1
|
Maunders EA, Ngu DHY, Ganio K, Hossain SI, Lim BYJ, Leeming MG, Luo Z, Tan A, Deplazes E, Kobe B, McDevitt CA. The Impact of Chromate on Pseudomonas aeruginosa Molybdenum Homeostasis. Front Microbiol 2022; 13:903146. [PMID: 35685933 PMCID: PMC9171197 DOI: 10.3389/fmicb.2022.903146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Acquisition of the trace-element molybdenum via the high-affinity ATP-binding cassette permease ModABC is essential for Pseudomonas aeruginosa respiration in anaerobic and microaerophilic environments. This study determined the X-ray crystal structures of the molybdenum-recruiting solute-binding protein ModA from P. aeruginosa PAO1 in the metal-free state and bound to the group 6 metal oxyanions molybdate, tungstate, and chromate. Pseudomonas aeruginosa PAO1 ModA has a non-contiguous dual-hinged bilobal structure with a single metal-binding site positioned between the two domains. Metal binding results in a 22° relative rotation of the two lobes with the oxyanions coordinated by four residues, that contribute six hydrogen bonds, distinct from ModA orthologues that feature an additional oxyanion-binding residue. Analysis of 485 Pseudomonas ModA sequences revealed conservation of the metal-binding residues and β-sheet structural elements, highlighting their contribution to protein structure and function. Despite the capacity of ModA to bind chromate, deletion of modA did not affect P. aeruginosa PAO1 sensitivity to chromate toxicity nor impact cellular accumulation of chromate. Exposure to sub-inhibitory concentrations of chromate broadly perturbed P. aeruginosa metal homeostasis and, unexpectedly, was associated with an increase in ModA-mediated molybdenum uptake. Elemental analyses of the proteome from anaerobically grown P. aeruginosa revealed that, despite the increase in cellular molybdenum upon chromate exposure, distribution of the metal within the proteome was substantially perturbed. This suggested that molybdoprotein cofactor acquisition may be disrupted, consistent with the potent toxicity of chromate under anaerobic conditions. Collectively, these data reveal a complex relationship between chromate toxicity, molybdenum homeostasis and anaerobic respiration.
Collapse
Affiliation(s)
- Eve A. Maunders
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Dalton H. Y. Ngu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bryan Y. J. Lim
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Michael G. Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Zhenyao Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Aimee Tan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Evelyne Deplazes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Boštjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Abstract
Calcium ions are a kind of unavoidable ions in water. It has the deleterious effect on molybdenite flotation. High-calcium flotation wastewater (HCFW) was reused for flotation circuits after the pretreatment removing Ca2+ in from HCFW. The high cost of wastewater treatment limits HCFW reuse. In this paper, an efficient, innovative, low-cost and environmental-friendly flotation wastewater reuse technology was introduced. XLM, as a composite collector for molybdenite, is a mixture of diesel oil (DO) and polycyclic aromatic hydrocarbons (PAHs). It could reduce the deleterious effects of Ca2+ on the flotation of molybdenite in HCFW. Therefore, this was used to replace the pretreatment removing Ca2+ in from high Ca2+ wastewater and saved the cost of wastewater treatment. When XLM consists of 4 wt % PAHs and 96 wt % DO, it has better adaptability than DO in the different Ca2+ concentration of flotation water. The contact angle measurements indicated that PAHs, as a synergistic component of a composite collector, could adsorb on the edges of molybdenite in the presence of Ca2+ by forming PAHs-Ca2+-MoO42− structure to increase the contact angle of fine molybdenite particle and reduce the deleterious effects of Ca2+ on the flotation of molybdenite. The industrial-scale test further that demonstrated XLM can improve the molybdenite roughing recovery and grade by 1.8% and 3.46% compared with DO as the collector in high Ca2+ flotation wastewater. It is feasible and effective to replace high-cost wastewater treatment for molybdenum plants.
