1
|
Ryu M, Oh S, Jeong KB, Hwang S, Kim JS, Chung M, Chi SW. Single-Molecule-Based, Label-Free Monitoring of Molecular Glue Efficacies for Promoting Protein-Protein Interactions Using YaxAB Nanopores. ACS NANO 2024; 18:31451-31465. [PMID: 39482865 PMCID: PMC11562796 DOI: 10.1021/acsnano.4c11436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Modulating protein-protein interactions (PPIs) is an attractive strategy in drug discovery. Molecular glues, bifunctional small-molecule drugs that promote PPIs, offer an approach to targeting traditionally undruggable targets. However, the efficient discovery of molecular glues has been hampered by the current limitations of conventional ensemble-averaging-based methods. In this study, we present a YaxAB nanopore for probing the efficacy of molecular glues in inducing PPIs. Using YaxAB nanopores, we demonstrate single-molecule-based, label-free monitoring of protein complex formation between mammalian target of rapamycin (mTOR) and FK506-binding proteins (FKBPs) triggered by the molecular glue, rapamycin. Owing to its wide entrance and adjustable pore size, in combination with potent electro-osmotic flow (EOF), a single funnel-shaped YaxAB nanopore enables the simultaneous detection and single-molecule-level quantification of multiprotein states, including single proteins, binary complexes, and ternary complexes induced by rapamycin. Notably, YaxAB nanopores could sensitively discriminate between the binary complexes or ternary complexes induced by rapamycin and its analogues, despite the subtle size differences of ∼122 or ∼116 Da, respectively. Taken together, our results provide proof-of-concept for single-molecule-based, label-free, and ultrasensitive screening and structure-activity relationship (SAR) analysis of molecular glues, which will contribute to low-cost, highly efficient discovery, and rational design of bifunctional modality of drugs, such as molecular glues.
Collapse
Affiliation(s)
- Minju Ryu
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sohee Oh
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
| | - Ki-Baek Jeong
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Critical
Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Sungbo Hwang
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
| | - Jin-Sik Kim
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Critical
Diseases Diagnostics Convergence Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Minji Chung
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Seung-Wook Chi
- Disease
Target Structure Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology
(KRIBB), Daejeon 34141, Republic
of Korea
- Department
of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
- School
of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic
of Korea
| |
Collapse
|
2
|
Shinya S, Katahira R, Furuita K, Sugiki T, Lee YH, Hattori Y, Takeshita K, Nakagawa A, Kokago A, Akagi KI, Oouchi M, Hayashi F, Kigawa T, Takimoto-Kamimura M, Fujiwara T, Kojima C. 19F chemical library and 19F-NMR for a weakly bound complex structure. RSC Med Chem 2022; 13:1100-1111. [PMID: 36324497 PMCID: PMC9491350 DOI: 10.1039/d2md00170e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 07/24/2023] Open
Abstract
Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a 19F-NMR screening method optimizing a 19F chemical library focusing on highly soluble monomeric molecules. Our method was successfully applied to four proteins, including protein kinases and a membrane protein. For FKBP12, hit compounds were carefully validated by protein thermal shift analysis, 1H-15N HSQC NMR spectroscopy, and isothermal titration calorimetry to determine dissociation constants and model complex structures. It should be noted that the 1H and 19F saturation transfer difference experiments were crucial to obtaining highly precise model structures. The combination of 19F-NMR analysis and the optimized 19F chemical library enables the modeling of the complex structure made up of a weak binder and its target protein.
