1
|
Lei L, Yang C, Du J, Liu Z, Wang Y, Wang H, Chi X, Xu B. Functional analysis of AccCPR in Apis cerana cerana under pesticide and heavy metal stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106296. [PMID: 40015888 DOI: 10.1016/j.pestbp.2025.106296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/01/2025]
Abstract
NADPH-cytochrome P450 reductase (CPR) plays important roles in the metabolism of both endogenous and exogenous compounds through cytochrome P450, and is also involved in the detoxification of insecticides mediated by cytochrome P450. However, the CPR from Apis cerana cerana has not been well characterized and its function is still undescribed. This study isolated the CPR gene from Apis cerana cerana and investigated its functional role in the resistance to pesticide and heavy metal stress. Bioinformatic analysis revealed significant homology between the gene and its counterparts in other species. Functional investigations demonstrated diverse expression and localization patterns of this gene, with AccCPR primarily expressed in muscular tissues and the gut, suggesting its potential roles in flight activities and intestinal barrier function of bees. Furthermore, the expression levels of this gene were significantly modulated under pesticide and heavy metal stress. Notably, the overexpression of AccCPR led to a marked alteration the tolerance to external stressors in E. coli. Additionally, the silencing of the AccCPR gene resulted in a significant decrease in antioxidant enzyme activity and the expression levels of genes associated with antioxidant functions. Consequently, the mortality rate of Apis cerana cerana under imidacloprid stress was significantly elevated. Taken together, our findings suggest that AccCPR may play a pivotal role in the resistance of Apis cerana cerana to abiotic stresses such as pesticides and heavy metals by regulating antioxidant pathways.
Collapse
Affiliation(s)
- Li Lei
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Chunyu Yang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Jing Du
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
2
|
Gonzalez HC, Misare KR, Mendenhall TT, Wolf BJ, Mulholland PJ, Gordon KL, Hartman JH. Transgenic expression of human cytochrome P450 2E1 in C. elegans and rat PC-12 cells sensitizes to ethanol-induced locomotor and mitochondrial effects. Biochem Biophys Res Commun 2024; 734:150735. [PMID: 39357336 PMCID: PMC11540131 DOI: 10.1016/j.bbrc.2024.150735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Chronic alcohol (ethanol) use is increasing in the United States and has been linked to numerous health issues in multiple organ systems including neurological dysfunction and diseases. Ethanol toxicity is mainly driven by the metabolite acetaldehyde, which is generated through three pathways: alcohol dehydrogenase (ADH2), catalase (CAT), and cytochrome P450 2E1 (CYP2E1). ADH2, while the main ethanol clearance pathway in the liver, is not expressed in the mammalian brain, resulting in CAT and CYP2E1 driving local metabolism of ethanol in the central nervous system. CYP2E1 is known to generate reactive metabolites and reactive oxygen species and localizes to the mitochondria (mtCYP2E1) and endoplasmic reticulum (erCYP2E1). We sought to understand the consequences of mtCYP2E1 and erCYP2E1 in the nervous system during acute ethanol exposure. To answer this question, we generated transgenic Caenorhabditis elegans roundworms expressing human CYP2E1 in the mitochondria, endoplasmic reticulum, or both and exposed them to ethanol. We found that at lower concentrations, wild-type and mtCYP2E1-expressing worms had a small but significant inhibition of locomotion, whereas the erCYP2E1-expressing worms showed protection from this inhibition. At higher doses, all strains had reduced locomotion, but the erCYP2E1-expressing worms recovered faster than wild-type controls. CYP2E1 expression, regardless of organellar targeting, reduced mitochondrial respiration in response to ethanol. Similarly, transgenic expression of CYP2E1 in either organelle in PC-12 rat neuronal cell lines sensitized them to ethanol-induced cell death. Together, these findings suggest that subcellular localization of CYP2E1 impacts behavioral effects of ethanol and should be further studied in the mammalian central nervous system.