Collapse
|
3
|
de Lira NPV, Pauletti BA, Marques AC, Perez CA, Caserta R, de Souza AA, Vercesi AE, Paes Leme AF, Benedetti CE. BigR is a sulfide sensor that regulates a sulfur transferase/dioxygenase required for aerobic respiration of plant bacteria under sulfide stress. Sci Rep 2018; 8:3508. [PMID: 29472641 PMCID: PMC5823870 DOI: 10.1038/s41598-018-21974-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
To cope with toxic levels of H2S, the plant pathogens Xylella fastidiosa and Agrobacterium tumefaciens employ the bigR operon to oxidize H2S into sulfite. The bigR operon is regulated by the transcriptional repressor BigR and it encodes a bifunctional sulfur transferase (ST) and sulfur dioxygenase (SDO) enzyme, Blh, required for H2S oxidation and bacterial growth under hypoxia. However, how Blh operates to enhance bacterial survival under hypoxia and how BigR is deactivated to derepress operon transcription is unknown. Here, we show that the ST and SDO activities of Blh are in vitro coupled and necessary to oxidize sulfide into sulfite, and that Blh is critical to maintain the oxygen flux during A. tumefaciens respiration when oxygen becomes limited to cells. We also show that H2S and polysulfides inactivate BigR leading to operon transcription. Moreover, we show that sulfite, which is produced by Blh in the ST and SDO reactions, is toxic to Citrus sinensis and that X. fastidiosa-infected plants accumulate sulfite and higher transcript levels of sulfite detoxification enzymes, suggesting that they are under sulfite stress. These results indicate that BigR acts as a sulfide sensor in the H2S oxidation mechanism that allows pathogens to colonize plant tissues where oxygen is a limiting factor.
Collapse
Affiliation(s)
- Nayara Patricia Vieira de Lira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Bianca Alves Pauletti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Ana Carolina Marques
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, 13083-887, Campinas, SP, Brazil
| | - Carlos Alberto Perez
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Raquel Caserta
- Agronomic Institute of Campinas, Citriculture Research Center 'Sylvio Moreira', CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Alessandra Alves de Souza
- Agronomic Institute of Campinas, Citriculture Research Center 'Sylvio Moreira', CEP 13490-970, Cordeirópolis, SP, Brazil
| | - Aníbal Eugênio Vercesi
- Department of Clinical Pathology, Faculty of Medical Sciences, State University of Campinas, 13083-887, Campinas, SP, Brazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), CEP 13083-100, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Effect of high pressure on structural modifications and enzymatic activity of a purified X-prolyl dipeptidyl aminopeptidase from Streptococcus thermophilus. Food Chem 2017; 248:304-311. [PMID: 29329859 DOI: 10.1016/j.foodchem.2017.12.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/21/2017] [Accepted: 12/10/2017] [Indexed: 01/30/2023]
Abstract
PepX aminopeptidase from Streptococcus thermophilus ACA DC 0022, used in Greek Feta cheese manufacturing, was purified. PepX comprises two subunits of equal molecular mass estimated, using SDS-PAGE and native-PAGE electrophoresis, to be 86 kDa. The effects of high pressure processing (100-450 MPa, combined with 20-40 °C) on purified PepX activity and structure were studied. Activation of the enzyme was observed after processing at 100-200 MPa and 20-30 °C. More intense processing conditions led to enzyme inactivation. PepX HP-induced conformational changes were also investigated through application of Circular Dichroism spectroscopy (CD). Pressures up to 200 MPa resulted in a structurally molten globule-like state where PepX maintained its secondary structure but the tertiary structure was substantially affected and enzyme activity increased. Both secondary and tertiary structures were affected severely by higher pressures (450 MPa), which reduced enzyme activity.
Collapse
|
5
|
The Influence of Ca2+ and pH on the Interaction between PAHs and Molybdenite Edges. MINERALS 2017. [DOI: 10.3390/min7060104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. BIOTECHNOL BIOTEC EQ 2015; 29:205-220. [PMID: 26019635 PMCID: PMC4434042 DOI: 10.1080/13102818.2015.1008192] [Citation(s) in RCA: 760] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/07/2014] [Indexed: 01/28/2023] Open
Abstract
The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies.
Collapse
Affiliation(s)
- Nur Royhaila Mohamad
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai81310, Johor, Malaysia
| | - Nur Haziqah Che Marzuki
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai81310, Johor, Malaysia
| | - Nor Aziah Buang
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai81310, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biotechnology and Medical Engineering, Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Skudai81310, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai81310, Johor, Malaysia
| |
Collapse
|
7
|
TupA: a tungstate binding protein in the periplasm of Desulfovibrio alaskensis G20. Int J Mol Sci 2014; 15:11783-98. [PMID: 24992597 PMCID: PMC4139814 DOI: 10.3390/ijms150711783] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 11/17/2022] Open
Abstract
The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette)-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component). We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234) was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC) expression vector, and the construct was used to transform BL21 (DE3) cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v) polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.