Collapse
Affiliation(s)
- Shoko Shinya
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Ritsuko Katahira
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Toshihiko Sugiki
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Chungbuk 28119 South Korea
- Bio-Analytical Science, University of Science and Technology Daejeon 34113 South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 South Korea
| | - Yoshikazu Hattori
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Kohei Takeshita
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Aoi Kokago
- Graduate School of Engineering Science, Yokohama National University Tokiwadai 79-5, Hodogaya-ku Yokohama 2408501 Japan
| | - Ken-Ichi Akagi
- National Institute of Biomedical Innovation, Health and Nutrition 7-6-8 Saito Asagi Ibaraki-city Osaka 567-0085 Japan
| | - Muneki Oouchi
- RIKEN Spring-8 Center 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Fumiaki Hayashi
- RIKEN Spring-8 Center 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Takanori Kigawa
- RIKEN Center for Biosystems Dynamics Research 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Midori Takimoto-Kamimura
- Quantum-Structural Life Science Laboratories, CBI Research Institute 3-11-1 Shibaura, Minato-ku Tokyo 108-0023 Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
- Graduate School of Engineering Science, Yokohama National University Tokiwadai 79-5, Hodogaya-ku Yokohama 2408501 Japan
| |
Collapse
|
3
|
Joshi DC, Gosse C, Huang SY, Lin JH. A Curvilinear-Path Umbrella Sampling Approach to Characterizing the Interactions Between Rapamycin and Three FKBP12 Variants. Front Mol Biosci 2022; 9:879000. [PMID: 35874613 PMCID: PMC9304761 DOI: 10.3389/fmolb.2022.879000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Rapamycin is an immunosuppressant macrolide that exhibits anti-proliferative properties through inhibiting the mTOR kinase. In fact, the drug first associates with the FKBP12 enzyme before interacting with the FRB domain of its target. Despite the availability of structural and thermodynamic information on the interaction of FKBP12 with rapamycin, the energetic and mechanistic understanding of this process is still incomplete. We recently reported a multiple-walker umbrella sampling simulation approach to characterizing the protein–protein interaction energetics along curvilinear paths. In the present paper, we extend our investigations to a protein-small molecule duo, the FKBP12•rapamycin complex. We estimate the binding free energies of rapamycin with wild-type FKBP12 and two mutants in which a hydrogen bond has been removed, D37V and Y82F. Furthermore, the underlying mechanistic details are analyzed. The calculated standard free energies of binding agree well with the experimental data, and the roles of the hydrogen bonds are shown to be quite different for each of these two mutated residues. On one hand, removing the carboxylate group of D37 strongly destabilizes the association; on the other hand, the hydroxyl group of Y82 is nearly unnecessary for the stability of the complex because some nonconventional, cryptic, indirect interaction mechanisms seem to be at work.
Collapse
Affiliation(s)
| | - Charlie Gosse
- Institut de Biologie de l’Ecole Normale Supérieure, ENS, CNRS, INSERM, PSL Research University, Paris, France
| | - Shu-Yu Huang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Jung-Hsin Lin
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center, National Biotechnology Research Park, Academia Sinica, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
- College of Engineering Sciences, Chang Gung University, Taoyuan, Taiwan
- *Correspondence: Jung-Hsin Lin,
| |
Collapse
|
4
|
Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs. mBio 2021; 12:e0300021. [PMID: 34809463 PMCID: PMC8609367 DOI: 10.1128/mbio.03000-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Calcineurin is a critical enzyme in fungal pathogenesis and antifungal drug tolerance and, therefore, an attractive antifungal target. Current clinically accessible calcineurin inhibitors, such as FK506, are immunosuppressive to humans, so exploiting calcineurin inhibition as an antifungal strategy necessitates fungal specificity in order to avoid inhibiting the human pathway. Harnessing fungal calcineurin-inhibitor crystal structures, we recently developed a less immunosuppressive FK506 analog, APX879, with broad-spectrum antifungal activity and demonstrable efficacy in a murine model of invasive fungal infection. Our overarching goal is to better understand, at a molecular level, the interaction determinants of the human and fungal FK506-binding proteins (FKBP12) required for calcineurin inhibition in order to guide the design of fungus-selective, nonimmunosuppressive FK506 analogs. To this end, we characterized high-resolution structures of the Mucor circinelloides FKBP12 bound to FK506 and of the Aspergillus fumigatus, M. circinelloides, and human FKBP12 proteins bound to the FK506 analog APX879, which exhibits enhanced selectivity for fungal pathogens. Combining structural, genetic, and biophysical methodologies with molecular dynamics simulations, we identify critical variations in these structurally similar