicate that functional metagenomics can be effectively used to capture as yet undiscovered lipolytic enzymes that have eluded the cultivation-based method, and these combined approaches may be able to provide an overview of lipolytic organisms potentially present in nature.
Collapse
Affiliation(s)
- Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Iqbal HA, Craig JW, Brady SF. Antibacterial enzymes from the functional screening of metagenomic libraries hosted in Ralstonia metallidurans. FEMS Microbiol Lett 2014; 354:19-26. [PMID: 24661178 DOI: 10.1111/1574-6968.12431] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/24/2014] [Accepted: 03/14/2014] [Indexed: 02/06/2023] Open
Abstract
Phenotype-based screening of bacterial metagenomic libraries provides an avenue for the discovery of novel genes, enzymes, and metabolites that have a variety of potential clinical and industrial uses. Here, we report the identification of a functionally diverse collection of antibacterially active enzymes from the phenotypic screening of 700 000 cosmid clones prepared from Arizona soil DNA and hosted in Ralstonia metallidurans. Environmental DNA clones surrounded by zones of growth inhibition in a bacterial overlay assay were found, through bioinformatics and functional analyses, to encode enzymes with predicted peptidase, lipase, and glycolytic activities conferring antibiosis. The antibacterial activities observed in our R. metallidurans-based assay could not be replicated with the same clones in screens using Escherichia coli as a heterologous host, suggesting that the large-scale screening of metagenomic libraries for antibiosis using phylogenetically diverse hosts should be a productive strategy for identifying enzymes with functionally diverse antibacterial activities.
Collapse
Affiliation(s)
- Hala A Iqbal
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | | |
Collapse
|
36
|
Improving the enantioselectivity of an esterase toward (S)-ketoprofen ethyl ester through protein engineering. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2013.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Zhang L, Fan Y, Zheng H, Du F, Zhang KQ, Huang X, Wang L, Zhang M, Niu Q. Isolation and characterization of a novel endoglucanase from a Bursaphelenchus xylophilus metagenomic library. PLoS One 2013; 8:e82437. [PMID: 24386096 PMCID: PMC3873927 DOI: 10.1371/journal.pone.0082437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/22/2013] [Indexed: 11/24/2022] Open
Abstract
A novel gene (designated as cen219) encoding endoglucanase was isolated from a Bursaphelenchus xylophilus metagenomic library by functional screening. Sequence analysis revealed that cen219 encoded a protein of 367 amino acids. SDS-PAGE analysis of purified endoglucanase suggested that Cen219 was a monomeric enzyme with a molecular mass of 40 kDa. The optimum temperature and pH for endoglucanase activity of Cen219 was separately 50°C and 6.0. It was stable from 30 to 50°C, and from pH 4.0 to 7.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by detergent SDS and metals Fe3+, Cu2+ or Hg2+. The enzyme hydrolyzed a wide range of β-1, 3-, and β-1, 4-linked polysaccharides, with varying activities. Activities towards microcrystalline cellulose and filter paper were relatively high, while the highest activity was towards oat gum. The Km and Vmax of Cen219 towards CMC was 17.37 mg/ml and 333.33 U/mg, respectively. The findings have an insight into understanding the molecular basis of host–parasite interactions in B. xylophilus species. The properties also make Cen219 an interesting enzyme for biotechnological application.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, China
| | - Yongxin Fan
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, China
| | - Haoying Zheng
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, China
| | - Fengguang Du
- State Key Laboratory of Motor Bio-fuel technology, Henan Tianguan Group Co. Ltd., Nanyang, China
| | - Ke-qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Linfeng Wang
- State Key Laboratory of Motor Bio-fuel technology, Henan Tianguan Group Co. Ltd., Nanyang, China
| | - Man Zhang
- State Key Laboratory of Motor Bio-fuel technology, Henan Tianguan Group Co. Ltd., Nanyang, China
| | - Qiuhong Niu
- Department of Life Science and Biotechnology, Nanyang Normal University, Nanyang, China
- * E-mail:
| |
Collapse
|
38
|
Isolation and characterization of a metagenome-derived thermoalkaliphilic esterase with high stability over a broad pH range. Extremophiles 2013; 17:1013-21. [DOI: 10.1007/s00792-013-0583-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/26/2013] [Indexed: 12/12/2022]
|
39
|
Roh C, Schmid RD. Isolation of an organic solvent-tolerant lipolytic enzyme from uncultivated microorganism. Appl Biochem Biotechnol 2013; 171:1750-8. [PMID: 23996140 DOI: 10.1007/s12010-013-0464-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