Collapse
Affiliation(s)
- Hyland C Gonzalez
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA
| | - Kelly R Misare
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA
| | - Tsultrim T Mendenhall
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA
| | - Bethany J Wolf
- Dept of Public Health Sciences, Medical University of South Carolina, 135 Cannon St., Charleston, SC, 29425, USA
| | - Patrick J Mulholland
- Dept of Neuroscience, Charleston Alcohol Research Center, Medical University of South Carolina, 30 Courtenay Drive, Charleston, SC, 29425, USA
| | - Kacy L Gordon
- Dept of Biology, The University of North Carolina at Chapel Hill, 316 Fordham Hall, Chapel Hill, NC, 27599, USA; UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Dr, Chapel Hill, NC, 27599, USA
| | - Jessica H Hartman
- Dept of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA; Dept of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Ave. BSB 501 | MSC 509, Charleston, SC, 29425, USA.
| |
Collapse
|
3
|
Wang Z, Zhou Y, Wang Y, Yan X. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast. ACS Synth Biol 2023; 12:2922-2933. [PMID: 37767718 DOI: 10.1021/acssynbio.3c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Marmesin is essential in plant defense systems and exhibits various biological activities. In this study, we reconstituted the marmesin biosynthetic pathway in the Saccharomyces cerevisiae BY4741 chassis. We engineered the aromatic amino acid (AAA) biosynthetic pathways by introducing Escherichia coli-derived ppsA to improve the availability of the AAA precursor phosphoenolpyruvate, overexpressing the feedback inhibition resistance genes ARO4K229L and ARO7G141S to direct the metabolic flux toward the tyrosine branch, and deleting ARO10, PDC5, and PDC6 to reduce the byproducts from the Ehrlich pathway. The umbelliferone 6-dimethylallyltransferase (U6DT) and marmesin synthase (MS) involved in marmesin synthesis were optimized to increase marmesin production. Marmesin production was improved by truncating the transmembrane domains of PcU6DT, FcMS, and AtCPR1 and increasing the copy numbers of the genes encoding the truncated enzymes. Finally, a marmesin titer of 27.7 mg/L was obtained in shake flasks using the engineered yeast strain MU5. The constructed marmesin-producing strain provides the foundation for the green and large-scale production of pharmaceutically important furanocoumarins.
Collapse
Affiliation(s)
- Zhaoxin Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ying Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Heterologous Expression of Recombinant Human Cytochrome P450 (CYP) in Escherichia coli: N-Terminal Modification, Expression, Isolation, Purification, and Reconstitution. BIOTECH 2023; 12:biotech12010017. [PMID: 36810444 PMCID: PMC9944785 DOI: 10.3390/biotech12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid development of molecular technology that allows heterologous expression of human CYPs. Among several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their ease of use, high level of protein yields, and affordable maintenance costs. However, the levels of expression in E. coli reported in the literature sometimes differ significantly. This paper aims to review several contributing factors, including N-terminal modifications, co-expression with a chaperon, selections of vectors and E. coli strains, bacteria culture and protein expression conditions, bacteria membrane preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of CYP catalytic systems. The common factors that would most likely lead to high expression of CYPs were identified and summarised. Nevertheless, each factor may still require careful evaluation for individual CYP isoforms to achieve a maximal expression level and catalytic activity. Recombinant E. coli systems have been evidenced as a useful tool in obtaining the ideal level of human CYP proteins, which ultimately allows for subsequent characterisations of structures and functions.
Collapse
|
5
|
Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Metab Eng 2022; 70:115-128. [DOI: 10.1016/j.ymben.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
|
6
|
Single-Agent and Fixed-Dose Combination HIV-1 Protease Inhibitor Drugs in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2021; 10:pathogens10070804. [PMID: 34202872 PMCID: PMC8308830 DOI: 10.3390/pathogens10070804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Successful combination antiretroviral therapies (cART) eliminate active replicating HIV-1, slow down disease progression, and prolong lives. However, cART effectiveness could be compromised by the emergence of viral multidrug resistance, suggesting the need for new drug discoveries. The objective of this study was to further demonstrate the utility of the fission yeast cell-based systems that we developed previously for the discovery and testing of HIV protease (PR) inhibitors (PIs) against wild-type or multi-PI drug resistant M11PR that we isolated from an infected individual. All thirteen FDA-approved single-agent and fixed-dose combination HIV PI drugs were tested. The effect of these drugs on HIV PR activities was tested in pure compounds or formulation drugs. All FDA-approved PI drugs, except for a prodrug FPV, were able to suppress the wild-type PR-induced cellular and enzymatic activities. Relative drug potencies measured by EC50 in fission yeast were discussed in comparison with those measured in human cells. In contrast, none of the FDA-approved drugs suppressed the multi-PI drug resistant M11PR activities. Results of this study show that fission yeast is a reliable cell-based system for the discovery and testing of HIV PIs and further demonstrate the need for new PI drugs against viral multi-PI resistance.
