1
|
Sinitsyna OA, Volkov PV, Zorov IN, Rozhkova AM, Emshanov OV, Romanova YM, Komarova BS, Novikova NS, Nifantiev NE, Sinitsyn AP. Physico-chemical properties and substrate specificity of α-(1→3)-d-glucan degrading recombinant mutanase from Trichoderma harzianum expressed in Penicillium verruculosum. Appl Environ Microbiol 2025; 91:e0022624. [PMID: 39846749 PMCID: PMC11837517 DOI: 10.1128/aem.00226-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
The gene mutAW encoding Trichoderma harzianum fungus mutanase (MutA, GH71 family, α-1,3-glucanase, EC 3.2.1.59) was cloned and heterologously expressed by the highly productive Penicillium verruculosum fungus. P. verruculosum MutA strain secreted crude enzyme preparations with the recombinant MutA content of 40% of the total secreted protein, and the specific activity increased 150 folds compared to that of enzyme preparation obtained by the host strain. Homogeneous MutA had molecular mass of 70 kDa and displayed maximum of the activity on mutan at pH 5.0 and 50°C, with Km and kcat being 1.0 g/L and 30 s-1, respectively. At 40-50°C, the MutA was stable for at least 3 h. Glucose was the main product of long-term mutan hydrolysis. HPLC analysis of hydrolysis product of oligo-α-(1→3)-D-glucosides bearing UV-detectable N-trans-cinnamoyl residue in the aglycon clearly indicated that MutA has an endo-processive hydrolytic mode of action. It was demonstrated that MutA can destroy the polysaccharide matrix of both gram-positive and gram-negative pathogenic bacteria biofilms. IMPORTANCE The manuscript describes the properties of a novel recombinant GH71 mutanase Mut A from Trichoderma harzianum. Gene mutAW encoding mutanase was heterologously expressed in the host strain Penicillium verruculosum B1-537 (ΔniaD). The recipient strain has a high secretory ability and allowed to obtain preparations containing the target recombinant enzyme up to 80% of the total protein pool. MutA exhibited a high activity against mutan and negligible or zero activity toward other types of glucans including α-(1→4)-, β-(1→3)-, β-(1→4)-, and β-(1→6)-glucans. By using a series of synthetic oligo-α-(1→3)-D-glucosides, we demonstrated that MutA is an endo-processive enzyme, which hydrolyzes the internal glucosidic bonds and releases glucose from the reducing end sliding into the non-reducing end. MutA recognizes tetrasaccharide as a minimal substrate and hydrolyzes it to trisaccharide and glucose. The effectiveness of the use of MutA for the destruction of clinical isolates of gram-positive and gram-negative bacteria is also described.
Collapse
Affiliation(s)
- Olga A. Sinitsyna
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Pavel V. Volkov
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan N. Zorov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow, Russia
| | - Alexandra M. Rozhkova
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow, Russia
| | | | - Yulia M. Romanova
- The National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Bozhena S. Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Natalia S. Novikova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Arkady P. Sinitsyn
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Horaguchi Y, Takahashi M, Takamatsu K, Konno H, Makabe K, Yano S. Heterologous expression of α-1,3-glucanase Agn1p from Schizosaccharomyces pombe, and efficient production of nigero-oligosaccharides by enzymatic hydrolysis from solubilized α-1,3;1,6-glucan. Biosci Biotechnol Biochem 2023; 87:1219-1228. [PMID: 37410615 DOI: 10.1093/bbb/zbad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The glycoside hydrolase family 71 α-1,3-glucanase (Agn1p) of Schizosaccharomyces pombe was expressed in Escherichia coli Rosetta-gami B (DE3). Agn1p (0.5 nmol/mL) hydrolyzed insoluble α-1,3-glucan (1%), and about 3.3 mm reducing sugars were released after 1440 min of reaction. The analysis of reaction products by high-performance liquid chromatography revealed that pentasaccharides accumulated in the reaction mixture as the main products, along with a small amount of mono-, di-, tri-, tetra-, and hexasaccharides. Soluble glucan was prepared from insoluble α-1,3;1,6-glucan by alkaline and sonication treatment to improve the hydrolytic efficiency. As a result, this solubilized α-1,3;1,6-glucan maintained a solubilized state for at least 6 h. Agn1p (0.5 nmol/mL) hydrolyzed the solubilized α-1,3;1,6-glucan (1%), and about 8.2 mm reducing sugars were released after 240 min of reaction. Moreover, Agn1p released about 12.3 mm reducing sugars from 2% of the solubilized α-1,3;1,6-glucan.
