1
|
Yoo SK, Cheong DE, Yoo HS, Choi HJ, Nguyen NA, Yun CH, Kim GJ. Promising properties of cytochrome P450 BM3 reconstituted from separate domains by split intein. Int J Biol Macromol 2024; 273:132793. [PMID: 38830492 DOI: 10.1016/j.ijbiomac.2024.132793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Recombinant cytochrome P450 monooxygenases possess significant potential as biocatalysts, and efforts to improve heme content, electron coupling efficiency, and catalytic activity and stability are ongoing. Domain swapping between heme and reductase domains, whether natural or engineered, has thus received increasing attention. Here, we successfully achieved split intein-mediated reconstitution (IMR) of the heme and reductase domains of P450 BM3 both in vitro and in vivo. Intriguingly, the reconstituted enzymes displayed promising properties for practical use. IMR BM3 exhibited a higher heme content (>50 %) and a greater tendency for oligomerization compared to the wild-type enzyme. Moreover, these reconstituted enzymes exhibited a distinct increase in activity ranging from 165 % to 430 % even under the same heme concentrations. The reproducibility of our results strongly suggests that the proposed reconstitution approach could pave a new path for enhancing the catalytic efficiency of related enzymes.
Collapse
Affiliation(s)
- Su-Kyoung Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Dae-Eun Cheong
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Ho-Seok Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Hye-Ji Choi
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea
| | - Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Republic of Korea.
| |
Collapse
|
2
|
Hu B, Yu H, Zhou J, Li J, Chen J, Du G, Lee SY, Zhao X. Whole-Cell P450 Biocatalysis Using Engineered Escherichia coli with Fine-Tuned Heme Biosynthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205580. [PMID: 36526588 PMCID: PMC9951570 DOI: 10.1002/advs.202205580] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Indexed: 05/14/2023]
Abstract
By exploiting versatile P450 enzymes, whole-cell biocatalysis can be performed to synthesize valuable compounds in Escherichia coli. However, the insufficient supply of heme limits the whole-cell P450 biocatalytic activity. Here a strategy for improving intracellular heme biosynthesis to enhance the catalytic efficiencies of P450s is reported. After comparing the effects of improving heme transport and biosynthesis on P450 activities, intracellular heme biosynthesis is optimized through the integrated expression of necessary synthetic genes at proper ratios and the assembly of rate-limiting enzymes using DNA-guided scaffolds. The intracellular heme level is fine-tuned by the combined use of mutated heme-sensitive biosensors and small regulatory RNA systems. The catalytic efficiencies of three different P450s, BM3, sca-2, and CYP105D7, are enhanced through fine-tuning heme biosynthesis for the synthesis of hydroquinone, pravastatin, and 7,3',4'-trihydroxyisoflavone as example products of chemical intermediate, drug, and natural product, respectively. This strategy of fine-tuned heme biosynthesis will be generally useful for developing whole-cell biocatalysts involving hemoproteins.
Collapse
Affiliation(s)
- Baodong Hu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Haibo Yu
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jingwen Zhou
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jianghua Li
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Jian Chen
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Guocheng Du
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program)BioProcess Engineering Research CenterBioinformatics Research Center, and Institute for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonYuseong‐gu34141Republic of Korea
| | - Xinrui Zhao
- Key Laboratory of Industrial BiotechnologyMinistry of EducationSchool of BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Science Center for Future FoodsJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Jiangsu Province Engineering Research Center of Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
- Engineering Research Center of Ministry of Education on Food Synthetic BiotechnologyJiangnan University1800 Lihu RoadWuxiJiangsu214122China
| |
Collapse
|
3
|
Honda Y, Nanasawa K, Fujii H. Coexpression of 5-Aminolevulinic Acid Synthase Gene Facilitates Heterologous Production of Thermostable Cytochrome P450, CYP119, in Holo Form in Escherichia coli. Chembiochem 2018; 19:2156-2159. [PMID: 30101489 DOI: 10.1002/cbic.201800331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 11/07/2022]
Abstract