FKBP12-ligand complexes. The work presented here, aimed at the rational design of more effective calcineurin inhibitors, indeed suggests that modifications to the APX879 scaffold centered around the C15, C16, C18, C36, and C37 positions provide the potential to significantly enhance fungal selectivity. IMPORTANCE Invasive fungal infections are a leading cause of death in the immunocompromised patient population. The rise in drug resistance to current antifungals highlights the urgent need to develop more efficacious and highly selective agents. Numerous investigations of major fungal pathogens have confirmed the critical role of the calcineurin pathway for fungal virulence, making it an attractive target for antifungal development. Although FK506 inhibits calcineurin, it is immunosuppressive in humans and cannot be used as an antifungal. By combining structural, genetic, biophysical, and in silico methodologies, we pinpoint regions of the FK506 scaffold and a less immunosuppressive analog, APX879, centered around the C15 to C18 and C36 to C37 positions that could be altered with selective extensions and/or deletions to enhance fungal selectivity. This work represents a significant advancement toward realizing calcineurin as a viable target for antifungal drug discovery.
Collapse
|
5
|
Gur M, Blackburn EA, Ning J, Narayan V, Ball KL, Walkinshaw MD, Erman B. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties. J Chem Phys 2018; 148:145101. [PMID: 29655319 PMCID: PMC5891347 DOI: 10.1063/1.5019457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 02/02/2023] Open
Abstract
Cyclophilin 40 (Cyp40) is a member of the immunophilin family that acts as a peptidyl-prolyl-isomerase enzyme and binds to the heat shock protein 90 (Hsp90). Its structure comprises an N-terminal cyclophilin domain and a C-terminal tetratricopeptide (TPR) domain. Cyp40 is overexpressed in prostate cancer and certain T-cell lymphomas. The groove for Hsp90 binding on the TPR domain includes residues Lys227 and Lys308, referred to as the carboxylate clamp, and is essential for Cyp40-Hsp90 binding. In this study, the effect of two mutations, K227A and K308A, and their combinative mutant was investigated by performing a total of 5.76 μs of all-atom molecular dynamics (MD) simulations in explicit solvent. All simulations, except the K308A mutant, were found to adopt two distinct (extended or compact) conformers defined by different cyclophilin-TPR interdomain distances. The K308A mutant was only observed in the extended form which is observed in the Cyp40 X-ray structure. The wild-type, K227A, and combined mutant also showed bimodal distributions. The experimental melting temperature, Tm, values of the mutants correlate with the degree of compactness with the K308A extended mutant having a marginally lower melting temperature. Another novel measure of compactness determined from the MD data, the "coordination shell volume," also shows a direct correlation with Tm. In addition, the MD simulations show an allosteric effect with the mutations in the remote TPR domain having a pronounced effect on the molecular motions of the enzymatic cyclophilin domain which helps rationalise the experimentally observed increase in enzyme activity measured for all three mutations.
Collapse
Affiliation(s)
- Mert Gur
- Department of Mechanical Engineering, Faculty of Mechanical Engineering, Istanbul Technical University (ITU), Suite 445 İnönü Caddesi, No. 65 Gümüşsuyu, 34437 Beyoğlu, Istanbul, Turkey
| | - Elizabeth A Blackburn
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Jia Ning
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Vikram Narayan
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Kathryn L Ball
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University College of Engineering, Eng 146 Rumeli Feneri Yolu, 34450 Sarıyer, Istanbul, Turkey
| |
Collapse
|
6
|
A Streamlined, Automated Protocol for the Production of Milligram Quantities of Untagged Recombinant Rat Lactate Dehydrogenase A Using ÄKTAxpressTM. PLoS One 2015; 10:e0146164. [PMID: 26717415 PMCID: PMC4696747 DOI: 10.1371/journal.pone.0146164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/14/2015] [Indexed: 11/19/2022] Open
Abstract
We developed an efficient, automated 2-step purification protocol for the production of milligram quantities of untagged recombinant rat lactate dehydrogenase A (rLDHA) from E. coli, using the ÄKTAxpress™ chromatography system. Cation exchange followed by size exclusion results in average final purity in excess of 93% and yields ~ 14 milligrams per 50 ml of original cell culture in EnPresso B media, in under 8 hrs, including all primary sample processing and column equilibration steps. The protein is highly active and coherent biophysically and a viable alternative to the more problematic human homolog for structural and ligand-binding studies; an apo structure of untagged rLDHA was solved to a resolution 2.29 Å (PDB ID 5ES3). Our automated methodology uses generic commercially available pre-packed columns and simple buffers, and represents a robust standard method for the production of milligram amounts of untagged rLDHA, facilitating a novel fragment screening approach for new inhibitors.