Collapse
Affiliation(s)
- Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Keigo Takamatsu
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| |
Collapse
|
3
|
Stephen-Victor E, Karnam A, Fontaine T, Beauvais A, Das M, Hegde P, Prakhar P, Holla S, Balaji KN, Kaveri SV, Latgé JP, Aimanianda V, Bayry J. Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells. J Infect Dis 2017; 216:1281-1294. [PMID: 28968869 DOI: 10.1093/infdis/jix469] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Background Human dendritic cell (DC) response to α-(1,3)-glucan polysaccharide of Aspergillus fumigatus and ensuing CD4+ T-cell polarization are poorly characterized. Methods α-(1,3)-Glucan was isolated from A. fumigatus conidia and mycelia cell wall. For the analysis of polarization, DCs and autologous naive CD4+ T cells were cocultured. Phenotype of immune cells was analyzed by flow cytometry, and cytokines by enzyme-linked immunosorbent assay (ELISA). Blocking antibodies were used to dissect the role of Toll-like receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) in regulating α-(1,3)-glucan-mediated DC activation and T-cell responses. DCs from TLR2-deficient mice were additionally used to consolidate the findings. Results α-(1,3)-Glucan induced the maturation of DCs and was dependent in part on TLR2. "α-(1,3)-Glucan-educated" DCs stimulated the activation of naive T cells and polarized a subset of these cells into CD4+CD25+FoxP3+ regulatory T cells (Tregs). Mechanistically, Treg stimulation by α-(1,3)-glucan was dependent on the PD-L1 pathway that negatively regulated interferon-gamma (IFN-γ) secretion. Short α-(1,3)-oligosaccharides lacked the capacity to induce maturation of DCs but significantly blocked α-(1,3)-glucan-induced Treg polarization. Conclusions PD-L1 dictates the balance between Treg and IFN-γ responses induced by α-(1,3)-glucan. Our data provide a rationale for the exploitation of immunotherapeutic approaches that target PD-1-PD-L1 to enhance protective immune responses to A. fumigatus infections.
Collapse
Affiliation(s)
- Emmanuel Stephen-Victor
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | - Anupama Karnam
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | | | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, Paris, France
| | - Mrinmoy Das
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | - Pushpa Hegde
- Institut National de la Santé et de la Recherche Médicale.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers
| | - Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sahana Holla
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers.,Université Paris Descartes, Paris, France
| | | | | | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale.,Sorbonne Universités-Université Pierre et Marie Curie.,Equipe - Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers.,Université Paris Descartes, Paris, France
| |
Collapse
|
4
|
Suyotha W, Yano S, Wakayama M. α-1,3-Glucanase: present situation and prospect of research. World J Microbiol Biotechnol 2016; 32:30. [PMID: 26748807 DOI: 10.1007/s11274-015-1977-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
Abstract
α-1,3-Glucanases hydrolyze α-1,3-glucan which is an insoluble linear α-1,3-linked homopolymer of glucose and these enzymes are classified into two families of glycoside hydrolases on the basis of amino acid sequence similarity; type-71 α-1,3-glucanases found in fungi and type-87 enzymes in bacteria. α-1,3-Glucan (also called 'mutan') is a major component of dental plaque formed by oral Streptococci and has important physiological roles in various fungal species, including as a component of cell walls, an endogenous carbon source for sexual development, and a virulent factor. Considering these backgrounds, α-1,3-glucanases have been investigated from the perspectives of applications to dental care and development of cell-wall lytic enzymes. Compared with information regarding other glycoside hydrolases such as amylases, cellulases, chitinases, and β-glucanases, there is limited biochemical and structural information available regarding α-1,3-glucanase. Further research on α-1,3-glucanases on enzyme application to dental care and biological control of pathogenic fungi is expected. In this mini-review, we briefly describe how α-1,3-glucanases are categorized and characterized and present our study findings regarding α-1,3-glucanase from Bacillus circulans KA-304. Furthermore, we briefly discuss potential future applications of α-1,3-glucanases.
Collapse
Affiliation(s)
- Wasana Suyotha
- Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
5
|
Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int J Biol Macromol 2015; 79:761-78. [PMID: 26047901 DOI: 10.1016/j.ijbiomac.2015.05.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
Dental plaque is a highly diverse biofilm, which has an important function in maintenance of oral and systemic health but in some conditions becomes a cause of oral diseases. In addition to mechanical plaque removal, current methods of dental plaque control involve the use of chemical agents against biofilm pathogens, which however, given the complexity of the oral microbiome, is not sufficiently effective. Hence, there is a need for development of new anti-biofilm approaches. Polysaccharides, especially (1→3),(1→6)-α-D-glucans, which are key structural and functional constituents of the biofilm matrix, seem to be a good target for future therapeutic strategies. In this review, we have focused on (1→3)-α-glucanases, which can limit the cariogenic properties of the dental plaque extracellular polysaccharides. These enzymes are not widely known and have not been exhaustively described in literature.
