1
|
Bahun M, Poklar Ulrih N. High selectivity of the hyperthermophilic subtilase propeptide domain toward inhibition of its cognate protease. Microbiol Spectr 2023; 11:e0148723. [PMID: 37655909 PMCID: PMC10580911 DOI: 10.1128/spectrum.01487-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/04/2023] [Indexed: 09/02/2023] Open
Abstract
Microbial extracellular subtilases are highly active proteolytic enzymes commonly used in commercial applications. These subtilases are synthesized in their inactive proform, which matures into the active protease under the control of the propeptide domain. In mesophilic bacterial prosubtilases, the propeptide functions as both an obligatory chaperone and an inhibitor of the subtilase catalytic domain. In contrast, the propeptides of hyperthermophilic archaeal prosubtilases act mainly as tight inhibitors and are not essential for subtilase folding. It is unclear whether this stronger inhibitory activity of hyperthermophilic propeptides results in their higher selectivity toward their cognate subtilases, in contrast to promiscuous mesophilic propeptides. Here, we showed that the propeptide of pernisine, a hyperthermostable archaeal subtilase, strongly interacts with and inhibits pernisine, but not the homologous subtilisin Carlsberg and proteinase K. Instead, the pernisine propeptide was readily degraded by subtilisin Carlsberg and proteinase K. In addition, the catalytic domain of unprocessed propernisine was also susceptible to degradation but became proteolytically stable after autoprocessing of propernisine into the inactive, noncovalent complex propeptide:pernisine. This allowed efficient transactivation of the autoprocessed complex propeptide:pernisine through degradation of pernisine propeptide by subtilisin Carlsberg and proteinase K at mesophilic temperature. Moreover, we demonstrated that active pernisine molecules are inhibited by the propeptide that is released after pernisine-catalyzed degradation of the unprocessed propernisine catalytic domain. This highlights the high inhibitory potency of the hyperthermophilic propeptide toward its cognate subtilase and its importance in regulating subtilase maturation, to prevent the degradation of the unprocessed subtilase precursors by the prematurely activated molecules. IMPORTANCE Many microorganisms secrete proteases into their environment to degrade protein substrates for their growth. The important group of these extracellular enzymes are subtilases, which are also widely used in practical applications. These subtilases are inhibited by their propeptide domain, which is degraded during the prosubtilase maturation process. Here, we showed that the propeptide of pernisine, a prion-degrading subtilase from the hyperthermophilic archaeon, strongly inhibits pernisine with extraordinarily high binding affinity. This interaction proved to be highly selective, as pernisine propeptide was rapidly degraded by mesophilic pernisine homologs. This in turn allowed rapid transactivation of propernisine by mesophilic subtilases at lower temperatures, which might simplify the procedures for preparation of active pernisine for commercial use. The results reported in this study suggest that the hyperthermophilic subtilase propeptide evolved to function as tight and selective regulator of maturation of the associated prosubtilase to prevent its premature activation under high temperatures.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
| |
Collapse
|
2
|
Juteršek M, Dolinar M. A chimeric vector for dual use in cyanobacteria and Escherichia coli, tested with cystatin, a nonfluorescent reporter protein. PeerJ 2021; 9:e12199. [PMID: 34760347 PMCID: PMC8571960 DOI: 10.7717/peerj.12199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022] Open
Abstract
Background Developing sustainable autotrophic cell factories depends heavily on the availability of robust and well-characterized biological parts. For cyanobacteria, these still lag behind the more advanced E. coli toolkit. In the course of previous protein expression experiments with cyanobacteria, we encountered inconveniences in working with currently available RSF1010-based shuttle plasmids, particularly due to their low biosafety and low yields of recombinant proteins. We also recognized some drawbacks of the commonly used fluorescent reporters, as quantification can be affected by the intrinsic fluorescence of cyanobacteria. To overcome these drawbacks, we envisioned a new chimeric vector and an alternative reporter that could be used in cyanobacterial synthetic biology and tested them in the model cyanobacterium Synechocystis sp. PCC 6803. Methods We designed the pMJc01 shuttle plasmid based on the broad host range RSFmob-I replicon. Standard cloning techniques were used for vector construction following the RFC10 synthetic biology standard. The behavior of pMJC01 was tested with selected regulatory elements in E. coli and Synechocystis sp. PCC 6803 for the biosynthesis of the established GFP reporter and of a new reporter protein, cystatin. Cystatin activity was assayed using papain as a cognate target. Results With the new vector we observed a significantly higher GFP expression in E. coli and Synechocystis sp. PCC 6803 compared to the commonly used RSF1010-based pPMQAK1. Cystatin, a cysteine protease inhibitor, was successfully expressed with the new vector in both E. coli and Synechocystis sp. PCC 6803. Its expression levels allowed quantification comparable to the standardly used fluorescent reporter GFPmut3b. An important advantage of the new vector is its improved biosafety due to the absence of plasmid regions encoding conjugative transfer components. The broadhost range vector pMJc01 could find application in synthetic biology and biotechnology of cyanobacteria due to its relatively small size, stability and ease of use. In addition, cystatin could be a useful reporter in all cell systems that do not contain papain-type proteases and inhibitors, such as cyanobacteria, and provides an alternative to fluorescent reporters or complements them.