Collapse
|
8
|
A specific interdomain interaction preserves the structural and binding properties of the ModA protein from the phytopathogen Xanthomonas citri domain interaction and transport in ModA. Arch Biochem Biophys 2013; 539:20-30. [PMID: 24035743 DOI: 10.1016/j.abb.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/02/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
The periplasmic-binding proteins in ATP-binding cassette systems (ABC Transporters) are responsible for the capture and delivery of ligands to their specific transporters, triggering a series of ATP-driven conformational changes that leads to the transport of the ligand. Structurally consisting of two lobes, the proteins change conformation after interaction with the ligand. The structure of the molybdate-binding protein (ModA) from Xanthomonas citri, bound to molybdate, was previously solved by our group and an interdomain interaction, mediated by a salt bridge between K127 and D59, apparently supports the binding properties and keeps the domains closed. To determinate the importance of this interaction, we built two ModA mutants, K127S and D59A, and analysed their functional and structural properties. Based on a set of spectroscopic experiments, crystallisation trials, structure determination and molecular dynamics (MD) simulations, we showed that the salt bridge is essential to maintain the structure and binding properties. Additionally, the MD simulations revealed that this mutant adopted a more compact structure that packed down the ligand-binding pocket. From the closed bound to open structure, the positioning of the helices forming the dipole and the salt bridge are essential to induce an intermediate state.
Collapse
|
9
|
Campos BM, Sforça ML, Ambrosio ALB, Domingues MN, Brasil de Souza TDAC, Barbosa JARG, Leme AFP, Perez CA, Whittaker SBM, Murakami MT, Zeri ACDM, Benedetti CE. A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins. PLANT PHYSIOLOGY 2013; 162:1311-23. [PMID: 23709667 PMCID: PMC3707534 DOI: 10.1104/pp.113.218339] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/23/2013] [Indexed: 05/20/2023]
Abstract
The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism.
Collapse
Affiliation(s)
- Bruna Medéia Campos
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | - Mauricio Luis Sforça
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | - Andre Luis Berteli Ambrosio
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | - Mariane Noronha Domingues
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | | | | | - Adriana Franco Paes Leme
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | - Carlos Alberto Perez
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | - Sara Britt-Marie Whittaker
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | - Mario Tyago Murakami
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | - Ana Carolina de Matos Zeri
- Laboratório Nacional de Biociências (B.M.C., M.L.S., A.L.B.A., M.N.D., T.d.A.C.B.d.S., J.A.R.G.B., A.F.P.L., M.T.M., A.C.d.M.Z., C.E.B.) and Laboratório Nacional de Luz Síncrotron (C.A.P.), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP CP6192, Brazil; and
- School of Cancer Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom (S.B.-M.W.)
| | | |
Collapse
|
10
|
Alexandrakis Z, Katsaros G, Stavros P, Katapodis P, Nounesis G, Taoukis P. Comparative Structural Changes and Inactivation Kinetics of Pectin Methylesterases from Different Orange Cultivars Processed by High Pressure. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1087-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Gonzalez PJ, Rivas MG, Mota CS, Brondino CD, Moura I, Moura JJ. Periplasmic nitrate reductases and formate dehydrogenases: Biological control of the chemical properties of Mo and W for fine tuning of reactivity, substrate specificity and metabolic role. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Tirado-Lee L, Lee A, Rees DC, Pinkett HW. Classification of a Haemophilus influenzae ABC transporter HI1470/71 through its cognate molybdate periplasmic binding protein, MolA. Structure 2011; 19:1701-10. [PMID: 22078568 PMCID: PMC3258573 DOI: 10.1016/j.str.2011.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/11/2011] [Accepted: 10/09/2011] [Indexed: 01/07/2023]
Abstract
molA (HI1472) from H. influenzae encodes a periplasmic binding protein (PBP) that delivers substrate to the ABC transporter MolB(2)C(2) (formerly HI1470/71). The structures of MolA with molybdate and tungstate in the binding pocket were solved to 1.6 and 1.7 Å resolution, respectively. The MolA-binding protein binds molybdate and tungstate, but not other oxyanions such as sulfate and phosphate, making it the first class III molybdate-binding protein structurally solved. The ∼100 μM binding affinity for tungstate and molybdate is significantly lower than observed for the class II ModA molybdate-binding proteins that have nanomolar to low micromolar affinity for molybdate. The presence of two molybdate loci in H. influenzae suggests multiple transport systems for one substrate, with molABC constituting a low-affinity molybdate locus.