Collapse
|
7
|
Blackburn EA, Wear MA, Landré V, Narayan V, Ning J, Erman B, Ball KL, Walkinshaw MD. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90. Biosci Rep 2015; 35:e00258. [PMID: 26330616 PMCID: PMC4721547 DOI: 10.1042/bsr20150124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/19/2015] [Accepted: 07/03/2015] [Indexed: 02/06/2023] Open
Abstract
Cyclophilin 40 (Cyp40) comprises an N-terminal cyclophilin domain with peptidyl-prolyl isomerase (PPIase) activity and a C-terminal tetratricopeptide repeat (TPR) domain that binds to the C-terminal-EEVD sequence common to both heat shock protein 70 (Hsp70) and Hsp90. We show in the present study that binding of peptides containing the MEEVD motif reduces the PPIase activity by ∼30%. CD and fluorescence assays show that the TPR domain is less stable than the cyclophilin domain and is stabilized by peptide binding. Isothermal titration calorimetry (ITC) shows that the affinity for the-MEEVD peptide is temperature sensitive in the physiological temperature range. Results from these biophysical studies fit with the MD simulations of the apo and holo (peptide-bound) structures which show a significant reduction in root mean square (RMS) fluctuation in both TPR and cyclophilin domains when-MEEVD is bound. The MD simulations of the apo-protein also highlight strong anti-correlated motions between residues around the PPIase-active site and a band of residues running across four of the seven helices in the TPR domain. Peptide binding leads to a distortion in the shape of the active site and a significant reduction in these strongly anti-correlated motions, providing an explanation for the allosteric effect of ligand binding and loss of PPIase activity. Together the experimental and MD results suggest that on heat shock, dissociation of Cyp40 from complexes mediated by the TPR domain leads to an increased pool of free Cyp40 capable of acting as an isomerase/chaperone in conditions of cellular stress.
Collapse
Affiliation(s)
- Elizabeth A Blackburn
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Martin A Wear
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Vivian Landré
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Vikram Narayan
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Jia Ning
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K
| | - Burak Erman
- Chemical and Biological Engineering Department, Koc University, Istanbul 34415, Turkey
| | - Kathryn L Ball
- IGMM-Edinburgh Cancer Research Centre, University of Edinburgh, Crewe Road South, EH4 2XR, U.K
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, U.K.