Collapse
Affiliation(s)
- Mojca Juteršek
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.,Current Affiliation: National Institute of Biology, Ljubljana, Slovenia
| | - Marko Dolinar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Insights into the Maturation of Pernisine, a Subtilisin-Like Protease from the Hyperthermophilic Archaeon Aeropyrum pernix. Appl Environ Microbiol 2020; 86:AEM.00971-20. [PMID: 32561587 DOI: 10.1128/aem.00971-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Pernisine is a subtilisin-like protease that was originally identified in the hyperthermophilic archaeon Aeropyrum pernix, which lives in extreme marine environments. Pernisine shows exceptional stability and activity due to the high-temperature conditions experienced by A. pernix Pernisine is of interest for industrial purposes, as it is one of the few proteases that has demonstrated prion-degrading activity. Like other extracellular subtilisins, pernisine is synthesized in its inactive pro-form (pro-pernisine), which needs to undergo maturation to become proteolytically active. The maturation processes of mesophilic subtilisins have been investigated in detail; however, less is known about the maturation of their thermophilic homologs, such as pernisine. Here, we show that the structure of pro-pernisine is disordered in the absence of Ca2+ ions. In contrast to the mesophilic subtilisins, pro-pernisine requires Ca2+ ions to adopt the conformation suitable for its subsequent maturation. In addition to several Ca2+-binding sites that have been conserved from the thermostable Tk-subtilisin, pernisine has an additional insertion sequence with a Ca2+-binding motif. We demonstrate the importance of this insertion for efficient folding and stabilization of pernisine during its maturation. Moreover, analysis of the pernisine propeptide explains the high-temperature requirement for pro-pernisine maturation. Of note, the propeptide inhibits the pernisine catalytic domain more potently at high temperatures. After dissociation, the propeptide is destabilized at high temperatures only, which leads to its degradation and finally to pernisine activation. Our data provide new insights into and understanding of the thermostable subtilisin autoactivation mechanism.IMPORTANCE Enzymes from thermophilic organisms are of particular importance for use in industrial applications, due to their exceptional stability and activity. Pernisine, from the hyperthermophilic archaeon Aeropyrum pernix, is a proteolytic enzyme that can degrade infective prion proteins and thus has a potential use for disinfection of prion-contaminated surfaces. Like other subtilisin-like proteases, pernisine needs to mature through an autocatalytic process to become an active protease. In the present study, we address the maturation of pernisine and show that the process is regulated specifically at high temperatures by the propeptide. Furthermore, we demonstrate the importance of a unique Ca2+-binding insertion for stabilization of mature pernisine. Our results provide a novel understanding of thermostable subtilisin autoactivation, which might advance the development of these enzymes for commercial use.
Collapse
|
4
|
Bahun M, Hartman K, Poklar Ulrih N. Periplasmic production of pernisine in Escherichia coli and determinants for its high thermostability. Appl Microbiol Biotechnol 2020; 104:7867-7878. [PMID: 32734388 DOI: 10.1007/s00253-020-10791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022]
Abstract
Pernisine is a subtilisin-like serine proteinase secreted by the hyperthermophilic archaeon Aeropyrum pernix. The significant properties of this proteinase are remarkable stability and ability to degrade the infectious prion proteins. Here we show the production of pernisine in the periplasm of Escherichia coli. This strategy prevented the aggregation of pernisine in the cytoplasm and increased the purity of the isolated pernisine. The thermostability of this recombinant pernisine was significantly increased compared with previous studies. In addition, several truncated pernisine variants were constructed and expressed in E. coli to identify the minimally active domain. The catalytic domain of pernisine consists of the αẞα structurally similar core flanked by the N-terminal and C-terminal outer regions. The deletion of the C-terminal α helix did not affect the pernisine activity at 90 °C. However, the complete deletion of the C-terminal outer region resulted in loss of proteolytic activity. The pernisine variant, in which the N-terminal outer region was deleted, had a reduced activity at 90 °C. These results underline the importance of the Ca2+ binding sites predicted in these outer regions for stability and activity of pernisine. KEY POINTS: • Aggregation of produced pernisine was prevented by translocation into periplasm. • Thermostability of mature pernisine was increased. • The outer regions of the catalytic core are required for pernisine thermostability.
Collapse
Affiliation(s)
- Miha Bahun
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kevin Hartman
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia. .,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia.
| |
Collapse
|
5
|
Černigoj U, Martinuč U, Cardoso S, Sekirnik R, Krajnc NL, Štrancar A. Sample displacement chromatography of plasmid DNA isoforms. J Chromatogr A 2015; 1414:103-9. [DOI: 10.1016/j.chroma.2015.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
|
6
|
Abstract
A number of recently developed and approved therapeutic agents based on highly specific and potent antibodies have shown the potential of antibody therapy. As the next step, antibody-based therapeutics will be bioengineered in a way that they not only bind pathogenic targets but also address other issues, including drug targeting and delivery. For antibodies that are expected to act within brain tissue, like those that are directed against the pathogenic prion protein isoform, one of the major obstacles is the blood-brain barrier which prevents efficient transfer of the antibody, even of the engineered single-chain variants. We recently demonstrated that a specific prion-specific antibody construct which was injected into the murine tail vein can be efficiently transported into brain tissue. The novelty of the work was in that the cell penetrating peptide was used as a linker connecting both specificity-determining domains of the antibody peptide, thus eliminating the need for the standard flexible linker, composed of an arrangement of three consecutive (Gly 4Ser) repeats. This paves the road toward improved bioengineered antibody variants that target brain antigens.