Cytochrome P450 enzymes are heme-containing monooxygenases that exhibit potential as biocatalysts for practical applications. The Escherichia coli expression system is frequently used for biocatalyst production; however, heterologous production of hemeproteins in their holo form is difficult due to insufficient heme synthesis by the host. In this study, 5-aminolevulinic acid synthase (ALAS) from Rhodobacter capsulatus is used to accelerate intracellular heme biosynthesis in E. coli; this demonstrates that coexpression of the ALAS gene (ALAS) improves the heterologous production of cytochrome P450, CYP119, from Sulfolobus acidocaldarius. Coexpression of ALAS increased the amount of heterologous CYP119 isolated and the ratio of its holo form. The ratio of holo-CYP119 resulting from the coexpression of ALAS in E. coli was 99 %, whereas that from cells expressing CYP119 exclusively was 66 %. Coexpression of ALAS is a promising alternative for the efficient heterologous production of hemeproteins by using E. coli.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Kii Nanasawa
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
4
|
Yantsevich AV, Dzichenka YV, Ivanchik AV, Shapiro MA, Trawkina M, Shkel TV, Gilep AA, Sergeev GV, Usanov SA. [Proteomic analysis of contaminants in recombinant membrane hemeproteins expressed in E. coli and isolated by metal affinity chromatography]. APPL BIOCHEM MICRO+ 2018; 53:173-87. [PMID: 29508978 DOI: 10.1134/s000368381702017x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Contaminating proteins have been identified by “shotgun” proteomic analysis in 14 recombinant preparations of human membrane heme- and flavoproteins expressed in Escherichia coli and purified by immobilized metal ion affinity chromatography. Immobilized metal ion affinity chromatography of ten proteins was performed on Ni2+-NTA-sepharose 6B, and the remaining four proteins were purified by ligand affinity chromatography on 2',5'-ADP-sepharose 4B. Proteomic analysis allowed to detect 50 protein impurities from E. coli. The most common contaminant was Elongation factor Tu2. It is characterized by a large dipole moment and a cluster arrangement of acidic amino acid residues that mediate the specific interaction with the sorbent. Peptidyl prolyl-cis-trans isomerase SlyD, glutamine-fructose-6-phosphate aminotransferase, and catalase HPII that contained repeating HxH, QxQ, and RxR fragments capable of specific interaction with the sorbent were identified among the protein contaminants as well. GroL/GroS chaperonins were probably copurified due to the formation of complexes with the target proteins. The Ni2+ cations leakage from the sorbent during lead to formation of free carboxyl groups that is the reason of cation exchanger properties of the sorbent. This was the putative reason for the copurification of basic proteins, such as the ribosomal proteins of E. coli and the widely occurring uncharacterized protein YqjD. The results of the analysis revealed variation in the contaminant composition related to the type of protein expressed. This is probably related to the reaction of E. coli cell proteome to the expression of a foreign protein. We concluded that the nature of the protein contaminants in a preparation of a recombinant protein purified by immobilized metal ion affinity chromatography on a certain sorbent could be predicted if information on the host cell proteome were available.
Collapse
|
5
|
Yu X, Sun J, Wang W, Jiang L, Wang R, Xiao W, Cheng B, Fan J. Tobacco etch virus protease mediating cleavage of the cellulose-binding module tagged colored proteins immobilized on the regenerated amorphous cellulose. Bioprocess Biosyst Eng 2017; 40:1101-1110. [DOI: 10.1007/s00449-017-1772-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
|
6
|
Mrízová I, Moserová M, Milichovský J, Šulc M, Kizek R, Kubáčková K, Arlt VM, Stiborová M. Heterologous expression of human cytochrome P450 2S1 in Escherichia coli and investigation of its role in metabolism of benzo[ a]pyrene and ellipticine. MONATSHEFTE FUR CHEMIE 2016; 147:881-888. [PMID: 27110039 PMCID: PMC4828499 DOI: 10.1007/s00706-016-1738-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/21/2016] [Indexed: 12/30/2022]
Abstract
ABSTRACT Cytochrome P450 (CYP) 2S1 is "orphan" CYP that is overexpressed in several epithelial tissues and many human tumors. The pure enzyme is required for better understanding of its biological functions. Therefore, human CYP2S1 was considered to be prepared by the gene manipulations and heterologous expression in Escherichia coli. Here, the conditions suitable for efficient expression of human CYP2S1 protein from plasmid pCW containing the human CYP2S1 gene were optimized and the enzyme purified to homogeneity. The identity of CYP2S1 as the product of heterologous expression was confirmed by dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. To confirm the presence of the enzymatically active CYP2S1, the CO spectrum of purified CYP2S1 was recorded. Since CYP2S1 was shown to catalyze oxidation of compounds having polycyclic aromatic structures, the prepared enzyme has been tested to metabolize the compounds having this structural character; namely, the human carcinogen benzo[a]pyrene (BaP), its 7,8-dihydrodiol derivative, and an anticancer drug ellipticine. Reaction mixtures contained besides the test compounds the CYP2S1 enzyme reconstituted with NADPH:CYP reductase (POR) in liposomes, and/or this CYP in the presence of cumene hydroperoxide or hydrogen peroxide. High performance liquid chromatography was employed for separation of BaP, BaP-7,8-dihydrodiol, and ellipticine metabolites. The results found in this study demonstrate that CYP2S1 in the presence of cumene hydroperoxide or hydrogen peroxide catalyzes oxidation of two of the test xenobiotics, a metabolite of BaP, BaP-7,8-dihydrodiol, and ellipticine. Whereas BaP-7,8,9,10-tetrahydrotetrol was formed as a product of BaP-7,8-dihydrodiol oxidation, ellipticine was oxidized to 12-hydroxyellipticine, 13-hydroxyellipticine, and the ellipticine N2-oxide. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Iveta Mrízová