| |
Collapse
|
8
|
Shave S, Blackburn EA, Adie J, Houston DR, Auer M, Webster SP, Taylor P, Walkinshaw MD. UFSRAT: Ultra-fast Shape Recognition with Atom Types--the discovery of novel bioactive small molecular scaffolds for FKBP12 and 11βHSD1. PLoS One 2015; 10:e0116570. [PMID: 25659145 PMCID: PMC4319890 DOI: 10.1371/journal.pone.0116570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/15/2014] [Indexed: 12/31/2022] Open
Abstract
MOTIVATION Using molecular similarity to discover bioactive small molecules with novel chemical scaffolds can be computationally demanding. We describe Ultra-fast Shape Recognition with Atom Types (UFSRAT), an efficient algorithm that considers both the 3D distribution (shape) and electrostatics of atoms to score and retrieve molecules capable of making similar interactions to those of the supplied query. RESULTS Computational optimization and pre-calculation of molecular descriptors enables a query molecule to be run against a database containing 3.8 million molecules and results returned in under 10 seconds on modest hardware. UFSRAT has been used in pipelines to identify bioactive molecules for two clinically relevant drug targets; FK506-Binding Protein 12 and 11β-hydroxysteroid dehydrogenase type 1. In the case of FK506-Binding Protein 12, UFSRAT was used as the first step in a structure-based virtual screening pipeline, yielding many actives, of which the most active shows a KD, app of 281 µM and contains a substructure present in the query compound. Success was also achieved running solely the UFSRAT technique to identify new actives for 11β-hydroxysteroid dehydrogenase type 1, for which the most active displays an IC50 of 67 nM in a cell based assay and contains a substructure radically different to the query. This demonstrates the valuable ability of the UFSRAT algorithm to perform scaffold hops. AVAILABILITY AND IMPLEMENTATION A web-based implementation of the algorithm is freely available at http://opus.bch.ed.ac.uk/ufsrat/.
Collapse
Affiliation(s)
- Steven Shave
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth A. Blackburn
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Jillian Adie
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas R. Houston
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Manfred Auer
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Scott P. Webster
- University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Paul Taylor
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Malcolm D. Walkinshaw
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Van der Borght J, Soetaert W, Desmet T. Engineering the acceptor specificity of trehalose phosphorylase for the production of trehalose analogs. Biotechnol Prog 2012; 28:1257-62. [PMID: 22848048 DOI: 10.1002/btpr.1609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/03/2012] [Indexed: 12/21/2022]
Abstract
Trehalose (α-D-glucopyranosyl-(1,1)-α-D-glucopyranoside) is widely used in the food industry, thanks to its protective effect against freezing and dehydration. Analogs of trehalose have the additional benefit that they are not digested and thus do not contribute to our caloric intake. Such trehalose analogs can be produced with the enzyme trehalose phosphorylase, when it is applied in the reverse, synthetic mode. Despite the enzyme's broad acceptor specificity, its catalytic efficiency for alternative monosaccharides is much lower than for glucose. For galactose, this difference is shown here to be caused by a lower K(m) whereas the k(cat) for both substrates is equal. Consequently, increasing the affinity was attempted by enzyme engineering of the trehalose phosphorylase from Thermoanaerobacter brockii, using both semirational and random mutagenesis. While a semirational approach proved unsuccessful, high-throughput screening of an error-prone PCR library resulted in the discovery of three beneficial mutations that lowered K(m) two- to three-fold. In addition, it was found that mutation of these positions also leads to an improved catalytic efficiency for mannose and fructose, suggesting their involvement in acceptor promiscuity. Combining the beneficial mutations did not further improve the affinity, and even resulted in a decreased catalytic activity and thermostability. Therefore, enzyme variant R448S is proposed as new biocatalyst for the industrial production of lactotrehalose (α-D-glucopyranosyl-(1,1)-α-D-galactopyranoside).