Collapse
Affiliation(s)
- Nives Škrlj
- Chair of Biochemistry; Faculty of Chemistry and Chemical Technology; University of Ljubljana; Ljubljana, Slovenia
| | - Marko Dolinar
- Chair of Biochemistry; Faculty of Chemistry and Chemical Technology; University of Ljubljana; Ljubljana, Slovenia
| |
Collapse
|
7
|
Skrlj N, Drevenšek G, Hudoklin S, Romih R, Curin Šerbec V, Dolinar M. Recombinant single-chain antibody with the Trojan peptide penetratin positioned in the linker region enables cargo transfer across the blood-brain barrier. Appl Biochem Biotechnol 2012; 169:159-69. [PMID: 23160949 DOI: 10.1007/s12010-012-9962-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/06/2012] [Indexed: 11/29/2022]
Abstract
Delivery of therapeutic proteins into tissues and across the blood-brain barrier (BBB) is limited by the size and biochemical properties of the proteins. Efficient delivery across BBB is generally restricted to small, highly lipophilic molecules. However, in the last decades, several peptides that can pass cell membranes have been identified. It has been shown that these peptides are also capable of delivering large hydrophilic cargoes into cells and are therefore a powerful biological tool for transporting drugs across cell membranes and even into the brain. We designed and prepared a single-chain antibody fragment (scFvs), specific for the pathological form of the prion protein (PrP(Sc)), where a cell-penetrating peptide (CPP) was used as a linker between the two variable domains of the scFv. The intravenously administered recombinant scFv-CPP was successfully targeted to and delivered into mouse brain cells. Our single-chain antibody fragments are of special interest in view of possible therapeutic reagents design not only for prion diseases but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Nives Skrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
8
|
Škrlj N, Vranac T, Popović M, Čurin Šerbec V, Dolinar M. Specific binding of the pathogenic prion isoform: development and characterization of a humanized single-chain variable antibody fragment. PLoS One 2011; 6:e15783. [PMID: 21283753 PMCID: PMC3024399 DOI: 10.1371/journal.pone.0015783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/24/2010] [Indexed: 11/18/2022] Open
Abstract
Murine monoclonal antibody V5B2 which specifically recognizes the pathogenic form of the prion protein represents a potentially valuable tool in diagnostics or therapy of prion diseases. As murine antibodies elicit immune response in human, only modified forms can be used for therapeutic applications. We humanized a single-chain V5B2 antibody using variable domain resurfacing approach guided by computer modelling. Design based on sequence alignments and computer modelling resulted in a humanized version bearing 13 mutations compared to initial murine scFv. The humanized scFv was expressed in a dedicated bacterial system and purified by metal-affinity chromatography. Unaltered binding affinity to the original antigen was demonstrated by ELISA and maintained binding specificity was proved by Western blotting and immunohistochemistry. Since monoclonal antibodies against prion protein can antagonize prion propagation, humanized scFv specific for the pathogenic form of the prion protein might become a potential therapeutic reagent.
Collapse
Affiliation(s)
- Nives Škrlj
- Biochemistry Chair, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Vranac
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Mara Popović
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Biochemistry Chair, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Marko Dolinar
- Biochemistry Chair, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
9
|
Single-chain Fv antibody fragments retain binding properties of the monoclonal antibody raised against peptide P1 of the human prion protein. Appl Biochem Biotechnol 2009; 160:1808-21. [PMID: 19597999 DOI: 10.1007/s12010-009-8699-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
Abstract
Prion diseases are incurable neurodegenerative diseases that affect both humans and animals. The infectious agent is a pathogenic form of the prion protein that accumulates in brain as amyloids. Currently, there is neither cure nor reliable preclinical diagnostics on the market available. The growing number of reports shows that passive immunisation is one of the most promising strategies for prion disease therapy, where antibodies against prions may prevent and even cure the infection. Since antibodies are large molecules and, thus, might not be suitable for the therapy, different antibody fragments are a good alternative. Therefore, we have designed and prepared single-chain antibody fragments (scFvs) derived from the PrP(Sc)-specific murine monoclonal antibody V5B2. Using a new expression vector pMD204, we produced scFvs in two opposing chain orientations in the periplasm of Escherichia coli. Both recombinant antibody fragments retained the specificity of the parent antibody and one of these exhibited binding properties comparable to the corresponding murine Fab fragments with the affinity in nM range. Our monovalent antibody fragments are of special interest in view of possible therapeutic reagents for prion diseases as well as for development of a new generation of diagnostics.
Collapse
|