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Michaela Moserová
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Jan Milichovský
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Šulc
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - René Kizek
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Kateřina Kubáčková
- />Department of Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Volker M. Arlt
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King’s College London, London, SE1 9NH UK
| | - Marie Stiborová
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| |
Collapse
|
7
|
Eustáquio AS, Chang LP, Steele GL, O׳Donnell CJ, Koehn FE. Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp. Metab Eng 2016; 33:67-75. [DOI: 10.1016/j.ymben.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/25/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022]
|
8
|
Sathesh-Prabu C, Lee SK. Production of Long-Chain α,ω-Dicarboxylic Acids by Engineered Escherichia coli from Renewable Fatty Acids and Plant Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8199-8208. [PMID: 26359801 DOI: 10.1021/acs.jafc.5b03833] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Long-chain α,ω-dicarboxylic acids (LDCAs, ≥ C12) are widely used as a raw material for preparing various commodities and polymers. In this study, a CYP450-monooxygenase-mediated ω-oxidation pathway system with high ω-regioselectivity was heterologously expressed in Escherichia coli to produce DCAs from fatty acids. The resulting engineered E. coli produced a maximum of 41 mg/L of C12 DCA and 163 mg/L of C14 DCA from fatty acids (1 g/L), following 20 h of whole cell biotransformation. Addition of a heme precursor and the hydroxyl radical scavenger, thiourea, increased product concentration (159 mg/L of C12 DCA and 410 mg/L of C14 DCA) in a shorter culture duration than that of the corresponding controls. DCAs of various chain lengths were synthesized from coconut oil hydrolysate using the engineered E. coli. This novel synthetic biocatalytic system could be applied to produce high value DCAs in a cost-effective manner from renewable plant oils.
Collapse
Affiliation(s)
- Chandran Sathesh-Prabu
- School of Energy and Chemical Engineering, and ‡School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Republic of Korea
| | - Sung Kuk Lee
- School of Energy and Chemical Engineering, and ‡School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Republic of Korea
| |
Collapse
|
9
|
Samuel PP, Smith LP, Phillips GN, Olson JS. Apoglobin Stability Is the Major Factor Governing both Cell-free and in Vivo Expression of Holomyoglobin. J Biol Chem 2015. [PMID: 26205820 DOI: 10.1074/jbc.m115.672204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression levels in animal muscle tissues and in Escherichia coli vary widely for naturally occurring mammalian myoglobins (Mb). To explore this variation, we developed an in vitro transcription and wheat germ extract-based translation assay to examine quantitatively the factors that govern expression of holoMb. We constructed a library of naturally occurring Mbs from two terrestrial and four deep-diving aquatic mammals and three distal histidine mutants designed to enhance apoglobin stability but decrease hemin affinity. A strong linear correlation is observed between cell-free expression levels of holo-metMb variants and their corresponding apoglobin stabilities, which were measured independently by guanidine HCl-induced unfolding titrations using purified proteins. In contrast, there is little dependence of expression on hemin affinity. Our results confirm quantitatively that deep diving mammals have highly stable Mbs that express to higher levels in animal myocytes, E. coli, and the wheat germ cell-free system than Mbs from terrestrial mammals. Our theoretical analyses show that the rate of aggregation of unfolded apoMb is very large, and as a result, the key factor for high level expression of holoMb, and presumably other heme proteins, is an ultra high fraction of folded, native apoglobin that is capable of rapidly binding hemin. This fraction is determined by the overall equilibrium folding constant and not hemin affinity. These results also demonstrate that the cell-free transcription/translation system can be used as a high throughput platform to screen for apoglobin stability without the need to generate large amounts of protein for in vitro unfolding measurements.