Although the use of lipases as biocatalysts has frequently been proposed, it is yet scarcely being implemented in industrial processes. This is mainly due to the difficulties associated with the discovery and engineering of new enzymes and the lack of versatile screening methods. In this study, we screened the available strategy from a metagenomic pool for the organic solvent-tolerant lipase with enhanced performance for industrial processes. A novel lipase was identified through functional screening from a metagenomic library of activated sludge in an Escherichia coli system. The gene encoding the lipase from the metagenomic pool, metalip1, was sequenced and cloned by PCR. Metalip1 encoding a polypeptide of 316 amino acids had typical residues essential for lipase such as pentapeptide (GXSXGG) and catalytic triad sequences (Ser160, Asp260, and His291). The deduced amino acid sequence of metalip1 showed high similarity to a putative lipase from Pseudomonas sp. CL-61 (80 %, ABC25547). Metalip1 was expressed in E. coli BL21 (DE3) with a his-tag and purified using a Ni-NTA chelating column and characterized. This enzyme showed high expression level and solubility in the heterologous E. coli host. This enzyme was active over broad organic solvents. Among organic solvents examined, dimethyl formamide was the best organic solvent for metalip1. We showed that function-based strategy is an effective method for fishing out an organic solvent-tolerant lipase from the metagenomic library. Also, it revealed high catalytic turnover rates, which make them a very interesting candidate for industrial application.
Collapse
Affiliation(s)
- Changhyun Roh
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany,
| | | |
Collapse
|
40
|
Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, Kim TD. Structural and functional analyses of a bacterial homologue of hormone-sensitive lipase from a metagenomic library. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1726-37. [PMID: 23999296 DOI: 10.1107/s0907444913013425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022]
Abstract
Intracellular mobilization of fatty acids from triacylglycerols in mammalian adipose tissues proceeds through a series of lipolytic reactions. Among the enzymes involved, hormone-sensitive lipase (HSL) is noteworthy for its central role in energy homeostasis and the pathogenic role played by its dysregulation. By virtue of its broad substrate specificity, HSL may also serve as an industrial biocatalyst. In a previous report, Est25, a bacterial homologue of HSL, was identified from a metagenomic library by functional screening. Here, the crystal structure of Est25 is reported at 1.49 Å resolution; it exhibits an α/β-hydrolase fold consisting of a central β-sheet enclosed by α-helices on both sides. The structural features of the cap domain, the substrate-binding pocket and the dimeric interface of Est25, together with biochemical and biophysical studies including native PAGE, mass spectrometry, dynamic light scattering, gel filtration and enzyme assays, could provide a basis for understanding the properties and regulation of hormone-sensitive lipase (HSL). The increased stability of cross-linked Est25 aggregates (CLEA-Est25) and their potential for extensive reuse support the application of this preparation as a biocatalyst in biotransformation processes.
Collapse
Affiliation(s)
- Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Shao H, Xu L, Yan Y. Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol 2013; 40:1211-22. [PMID: 23934105 DOI: 10.1007/s10295-013-1317-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
A novel esterase gene was isolated by functional screening of a metagenomic library prepared from an activated sludge sample. The gene (est-XG2) consists of 1,506 bp with GC content of 74.8 %, and encodes a protein of 501 amino acids with a molecular mass of 53 kDa. Sequence alignment revealed that Est-XG2 shows a maximum amino acid identity (47 %) with the carboxylesterase from Thermaerobacter marianensis DSM 12885 (YP_004101478). The catalytic triad of Est-XG2 was predicted to be Ser₁₉₂-Glu₃₁₃-His₄₁₂ with Ser₉₂ in a conserved pentapeptide (GXSXG), and further confirmed by site-directed mutagenesis. Phylogenetic analysis suggested Est-XG2 belongs to the bacterial lipase/esterase family VII. The recombinant Est-XG2, expressed and purified from Escherichia coli, preferred to hydrolyze short and medium length p-nitrophenyl esters with the best substrate being p-nitrophenyl acetate (K(m) and k(cat) of 0.33 mM and 36.21 s⁻¹, respectively). The purified enzyme also had the ability to cleave sterically hindered esters of tertiary alcohols. Biochemical characterization of Est-XG2 revealed that it is a thermophilic esterase that exhibits optimum activity at pH 8.5 and 70 °C. Est-XG2 had moderate tolerance to organic solvents and surfactants. The unique properties of Est-XG2, high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Hua Shao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | | | | |
Collapse
|
42
|
Szczyrba E, Greń I, Bartelmus G. Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain. Folia Microbiol (Praha) 2013; 59:99-105. [PMID: 23913099 PMCID: PMC3936133 DOI: 10.1007/s12223-013-0268-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
Esterases are widely used in food processing industry, but there is little information concerning enzymes involved in decompositions of esters contributing to pollution of environment. Vinyl acetate (an ester of vinyl alcohol and acetic acid) is a representative of volatile organic compounds (VOCs) in decomposition, of which hydrolyses and oxidoreductases are mainly involved. Their activities under periodically changing conditions of environment are essential for the removal of dangerous VOCs. Esterase and alcohol/aldehyde dehydrogenase activities were determined in crude cell extract from Pseudomonas fluorescens PMC 2123 after vinyl acetate induction. All examined enzymes exhibit their highest activity at 30–35 °C and pH 7.0–7.5. Esterase preferably hydrolyzed ester bonds with short fatty chains without plain differences for C2 or C4. Comparison of Km values for alcohol and aldehyde dehydrogenases for acetaldehyde suggested that this metabolite was preferentially oxidized than reduced. Activity of alcohol dehydrogenase reducing acetaldehyde to ethanol suggested that one mechanism of defense against the elevated concentration of toxic acetaldehyde could be its temporary reduction to ethanol. Esterase activity was inhibited by phenylmethanesulfonyl fluoride, while β-mercaptoethanol, dithiothreitol, and ethylenediaminetetraacetic acid had no inhibitor effect. From among metal ions, only Mg2+ and Fe2+ stimulated the cleavage of ester bond.
Collapse
Affiliation(s)
- Elżbieta Szczyrba
- Institute of Chemical Engineering, Polish Academy of Sciences, Bałtycka 5, 44-100, Gliwice, Poland
| | | | | |
Collapse
|
43
|
Hriscu M, Chiş L, Toşa M, Irimie FD. pH-Profiling of thermoactive lipases and esterases: Caveats and further notes. EUR J LIPID SCI TECH 2013. [DOI: 10.1002/ejlt.201200305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Monica Hriscu
- Department of Biochemistry and Biochemical Engineering; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University; Cluj-Napoca; Romania
| | - Laura Chiş
- Department of Biochemistry and Biochemical Engineering; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University; Cluj-Napoca; Romania
| | - Monica Toşa
- Department of Biochemistry and Biochemical Engineering; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University; Cluj-Napoca; Romania
| | - Florin Dan Irimie
- Department of Biochemistry and Biochemical Engineering; Faculty of Chemistry and Chemical Engineering; Babeş-Bolyai University; Cluj-Napoca; Romania
| |
Collapse
|
44
|
Isolation of a thioesterase gene from the metagenome of a mountain peak, Apharwat, in the northwestern Himalayas. 3 Biotech 2013; 3:19-27. [PMID: 28324349 PMCID: PMC3563745 DOI: 10.1007/s13205-012-0065-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/18/2012] [Indexed: 11/13/2022] Open
Abstract
The soil metagenome of Apharwat (latitude 34.209° and longitude 74.368°) was explored for the presence of esterase encoding genes using a cultivation-independent approach, metagenomics. Among the various protocols tested, the method developed by Wechter was found to be the best for metagenome isolation from the soil under investigation. The purity of the isolated metagenomic DNA was not suitable for gene cloning. To improve the yield and purity of isolated metagenomic DNA, isothermal amplification of the isolated metagenomic DNA using phi (φ) polymerase in a strand displacement technique was performed. The amplified DNA was comparatively pure and the yield increased 50-fold. A metagenomic library was constructed in Escherichia coli (DH5α) using pUC19 as a vector with an average insert size ranging between 2 and 5 kb. Out of 10,000 clones generated, one clone carrying a ~1,870-bp insert hydrolysed tributyrin, indicating esterase activity. Sequence analysis revealed that the insert harboured three open reading frames (ORFs), of which ORF 3 encoded the esterase. Open reading frame 3 comprises 1,178 bp and encodes a putative 392 amino acid protein whose size correlates with most of the bacterial esterases. The esterase isolated in the present study is suggested to be a 4-methyl-3-oxoadipyl-CoA thioesterase (Accession No. JN717164.1), as it shows 60 % sequence similarity to the thioesterase gene of Pseudomonas reinekei (Accession No. ACZ63623.1) by BLAST, ClustalX and ClustalW analysis.