Collapse
|
7
|
He C, Liang J, Liu S, Zeng Y, Wang S, Wu Q, Xie W, Zhang Y. Molecular characterization of an NADPH cytochrome P450 reductase from Bemisia tabaci Q: Potential involvement in susceptibility to imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:29-35. [PMID: 31836051 DOI: 10.1016/j.pestbp.2019.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/08/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
NADPH cytochrome P450 reductase (CPR) is an integral component of cytochrome P450-mediated biological reactions, such as the metabolism of xenobiotics, including insecticides. CPR has been reported to be associated with insecticide tolerance in several insects. However, the biochemical characteristics and biological function of CPR in Bemisia tabaci Q (BtCPR) remain undefined. In this study, BtCPR was cloned, and bioinformatic analysis showed that BtCPR is a transmembrane protein with a molecular weight (MW) of 76.73 kDa and contains conserved binding domains (FMN, FAD, and NADPH). Tissue- and developmental stage-dependent expression indicated that the highest expression levels of BtCPR occurred in head tissue and in male adults. Transcripts of BtCPR in the field B. tabaci Q strain were 1.62-fold higher than those of the laboratory B. tabaci Q strain. In both field and laboratory adults, the susceptibility of BtCPR-knockdown B. tabaci Q to imidacloprid substantially increased compared to that of the B. tabaci Q control group. Furthermore, the heterologous expression of BtCPR in Sf9 cells exhibited catalytic activity for cytochrome c reduction, following Michaelis-Menten kinetics. Sf9 cells overexpressing BtCPR had greater viability than the control cells when treated with imidacloprid. The results suggest that BtCPR could affect the susceptibility of B. tabaci Q to imidacloprid and could also be considered a novel target for pest control.
Collapse
Affiliation(s)
- Chao He
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jinjin Liang
- College of Plant Protection of Hunan Agricultural University, Changsha 410128, PR China
| | - Shaonan Liu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yang Zeng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shaoli Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
8
|
Liu D, Zhou X, Li M, Zhu S, Qiu X. Characterization of NADPH–cytochrome P450 reductase gene from the cotton bollworm, Helicoverpa armigera. Gene 2014; 545:262-70. [DOI: 10.1016/j.gene.2014.04.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 04/17/2014] [Accepted: 04/24/2014] [Indexed: 11/28/2022]
|
9
|
Cunninghamella as a microbiological model for metabolism of histamine H(3) receptor antagonist 1-[3-(4-tert-butylphenoxy)propyl]piperidine. Appl Biochem Biotechnol 2012; 168:1584-93. [PMID: 22983742 PMCID: PMC3501165 DOI: 10.1007/s12010-012-9880-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 08/28/2012] [Indexed: 11/06/2022]
Abstract
The aim of the study was to analyze the ability of the microorganism Cunninghamella to carry out the biotransformation of 1-[3-(4-tert-butylphenoxy)propyl]piperidine (DL76) and to compare the obtained results with in silico models. Biotransformation was carried out by three strains of filamentous fungus: Cunninghamella echinulata, Cunninghamella blakesleeana, and Cunninghamella elegans. Most probable direction of DL76 metabolic transition was the oxidation of the methyl group in the tert-butyl moiety leading to the formation of the metabolite with I° alcohol properties. This kind of reaction was conducted by all three strains tested. However, only in the case of C. blakesleeana that biotransformation product had a structure of carboxylic acid. CYP2C19 was identified by Metasite software to be the isoform of major importance in the oxidation process in the tert-butyl moiety of DL76. In silico data coincide with the results of experiments conducted in vitro. It was confirmed that Cunninghamella fungi are a very good model to study the metabolism of xenobiotics. The computational methods and microbial models of metabolism can be used as useful tools in early ADME-Tox assays in the process of developing new drug candidates.