Collapse
Affiliation(s)
| | | | - George N Phillips
- From BioSciences at Rice and Department of Chemistry, Rice University, Houston, Texas 77005
| | | |
Collapse
|
10
|
Akhtar MK, Jones PR. Cofactor engineering for enhancing the flux of metabolic pathways. Front Bioeng Biotechnol 2014; 2:30. [PMID: 25221776 PMCID: PMC4147997 DOI: 10.3389/fbioe.2014.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/12/2014] [Indexed: 11/24/2022] Open
Abstract
The manufacture of a diverse array of chemicals is now possible with biologically engineered strains, an approach that is greatly facilitated by the emergence of synthetic biology. This is principally achieved through pathway engineering in which enzyme activities are coordinated within a genetically amenable host to generate the product of interest. A great deal of attention is typically given to the quantitative levels of the enzymes with little regard to their overall qualitative states. This highly constrained approach fails to consider other factors that may be necessary for enzyme functionality. In particular, enzymes with physically bound cofactors, otherwise known as holoenzymes, require careful evaluation. Herein, we discuss the importance of cofactors for biocatalytic processes and show with empirical examples why the synthesis and integration of cofactors for the formation of holoenzymes warrant a great deal of attention within the context of pathway engineering.
Collapse
Affiliation(s)
- M Kalim Akhtar
- Department of Biochemical Engineering, University College London , London , UK
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London , London , UK
| |
Collapse
|
11
|
Neunzig J, Bernhardt R. Dehydroepiandrosterone sulfate (DHEAS) stimulates the first step in the biosynthesis of steroid hormones. PLoS One 2014; 9:e89727. [PMID: 24586990 PMCID: PMC3931814 DOI: 10.1371/journal.pone.0089727] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/22/2014] [Indexed: 11/18/2022] Open
Abstract
Dehydroepiandrosterone sulfate (DHEAS) is the most abundant circulating steroid in human, with the highest concentrations between age 20 and 30, but displaying a significant decrease with age. Many beneficial functions are ascribed to DHEAS. Nevertheless, long-term studies are very scarce concerning the intake of DHEAS over several years, and molecular investigations on DHEAS action are missing so far. In this study, the role of DHEAS on the first and rate-limiting step of steroid hormone biosynthesis was analyzed in a reconstituted in vitro system, consisting of purified CYP11A1, adrenodoxin and adrenodoxin reductase. DHEAS enhances the conversion of cholesterol by 26%. Detailed analyses of the mechanism of DHEAS action revealed increased binding affinity of cholesterol to CYP11A1 and enforced interaction with the electron transfer partner, adrenodoxin. Difference spectroscopy showed Kd-values of 40±2.7 µM and 24.8±0.5 µM for CYP11A1 and cholesterol without and with addition of DHEAS, respectively. To determine the Kd-value for CYP11A1 and adrenodoxin, surface plasmon resonance measurements were performed, demonstrating a Kd-value of 3.0±0.35 nM (with cholesterol) and of 2.4±0.05 nM when cholesterol and DHEAS were added. Kinetic experiments showed a lower Km and a higher kcat value for CYP11A1 in the presence of DHEAS leading to an increase of the catalytic efficiency by 75%. These findings indicate that DHEAS affects steroid hormone biosynthesis on a molecular level resulting in an increased formation of pregnenolone.