Collapse
Affiliation(s)
- Leidamarie Tirado-Lee
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Allen Lee
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Gupta SS, Mohammed MH, Ghosh TS, Kanungo S, Nair GB, Mande SS. Metagenome of the gut of a malnourished child. Gut Pathog 2011; 3:7. [PMID: 21599906 PMCID: PMC3115890 DOI: 10.1186/1757-4749-3-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/20/2011] [Indexed: 01/01/2023] Open
Abstract
Background Malnutrition, a major health problem, affects a significant proportion of preschool children in developing countries. The devastating consequences of malnutrition include diarrhoea, malabsorption, increased intestinal permeability, suboptimal immune response, etc. Nutritional interventions and dietary solutions have not been effective for treatment of malnutrition till date. Metagenomic procedures allow one to access the complex cross-talk between the gut and its microbial flora and understand how a different community composition affects various states of human health. In this study, a metagenomic approach was employed for analysing the differences between gut microbial communities obtained from a malnourished and an apparently healthy child. Results Our results indicate that the malnourished child gut has an abundance of enteric pathogens which are known to cause intestinal inflammation resulting in malabsorption of nutrients. We also identified a few functional sub-systems from these pathogens, which probably impact the overall metabolic capabilities of the malnourished child gut. Conclusion The present study comprehensively characterizes the microbial community resident in the gut of a malnourished child. This study has attempted to extend the understanding of the basis of malnutrition beyond nutrition deprivation.
Collapse
Affiliation(s)
- Sourav Sen Gupta
- Bio-Sciences R&D Division, TCS Innovation Labs Hyderabad, Tata Consultancy Services Limited, Hyderabad, India.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Aguilar-Barajas E, Díaz-Pérez C, Ramírez-Díaz MI, Riveros-Rosas H, Cervantes C. Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 2011; 24:687-707. [PMID: 21301930 DOI: 10.1007/s10534-011-9421-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/26/2011] [Indexed: 12/29/2022]
Affiliation(s)
- Esther Aguilar-Barajas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana, Edificio B-3, Ciudad Universitaria, 58030 Morelia, Michoacan, Mexico
| | | | | | | | | |
Collapse
|
16
|
Hollenstein K, Comellas-Bigler M, Bevers LE, Feiters MC, Meyer-Klaucke W, Hagedoorn PL, Locher KP. Distorted octahedral coordination of tungstate in a subfamily of specific binding proteins. J Biol Inorg Chem 2009; 14:663-72. [PMID: 19234723 DOI: 10.1007/s00775-009-0479-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 02/04/2009] [Indexed: 11/30/2022]
Abstract
Bacteria and archaea import molybdenum and tungsten from the environment in the form of the oxyanions molybdate (MoO(4) (2-)) and tungstate (WO(4) (2-)). These substrates are captured by an external, high-affinity binding protein, and delivered to ATP binding cassette transporters, which move them across the cell membrane. We have recently reported a crystal structure of the molybdate/tungstate binding protein ModA/WtpA from Archaeoglobus fulgidus, which revealed an octahedrally coordinated central metal atom. By contrast, the previously determined structures of three bacterial homologs showed tetracoordinate molybdenum and tungsten atoms in their binding pockets. Until then, coordination numbers above four had only been found for molybdenum/tungsten in metalloenzymes where these metal atoms are part of the catalytic cofactors and coordinated by mostly non-oxygen ligands. We now report a high-resolution structure of A. fulgidus ModA/WtpA, as well as crystal structures of four additional homologs, all bound to tungstate. These crystal structures match X-ray absorption spectroscopy measurements from soluble, tungstate-bound protein, and reveal the details of the distorted octahedral coordination. Our results demonstrate that the distorted octahedral geometry is not an exclusive feature of the A. fulgidus protein, and suggest distinct binding modes of the binding proteins from archaea and bacteria.
Collapse
Affiliation(s)
- Kaspar Hollenstein
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Crystallographic structure and substrate-binding interactions of the molybdate-binding protein of the phytopathogen Xanthomonas axonopodis pv. citri. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:393-9. [DOI: 10.1016/j.bbapap.2007.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/08/2007] [Accepted: 11/13/2007] [Indexed: 11/22/2022]
|