Collapse
Affiliation(s)
- Małgorzata Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Janusz Szczodrak
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
6
|
Characterization of the starvation-induced chitinase CfcA and α-1,3-glucanase AgnB of Aspergillus niger. Appl Microbiol Biotechnol 2014; 99:2209-23. [DOI: 10.1007/s00253-014-6062-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
7
|
Bajaj I, Veiga T, van Dissel D, Pronk JT, Daran JM. Functional characterization of a Penicillium chrysogenum mutanase gene induced upon co-cultivation with Bacillus subtilis. BMC Microbiol 2014; 14:114. [PMID: 24884713 PMCID: PMC4077275 DOI: 10.1186/1471-2180-14-114] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Microbial gene expression is strongly influenced by environmental growth conditions. Comparison of gene expression under different conditions is frequently used for functional analysis and to unravel regulatory networks, however, gene expression responses to co-cultivation with other microorganisms, a common occurrence in nature, is rarely studied under laboratory conditions. To explore cellular responses of the antibiotic-producing fungus Penicillium chrysogenum to prokaryotes, the present study investigates its transcriptional responses during co-cultivation with Bacillus subtilis. RESULTS Steady-state glucose-limited chemostats of P. chrysogenum grown under penillicin-non-producing conditions were inoculated with B. subtilis. Physiological and transcriptional responses of P. chrysogenum in the resulting mixed culture were monitored over 72 h. Under these conditions, B. subtilis outcompeted P. chrysogenum, as reflected by a three-fold increase of the B. subtilis population size and a two-fold reduction of the P. chrysogenum biomass concentration. Genes involved in the penicillin pathway and in synthesis of the penicillin precursors and side-chain were unresponsive to the presence of B. subtilis. Moreover, Penicillium polyketide synthase and nonribosomal peptide synthase genes were either not expressed or down-regulated. Among the highly responsive genes, two putative α-1,3 endoglucanase (mutanase) genes viz Pc12g07500 and Pc12g13330 were upregulated by more than 15-fold and 8-fold, respectively. Measurement of enzyme activity in the supernatant of mixed culture confirmed that the co-cultivation with B. subtilis induced mutanase production. Mutanase activity was neither observed in pure cultures of P. chrysogenum or B. subtilis, nor during exposure of P. chrysogenum to B. subtilis culture supernatants or heat-inactivated B. subtilis cells. However, mutanase production was observed in cultures of P. chrysogenum exposed to filter-sterilized supernatants of mixed cultures of P. chrysogenum and B. subtilis. Heterologous expression of Pc12g07500 and Pc12g13330 genes in Saccharomyces cerevisiae confirmed that Pc12g07500 encoded an active α-1,3 endoglucanase. CONCLUSION Time-course transcriptional profiling of P. chrysogenum revealed differentially expressed genes during co-cultivation with B. subtilis. Penicillin production was not induced under these conditions. However, induction of a newly characterized P. chrysogenum gene encoding α-1,3 endoglucanase may enhance the efficacy of fungal antibiotics by degrading bacterial exopolysaccharides.
Collapse
Affiliation(s)
- Ishwar Bajaj
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Tânia Veiga
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Dino van Dissel
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, the Netherlands
- Platform for Green Synthetic Biology, P.O. Box 5057, 2600 GA Delft, the Netherlands
| |
Collapse
|
8
|
Pleszczyńska M, Boguszewska A, Tchórzewski M, Wiater A, Szczodrak J. Gene cloning, expression, and characterization of mutanase from Paenibacillus curdlanolyticus MP-1. Protein Expr Purif 2012; 86:68-74. [PMID: 22982219 DOI: 10.1016/j.pep.2012.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/24/2012] [Indexed: 11/17/2022]
Abstract
Mutanases hydrolyze d-glucosidic linkages of α-1,3-linked polysaccharides which are important components of dental plaque. Therefore, these enzymes can be useful in preventive oral hygiene. A gene encoding mutanase was cloned from soil-isolated Paenibacillus curdlanolyticus MP-1 and expressed in Escherichia coli, and the resulting recombinant enzyme was characterized. The nucleotide sequence of the mutanase gene consisted of 3786 nucleotides encoding a protein of 1261 amino acids with a theoretical molecular weight of 131.62kDa. The deduced amino acid sequence exhibited a high degree of similarity with mutanases of Paenibacillus sp. KSM-M126 and Paenibacillus humicus NA1123, with 84% and 80% identity, respectively. The recombinant enzyme was purified 17.5-fold to homogeneity with a recovery of 37%. The purified mutanase showed optimal activity at pH 6.0 and 45°C, and was completely stable at pH 4.0-9.5 and up to 45°C. The enzyme was specific for α-1,3-glucosidic linkages and effectively solubilized fungal α-1,3-glucans and streptococcal mutans, releasing nigerooligosaccharides. The mutanase did not hydrolyze a synthetic substrate readily hydrolyzed by exoglucanases and the enzyme activity was not suppressed in the presence of deoxynojirimycin, an inhibitor of exo-type enzymes. These results suggest an endohydrolytic mode of action.
Collapse
Affiliation(s)
- Małgorzata Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-031 Lublin, Poland.
| | | | | | | | | |
Collapse
|
9
|
Tsumori H, Kawauti T, Shimamura A, Hanada N, Sakurai Y, Yamakami K. Cloning and Expression of the Mutanase Gene of Paenibacillus humicus from Fermented Food. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.456] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Takiti Kawauti
- Department of Translational Research, School of Dental Medicine, Tsurumi University
| | | | - Nobuhiro Hanada
- Department of Translational Research, School of Dental Medicine, Tsurumi University
| | - Yutaka Sakurai
- Department of Preventive Medicine and Public Health, National Defense Medical College
| | - Kazuo Yamakami
- Department of Preventive Medicine and Public Health, National Defense Medical College
| |
Collapse
|