Collapse
Affiliation(s)
- Jens Neunzig
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Faculty of Technical and Natural Sciences III, Saarland University, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
12
|
Novotna J, Olsovska J, Novak P, Mojzes P, Chaloupkova R, Kamenik Z, Spizek J, Kutejova E, Mareckova M, Tichy P, Damborsky J, Janata J. Lincomycin biosynthesis involves a tyrosine hydroxylating heme protein of an unusual enzyme family. PLoS One 2013; 8:e79974. [PMID: 24324587 PMCID: PMC3851162 DOI: 10.1371/journal.pone.0079974] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
The gene lmbB2 of the lincomycin biosynthetic gene cluster of Streptomyces lincolnensis ATCC 25466 was shown to code for an unusual tyrosine hydroxylating enzyme involved in the biosynthetic pathway of this clinically important antibiotic. LmbB2 was expressed in Escherichia coli, purified near to homogeneity and shown to convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA). In contrast to the well-known tyrosine hydroxylases (EC 1.14.16.2) and tyrosinases (EC 1.14.18.1), LmbB2 was identified as a heme protein. Mass spectrometry and Soret band-excited Raman spectroscopy of LmbB2 showed that LmbB2 contains heme b as prosthetic group. The CO-reduced differential absorption spectra of LmbB2 showed that the coordination of Fe was different from that of cytochrome P450 enzymes. LmbB2 exhibits sequence similarity to Orf13 of the anthramycin biosynthetic gene cluster, which has recently been classified as a heme peroxidase. Tyrosine hydroxylating activity of LmbB2 yielding DOPA in the presence of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) was also observed. Reaction mechanism of this unique heme peroxidases family is discussed. Also, tyrosine hydroxylation was confirmed as the first step of the amino acid branch of the lincomycin biosynthesis.
Collapse
Affiliation(s)
- Jitka Novotna
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Central-European Technology Institute, Brno, Czech Republic
- Crop Research Institute, Drnovska Prague, Czech Republic
| | - Jana Olsovska
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Peter Mojzes
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Institute of Experimental Biology and National Centre for Biomolecular Research, Brno, Czech Republic
| | - Zdenek Kamenik
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jaroslav Spizek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Eva Kutejova
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Pavel Tichy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Institute of Experimental Biology and National Centre for Biomolecular Research, Brno, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
13
|
Co-expression for intracellular processing in microbial protein production. Biotechnol Lett 2013; 36:427-41. [DOI: 10.1007/s10529-013-1379-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/04/2013] [Indexed: 12/19/2022]
|
14
|
Lu HY, Qiu LL, Yang XJ, Zhang XM, Zhang Z, Wang SL. Optimization of heme precursors for the expression of human cytochrome P450 2A13 and its co-expression with oxidoreductase in baculovirus/sf9 system. J Biochem 2013; 153:555-63. [DOI: 10.1093/jb/mvt018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Ershov P, Mezentsev Y, Gnedenko O, Mukha D, Yantsevich A, Britikov V, Kaluzhskiy L, Yablokov E, Molnar A, Ivanov A, Lisitsa A, Gilep A, Usanov S, Archakov A. Protein interactomics based on direct molecular fishing on paramagnetic particles: experimental simulation and SPR validation. Proteomics 2012; 12:3295-8. [PMID: 23001861 DOI: 10.1002/pmic.201200135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/04/2012] [Accepted: 08/14/2012] [Indexed: 11/10/2022]
Abstract
We describe an experimental approach for direct molecular fishing of prey protein on the surface of two types of paramagnetic particles (PMP) having different size and composition. Human microsomal cytochrome b(5) (b(5)) and its known partner human cytochrome P450 3A5 (CYP3A5) were used as bait and prey proteins, respectively. For assessing the level of unspecific binding of background proteins, α-fetoprotein (aFP) was used. SPR measurements were applied for quantitative analysis of trapped proteins (CYP3A5 and aFP) after fishing on PMP. It was shown that the described approach of molecular fishing on micro-PMP provides enough prey proteins for LC-MS/MS identification and SPR validation, so this approach can be used for discovery of new protein-protein interactions in the framework of Human Proteome Project.