Collapse
Affiliation(s)
- Jef Van der Borght
- Dept. of Biochemical and Microbial Technology, Center of Expertise for Industrial Biotechnology and Biocatalysis, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | | |
Collapse
|
10
|
Jana B, Bandhu A, Mondal R, Biswas A, Sau K, Sau S. Domain Structure and Denaturation of a Dimeric Mip-like Peptidyl-Prolyl cis–trans Isomerase from Escherichia coli. Biochemistry 2012; 51:1223-37. [PMID: 22263615 DOI: 10.1021/bi2015037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Biswanath Jana
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Amitava Bandhu
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Rajkrishna Mondal
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Anindya Biswas
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| | - Keya Sau
- Department
of Biotechnology, Haldia Institute of Technology, PO-HIT, Dt-Purba Medinipur,
Pin 721657, West Bengal, India
| | - Subrata Sau
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054,
West Bengal, India
| |
Collapse
|
11
|
Biagiotti S, Rossi L, Bianchi M, Giacomini E, Pierigè F, Serafini G, Conaldi PG, Magnani M. Immunophilin-loaded erythrocytes as a new delivery strategy for immunosuppressive drugs. J Control Release 2011; 154:306-13. [DOI: 10.1016/j.jconrel.2011.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 11/15/2022]
|
12
|
Blackburn EA, Maclean JK, Sherborne BS, Walkinshaw MD. Estimating the affinity of protein–ligand complex from changes to the charge-state distribution of a protein in electrospray ionization mass spectrometry. Biochem Biophys Res Commun 2010; 403:190-3. [DOI: 10.1016/j.bbrc.2010.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
|
13
|
Narmandakh A, Bearne SL. Purification of recombinant mandelate racemase: Improved catalytic activity. Protein Expr Purif 2010; 69:39-46. [DOI: 10.1016/j.pep.2009.06.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 10/20/2022]
|
14
|
Ludwig C, Wear MA, Walkinshaw MD. Streamlined, automated protocols for the production of milligram quantities of untagged recombinant human cyclophilin-A (hCypA) and untagged human proliferating cell nuclear antigen (hPCNA) using AKTAxpress. Protein Expr Purif 2009; 71:54-61. [PMID: 19995609 PMCID: PMC2837147 DOI: 10.1016/j.pep.2009.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 12/03/2009] [Indexed: 12/16/2022]
Abstract
We developed streamlined, automated purification protocols for the production of milligram quantities of untagged recombinant human cyclophilin-A (hCypA) and untagged human proliferating cell nuclear antigen (hPCNA) from Escherichia coli, using the AKTAxpress chromatography system. The automated 2-step (cation exchange and size exclusion) purification protocol for untagged hCypA results in final purity and yields of 93% and approximately 5 mg L(-1) of original cell culture, respectively, in under 12h, including all primary sample processing and column equilibration steps. The novel automated 4-step (anion exchange, desalt, heparin-affinity and size exclusion, in linear sequence) purification protocol for untagged hPCNA results in final purity and yields of 87% and approximately 4 mg L(-1) of original cell culture, respectively, in under 24h, including all primary sample processing and column equilibration steps. This saves in excess of four full working days when compared to the traditional protocol, producing protein with similar final yield, purity and activity. Furthermore, it limits a time-dependent protein aggregation, a problem with the traditional protocol that results in a loss of final yield. Both automated protocols were developed to use generic commercially available pre-packed columns and automatically prepared minimal buffers, designed to eliminate user and system variations, maximize run reproducibility, standardize yield and purity between batches, increase throughput and reduce user input to a minimum. Both protocols represent robust generic methods for the automated production of untagged hCypA and hPCNA.
Collapse
Affiliation(s)
- Cornelia Ludwig
- The Edinburgh Protein Production Facility, Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
15
|
Kozany C, März A, Kress C, Hausch F. Fluorescent probes to characterise FK506-binding proteins. Chembiochem 2009; 10:1402-10. [PMID: 19418507 DOI: 10.1002/cbic.200800806] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Talented all-rounders: Fluorescence polarisation assays were developed for members of the FK506-binding protein family by using fluorescent rapamycin analogues (demonstrated in the figure). These tracers retain medium to high affinity to all tested proteins (FKBP12, -12.6, -13, -25, -51, -52). They can be used for active-site titrations, competition assays with unlabelled ligands and enable a robust, miniaturized assay adequate for high-throughput screening.FK506-binding proteins (FKBPs) convey the immunosuppressive action of FK506 and rapamycin and mediate the neuroprotective properties of these compounds, and participate in the regulation of calcium channels. In addition, the larger homologues FKBP51 and FKBP52 act as cochaperones for Hsp90 and regulate the transactivational activity of steroid hormone receptors. To further characterize these FKBPs, we have synthesized fluorescein-coupled rapamycin analogues. In fluorescence polarization assays one of these compounds retained high affinity to all tested proteins (K(d): 0.1-20 nM) and could be used for active-site titrations. To adapt the fluorescence polarization assay for high-throughput purposes, a simplified rapamycin derivative was synthesized and labelled with fluorescein. This probe showed moderate affinity for the FK1 domains of FKBP51 (177 nM) and FKBP52 (469 nM) and allowed a highly robust, optimized, miniaturized assay (Z'>0.7) sufficient for high-throughput screening of large compound libraries.