Collapse
|
10
|
Biotechnological synthesis of drug metabolites using human cytochrome P450 isozymes heterologously expressed in fission yeast. Bioanalysis 2011; 1:821-30. [PMID: 21083140 DOI: 10.4155/bio.09.53] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cytochrome P450 mono-oxygenases (CYPs) are the major enzymes involved in the metabolism of drugs and poisons in humans. The variation of their activity - due to genetic polymorphisms or enzyme inhibition/induction - potentially increases the risk of side effects or toxicity. Studies on CYP-dependent metabolism are important in drug-development or toxicity studies. Reference standards of drug metabolites required for such studies, especially in the context of metabolites in safety testing (MIST), are often not commercially available and their classical chemical synthesis can be cumbersome. Recently, a biotechnological approach using human CYP isozymes heterologously expressed in fission yeast was developed for the synthesis of drug metabolites. Among other aspects, this approach has the distinct advantages that the reactions run under mild conditions and that only the final product must be isolated and characterized. This review overviews the first practical applications of this new approach and discusses the selection of substrates, metabolites and fission yeast strains as well as important aspects of incubation, product isolation and clean-up.
Collapse
|
11
|
Convenient Gram-Scale Metabolite Synthesis by Engineered Fission Yeast Strains Expressing Functional Human P450 Systems. Appl Biochem Biotechnol 2010; 163:965-80. [DOI: 10.1007/s12010-010-9100-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 09/28/2010] [Indexed: 12/18/2022]
|
12
|
Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6:115-31. [PMID: 20064075 DOI: 10.1517/17425250903431040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: i) synthesis of novel drugs and drug metabolites; ii) targeted cancer gene therapy; iii) biosensor design; and iv) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. AREAS COVERED IN THIS REVIEW In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of the above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency and utilization of alternate oxidants. WHAT THE READER WILL GAIN The review provides a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine and bioremediation. TAKE HOME MESSAGE Because of its wide applications, academic and pharmaceutical researchers, environmental scientists and healthcare providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology and Toxicology, 2464 Charlotte St., Kansas City, MO 64108, USA.
| |
Collapse
|
13
|
Jiménez-Martí E, Zuzuarregui A, Ridaura I, Lozano N, del Olmo M. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions. Int J Food Microbiol 2009; 130:122-30. [PMID: 19217680 DOI: 10.1016/j.ijfoodmicro.2009.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/18/2008] [Accepted: 01/19/2009] [Indexed: 11/28/2022]
Abstract
Throughout wine production yeast cells are affected by a plethora of stress conditions that compromise their ability to carry out the whole process. In recent years important knowledge about the mechanisms involved in stress response in both laboratory and wine yeast strains has been obtained. Several studies have indicated that a correlation exists between stress resistance, expression of stress response genes and fermentative behaviour. In this work we introduce several genetic manipulations in two genes induced by several stress conditions: HSP26 (which encodes a heat shock protein) and YHR087W (encoding a protein of unknown function) in two different wine yeasts, ICV16 and ICV27. These manipulations include expression in multicopy and centromeric plasmids, and substitution of the promoter in one of the genomic copies of these genes for that of the SPI1 gene, encoding for a cell wall protein of unknown function, or the PGK1 gene, which encodes the phosphoglycerate kinase glycolytic enzyme. Our results indicate that some of these modifications result in strains with higher expression of these genes, better resistance to certain stress conditions, and even improved fermentative behaviour. The modifications of the YHR087W gene are particularly interesting, and suggest an important role of this gene in the vinification process.
Collapse
Affiliation(s)
- E Jiménez-Martí
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Valencia, Spain
| | | | | | | | | |
Collapse
|
14
|
Peters FT, Dragan CA, Schwaninger AE, Sauer C, Zapp J, Bureik M, Maurer HH. Use of fission yeast heterologously expressing human cytochrome P450 2B6 in biotechnological synthesis of the designer drug metabolite N-(1-phenylcyclohexyl)-2-hydroxyethanamine. Forensic Sci Int 2009; 184:69-73. [DOI: 10.1016/j.forsciint.2008.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/22/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
|
15
|
Multiple NADPH–cytochrome P450 reductases from Trypanosoma cruzi. Mol Biochem Parasitol 2008; 160:42-51. [DOI: 10.1016/j.molbiopara.2008.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 03/12/2008] [Accepted: 03/13/2008] [Indexed: 11/22/2022]
|
16
|
Purnapatre K, Khattar SK, Saini KS. Cytochrome P450s in the development of target-based anticancer drugs. Cancer Lett 2008; 259:1-15. [DOI: 10.1016/j.canlet.2007.10.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/16/2007] [Accepted: 10/17/2007] [Indexed: 11/16/2022]
|