Collapse
|
45
|
Gong X, Gruninger RJ, Qi M, Paterson L, Forster RJ, Teather RM, McAllister TA. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 2012; 5:566. [PMID: 23062472 PMCID: PMC3545987 DOI: 10.1186/1756-0500-5-566] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interest in cellulose degrading enzymes has increased in recent years due to the expansion of the ellulosic biofuel industry. The rumen is a highly adapted environment for the degradation of cellulose and a promising source of enzymes for industrial use. To identify cellulase enzymes that may be of such use we have undertaken a functional metagenomic screen to identify cellulase enzymes from the bacterial community in the rumen of a grass-hay fed dairy cow. RESULTS Twenty five clones specifying cellulose activity were identified. Subcloning and sequence analysis of a subset of these hydrolase-positive clones identified 10 endoglucanase genes. Preliminary characterization of the encoded cellulases was carried out using crude extracts of each of the subclones. Zymogram analysis using carboxymethylcellulose as a substrate showed a single positive band for each subclone, confirming that only one functional cellulase gene was present in each. One cellulase gene, designated Cel14b22, was expressed at a high level in Escherichia coli and purified for further characterization. The purified recombinant enzyme showed optimal activity at pH 6.0 and 50°C. It was stable over a broad pH range, from pH 4.0 to 10.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by Fe3+ or Cu2+. The enzyme hydrolyzed a wide range of beta-1,3-, and beta-1,4-linked polysaccharides, with varying activities. Activities toward microcrystalline cellulose and filter paper were relatively high, while the highest activity was toward Oat Gum. CONCLUSION The present study shows that a functional metagenomic approach can be used to isolate previously uncharacterized cellulases from the rumen environment.
Collapse
Affiliation(s)
- Xia Gong
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Meng Qi
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Lyn Paterson
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Robert J Forster
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Ron M Teather
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| |
Collapse
|
46
|
Identification and characterization of a novel cold-adapted esterase from a metagenomic library of mountain soil. ACTA ACUST UNITED AC 2012; 39:681-9. [DOI: 10.1007/s10295-011-1080-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/29/2011] [Indexed: 12/12/2022]
Abstract
Abstract
A novel lipolytic enzyme was isolated from a metagenomic library after demonstration of lipolytic activity on an LB agar plate containing 1% (w/v) tributyrin. A novel esterase gene (estIM1), encoding a lipolytic enzyme (EstIM1), was cloned using a shotgun method from a pFosEstIM1 clone of the metagenomic library, and the enzyme was characterized. The estIM1 gene had an open reading frame (ORF) of 936 base pairs and encoded a protein of 311 amino acids with a molecular mass 34 kDa and a pI value of 4.32. The deduced amino acid sequence was 62% identical to that of an esterase from an uncultured bacterium (ABQ11271). The amino acid sequence indicated that EstIM1 was a member of the family IV of lipolytic enzymes, all of which contain a GDSAG motif shared with similar enzymes of lactic acid microorganisms. EstIM1 was active over a temperature range of 1–50°C, at alkaline pH. The activation energy for hydrolysis of p-nitrophenyl propionate was 1.04 kcal/mol, within a temperature range of 1–40°C. The activity of EstIM1 was about 60% of maximal even at 1°C, suggesting that EstIM1 is efficiently cold-adapted. Further characterization of this cold-adapted enzyme indicated that the esterase may be very valuable in industrial applications.