Collapse
Affiliation(s)
- Christian Kozany
- Chemical Genomics Research Group, Max Planck Institute for Psychiatry, Kraepelinstrasse 2, 80804 Munich, Germany
| | | | | | | |
Collapse
|
16
|
Bjelić S, Jelesarov I. A survey of the year 2007 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:289-312. [PMID: 18729242 DOI: 10.1002/jmr.909] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Elucidation of the energetic principles of binding affinity and specificity is a central task in many branches of current sciences: biology, medicine, pharmacology, chemistry, material sciences, etc. In biomedical research, integral approaches combining structural information with in-solution biophysical data have proved to be a powerful way toward understanding the physical basis of vital cellular phenomena. Isothermal titration calorimetry (ITC) is a valuable experimental tool facilitating quantification of the thermodynamic parameters that characterize recognition processes involving biomacromolecules. The method provides access to all relevant thermodynamic information by performing a few experiments. In particular, ITC experiments allow to by-pass tedious and (rarely precise) procedures aimed at determining the changes in enthalpy and entropy upon binding by van't Hoff analysis. Notwithstanding limitations, ITC has now the reputation of being the "gold standard" and ITC data are widely used to validate theoretical predictions of thermodynamic parameters, as well as to benchmark the results of novel binding assays. In this paper, we discuss several publications from 2007 reporting ITC results. The focus is on applications in biologically oriented fields. We do not intend a comprehensive coverage of all newly accumulated information. Rather, we emphasize work which has captured our attention with originality and far-reaching analysis, or else has provided ideas for expanding the potential of the method.
Collapse
Affiliation(s)
- Sasa Bjelić
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | |
Collapse
|
17
|
Wear MA, Walkinshaw MD. Determination of the rate constants for the FK506 binding protein/rapamycin interaction using surface plasmon resonance: an alternative sensor surface for Ni2+-nitrilotriacetic acid immobilization of His-tagged proteins. Anal Biochem 2007; 371:250-2. [PMID: 17655818 DOI: 10.1016/j.ab.2007.06.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 06/14/2007] [Accepted: 06/21/2007] [Indexed: 11/23/2022]
Affiliation(s)
- Martin A Wear
- Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
18
|
Oroguchi T, Ikeguchi M, Ota M, Kuwajima K, Kidera A. Unfolding pathways of goat alpha-lactalbumin as revealed in multiple alignment of molecular dynamics trajectories. J Mol Biol 2007; 371:1354-64. [PMID: 17610894 DOI: 10.1016/j.jmb.2007.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/05/2007] [Accepted: 06/08/2007] [Indexed: 11/24/2022]
Abstract
Molecular dynamics simulations of protein unfolding were performed at an elevated temperature for the authentic and recombinant forms of goat alpha-lactalbumin. Despite very similar three-dimensional structures, the two forms have significantly different unfolding rates due to an extra N-terminal methionine in the recombinant protein. To identify subtle differences between the two forms in the highly stochastic kinetics of unfolding, we classified the unfolding trajectories using the multiple alignment method based on the analogy between the biological sequences and the molecular dynamics trajectories. A dendrogram derived from the multiple trajectory alignment revealed a clear difference in the unfolding pathways of the authentic and recombinant proteins, i.e. the former reached the transition state in an all-or-none manner while the latter unfolded less cooperatively. It was also found in the classification that the two forms of the protein shared a common transition state structure, which was in excellent agreement with the transition state structure observed experimentally in the Phi-value analysis.
Collapse
Affiliation(s)
- Tomotaka Oroguchi
- Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|