Collapse
Affiliation(s)
- Pavel Ershov
- Orechovich Institute of Biomedical Chemistry of RAMS, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
He R, Wakimoto T, Takeshige Y, Egami Y, Kenmoku H, Ito T, Wang B, Asakawa Y, Abe I. Porphyrins from a metagenomic library of the marine sponge Discodermia calyx. MOLECULAR BIOSYSTEMS 2012; 8:2334-8. [PMID: 22735778 DOI: 10.1039/c2mb25169h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Marine sponges harbouring uncultured symbiotic bacteria are important sources of biologically active compounds. Since they would be interesting resources to explore unknown functional genes by means of a metagenomic approach, we constructed a metagenomic library of the Japanese marine sponge Discodermia calyx. The functional screening afforded the two clones producing porphyrins as red pigments. The isolation and structural elucidation of the red pigments revealed that the major red pigment was Zn-coproporphyrin III. The sequence data of the clones identified genes encoding glutamyl-tRNA reductase along with other ORFs related to porphyrin biosynthesis.
Collapse
Affiliation(s)
- Rui He
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sushko TA, Gilep AA, Usanov SA. Mechanism of intermolecular interactions of microsomal cytochrome P450s CYP17 and CYP21 involved in steroid hormone biosynthesis. BIOCHEMISTRY (MOSCOW) 2012; 77:585-92. [DOI: 10.1134/s0006297912060041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Comparison of microbial hosts and expression systems for mammalian CYP1A1 catalysis. J Ind Microbiol Biotechnol 2011; 39:275-87. [PMID: 21863302 DOI: 10.1007/s10295-011-1026-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
Mammalian cytochrome P450 enzymes are of special interest as biocatalysts for fine chemical and drug metabolite synthesis. In this study, the potential of different recombinant microorganisms expressing rat and human cyp1a1 genes is evaluated for such applications. The maximum specific activity for 7-ethoxyresorufin O-deethylation and gene expression levels were used as parameters to judge biocatalyst performance. Under comparable conditions, E. coli is shown to be superior over the use of S. cerevisiae and P. putida as hosts for biocatalysis. Of all tested E. coli strains, E. coli DH5α and E. coli JM101 harboring rat CYP1A1 showed the highest activities (0.43 and 0.42 U g⁻¹(CDW), respectively). Detection of active CYP1A1 in cell-free E. coli extracts was found to be difficult and only for E. coli DH5α, expression levels could be determined (41 nmol g⁻¹(CDW)). The presented results show that efficient expression of mammalian cyp1a1 genes in recombinant microorganisms is troublesome and host-dependent and that enhancing expression levels is crucial in order to obtain more efficient biocatalysts. Specific activities currently obtained are not sufficient yet for fine chemical production, but are sufficient for preparative-scale drug metabolite synthesis.
Collapse
|
19
|
Mizrachi D, Wang Z, Sharma KK, Gupta MK, Xu K, Dwyer CR, Auchus RJ. Why human cytochrome P450c21 is a progesterone 21-hydroxylase. Biochemistry 2011; 50:3968-74. [PMID: 21446712 DOI: 10.1021/bi102078e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human cytochrome P450c21 (steroid 21-hydroxylase, CYP21A2) catalyzes the 21-hydroxylation of progesterone (P4) and its preferred substrate 17α-hydroxyprogestrone (17OHP4). CYP21A2 activities, which are required for cortisol and aldosterone biosynthesis, involve the formation of energetically disfavored primary carbon radicals. Therefore, we hypothesized that the binding of P4 and 17OHP4 to CYP21A2 restricts access of the reactive heme-oxygen complex to the C-21 hydrogen atoms, suppressing oxygenation at kinetically more favorable sites such as C-17 and C-16, which are both hydroxylated by cytochrome P450c17 (CYP17A1). We reasoned that expansion of the CYP21A2 substrate-binding pocket would increase substrate mobility and might yield additional hydroxylation activities. We built a computer model of CYP21A2 based principally on the crystal structure of CYP2C5, which also 21-hydroxylates P4. Molecular dynamics simulations indicate that binding of the steroid nucleus perpendicular to the plane of the CYP21A2 heme ring limits access of the heme oxygen to the C-21 hydrogen atoms. Residues L107, L109, V470, I471, and V359 were found to contribute to the CYP21A2 substate-binding pocket. Mutation of V470 and I471 to alanine or glycine preserved P4 21-hydroxylase activity, and mutations of L107 or L109 were inactive. Mutations V359A and V359G, in contrast, acquired 16α-hydroxylase activity, accounting for 40% and 90% of the P4 metabolites, respectively. We conclude that P4 binds to CYP21A2 in a fundamentally different orientation than to CYP17A1 and that expansion of the CYP21A2 substrate-binding pocket allows additional substrate trajectories and metabolic switching.