Collapse
|
47
|
Jaouani A, Neifar M, Hamza A, Chaabouni S, Martinez MJ, Gtari M. Purification and characterization of a highly thermostable esterase from the actinobacterium Geodermatophilus obscurus strain G20. J Basic Microbiol 2012; 52:653-60. [PMID: 22359317 DOI: 10.1002/jobm.201100428] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/25/2011] [Indexed: 11/06/2022]
Abstract
Intracellular thermostable esterase produced by the extremophilic Geodermatophilus obscurus G20 was purified to homogeneity by a heat treatment, followed by an anion-exchange chromatography, and then characterized. The molecular weight of the purified enzyme determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was shown to be approximatively 55 kDa. The enzyme showed an optimal activity between pH 8.0 and 9.0 and was stable in the pH range 7.0-10.0. Moreover, it is highly thermostable, with a residual activity greater than 90% after incubation at 80 °C for more than 10 h. The enzyme showed preference for esters of p -nitrophenol with short chain fatty acid. When the p -nitrophenyl acetate (C2) was used as substrate, the Michaelis-Menten constant (K(m) ) and maximum velocity for the reaction (V(max) ) of esterase were 400 μM and 2500 U/mg protein, respectively. The effect of phenylmethanesulphonyl fluoride (PMSF), a serine-specific inhibitor, on the enzyme activity suggested that the thermostable esterase belong to the serine hydrolase group. Because of its high thermostability, activity at alkaline pH, tolerance to methanol and various metal ions and specificity for short chain fatty acids, this enzyme showed high potential for use in biocatalysis. (© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Collapse
Affiliation(s)
- Atef Jaouani
- Laboratoire Microorganismes et Biomolécules Actives, Campus Universitaire, Tunis, Tunisia.
| | | | | | | | | | | |
Collapse
|
48
|
Peng Q, Zhang X, Shang M, Wang X, Wang G, Li B, Guan G, Li Y, Wang Y. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea. Microb Cell Fact 2011; 10:95. [PMID: 22067554 PMCID: PMC3226443 DOI: 10.1186/1475-2859-10-95] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth < 100 m marine areas. RESULTS A metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure. CONCLUSIONS Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters.
Collapse
Affiliation(s)
- Qing Peng
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Isolation and characterization of a family VII esterase derived from alluvial soil metagenomic library. J Microbiol 2011; 49:178-85. [PMID: 21538236 DOI: 10.1007/s12275-011-1102-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
A novel esterase gene, estDL30, was isolated from an alluvial metagenomic library using function-driven screening. estDL30 consisted of 1,524 nucleotides and encoded a 507-amino acid protein. Sequence analysis revealed that EstDL30 is similar to many type B carboxylesterases, containing a G-E-S-A-G pentapeptide with a catalytic Ser residue. Phylogenetic analysis suggested that EstDL30 belongs to the family VII lipases, together with esterases from Bacillus subtilis (P37967), Streptomyces coelicolor A3(2) (CAA22794), and Arthrobacter oxydans (Q01470). Purified EstDL30 showed its highest catalytic efficiency toward p-nitrophenyl butyrate, with a k (cat) of 2293 s(-1) and k (cat)/K (m) of 176.4 s(-1)mM(-1); however, little activity was detected when the acyl chain length exceeded C(8). Biochemical characterization of EstDL30 revealed that it is an alkaline esterase that possesses maximal activity at pH 8 and 40° C. The effects of denaturants and divalent cations were also investigated. EstDL30 tolerated well the presence of methanol and Tween 20. Its activity was strongly inhibited by 1 mM Cu(2+) and Zn(2+), but stimulated by Fe(2+). The unique properties of EstDL30, its high activity under alkaline conditions and stability in the presence of organic solvents, may render it applicable to organic synthesis.
Collapse
|
50
|
JunGang L, KeGui Z, WenJun H. Cloning and biochemical characterization of a novel lipolytic gene from activated sludge metagenome, and its gene product. Microb Cell Fact 2010; 9:83. [PMID: 21054894 PMCID: PMC2987919 DOI: 10.1186/1475-2859-9-83] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/07/2010] [Indexed: 11/10/2022] Open
Abstract
In this study, a putative esterase, designated EstMY, was isolated from an activated sludge metagenomic library. The lipolytic gene was subcloned and expressed in Escherichia coli BL21 using the pET expression system. The gene estMY contained a 1,083 bp open reading frame (ORF) encoding a polypeptide of 360 amino acids with a molecular mass of 38 kDa. Sequence analysis indicated that it showed 71% and 52% amino acid identity to esterase/lipase from marine metagenome (ACL67845) and Burkholderia ubonensis Bu (ZP_02382719), respectively; and several conserved regions were identified, including the putative active site, GDSAG, a catalytic triad (Ser203, Asp301, and His327) and a HGGG conserved motif (starting from His133). The EstMY was determined to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤C8). This EstMY exhibited the highest activity at 35°C and pH 8.5 respectively, by hydrolysis of p-NP caprylate. It also exhibited the same level of activity over wide temperature and pH spectra and in the presence of metal ions or detergents. The high level of stability of esterase EstMY with unique substrate specificities makes it highly valuable for downstream biotechnological applications.
Collapse
|