Collapse
Affiliation(s)
- Dario Mizrachi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Production of human phase 1 and 2 metabolites by whole-cell biotransformation with recombinant microbes. Bioanalysis 2011; 2:1277-90. [PMID: 21083240 DOI: 10.4155/bio.10.80] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs or P450s) are the most important enzymes involved in the phase I metabolism of drugs and poisons in humans, while UDP glycosyltransferases catalyze the majority of phase II reactions. In addition, a number of other enzymes or enzyme families contribute to the metabolism of xenobiotica, including alcohol dehydrogenase, aldehyde dehydrogenase, ester and amide hydrolases, epoxide hydrolase and flavine monooxygenases, as well as sulfotransferases, catechol-O-methyltransferase and N-acetyltransferase. A thorough understanding of their activity and of the properties of the metabolites they form is an essential prerequisite for the assessment of drug-caused side effects or toxicity. In this context of MIST, efficient production systems are needed to permit the large-scale production of human drug metabolites. As classical chemical synthesis cannot always provide these metabolites, biotechnological approaches have been developed that typically employ the recombinant expression of human drug-metabolizing enzymes. This review summarizes the current knowledge regarding whole-cell biotransformation processes that make use of such an approach.
Collapse
|
21
|
Lu H, Ma J, Liu N, Wang S. Effects of heme precursors on CYP1A2 and POR expression in the baculovirus/Spodoptera frugiperda system. J Biomed Res 2010; 24:242-9. [PMID: 23554636 PMCID: PMC3596560 DOI: 10.1016/s1674-8301(10)60034-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE CYP1A2 and NADPH-CYP450 oxidoreductase (POR) were expressed in the baculovirus/Spodoptera frugiperda (sf9) system. The aim of this study was to investigate the effects of heme precursors on the expression of CYP1A2 and POR. METHODS The heme precursors [δ-Aminolaevulinic Acid (5-ALA), Fe(3+) and hemin] were introduced into the system to evaluate their effects on the expression of CYP1A2, POR and their co-expression. All the proteins were identified using immunoblotting, CO-difference spectroscopy, or cytochrome c assay. RESULTS In the present study, functional CYP1A2 and POR were successfully expressed in the baculovirus/sf9 system, and both of them showed high activities. Co-addition of 5-ALA and Fe(3+) significantly improved expression of CYP1A2 by about 50% compared with the addition of 5-ALA, Fe(3+) or hemin alone. Either co-addition of 5-ALA and Fe(3+) or addition of 5-ALA or Fe(3+) alone improved the POR expression level 2 fold and its activity 7-10 fold compared with control (no addition). However, unlike CYP1A2, there was no difference between the co-addition and addition of these heme precursors alone. Different ratios of BvCYP1A2 to BvPOR also affected the co-expression of CYP1A2 and POR, with a 3:1 ratio of BvCYP1A2 / BvPOR significantly increasing their co-expression. Surprisingly, the addition of 0.1 mM 5-ALA or Fe(3+) alone, but not their co-addition, could significantly improve the CYP1A2 and POR co-expression (P < 0.05). CONCLUSION 5-ALA and Fe(3+) increased the expression of CYP1A2 and POR in a baculovirus/sf9 system, but the pattern of their expression was different between their expression alone and co-expression.
Collapse
Affiliation(s)
| | | | | | - Shoulin Wang
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
22
|
Julsing MK, Cornelissen S, Bühler B, Schmid A. Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 2008; 12:177-86. [DOI: 10.1016/j.cbpa.2008.01.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 01/18/2008] [Accepted: 01/18/2008] [Indexed: 11/24/2022]
|
23
|
Pechurskaya TA, Harnastai IN, Grabovec IP, Gilep AA, Usanov SA. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s. Biochem Biophys Res Commun 2006; 353:598-604. [PMID: 17188650 DOI: 10.1016/j.bbrc.2006.12.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/08/2006] [Indexed: 11/23/2022]
Abstract
The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.
Collapse
Affiliation(s)
- Tatiana A Pechurskaya
- Institute of Bioorganic Chemistry, Academy of Sciences of Belarus, Kuprevicha st., 5/2, Minsk 220141, Belarus
| | | | | | | | | |
Collapse
|