1
|
Neis A, da Silva Pinto L. Glycosyl hydrolases family 5, subfamily 5: Relevance and structural insights for designing improved biomass degrading cocktails. Int J Biol Macromol 2021; 193:980-995. [PMID: 34666133 DOI: 10.1016/j.ijbiomac.2021.10.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Endoglucanases are carbohydrate-degrading enzymes widely used for bioethanol production as part of the enzymatic cocktail. However, family 5 subfamily 5 (GH5_5) endoglucanases are still poorly explored in depth. The Trichoderma reesei representative is the most studied enzyme, presenting catalytic activity in acidic media and mild temperature conditions. Though biochemically similar, its modular structure and synergy with other components vary greatly compared to other GH5_5 members and there is still a lack of specific studies regarding their interaction with other cellulases and application on novel and better mixtures. In this regard, the threedimensional structure elucidation is a highly valuable tool to both uncover basic catalytic mechanisms and implement engineering techniques, proved by the high success rate GH5_5 endoglucanases show. GH5_5 enzymes must be carefully evaluated to fully uncover their potential in biomass-degrading cocktails: the optimal industrial conditions, synergy with other cellulases, structural studies, and enzyme engineering approaches. We aimed to provide the current understanding of these main topics, collecting all available information about characterized GH5_5 endoglucanases function, structure, and bench experiments, in order to suggest future directions to a better application of these enzymes in the industry.
Collapse
Affiliation(s)
- Alessandra Neis
- Laboratório de Bioinformática e Proteômica (BioPro Lab), Centro de Desenvolvimento Tecnológico, Campus Universitário, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Caixa Postal 96010-900, Brazil.
| | - Luciano da Silva Pinto
- Laboratório de Bioinformática e Proteômica (BioPro Lab), Centro de Desenvolvimento Tecnológico, Campus Universitário, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Caixa Postal 96010-900, Brazil.
| |
Collapse
|
2
|
Fungal Zn(II) 2Cys 6 Transcription Factor ADS-1 Regulates Drug Efflux and Ergosterol Metabolism under Antifungal Azole Stress. Antimicrob Agents Chemother 2021; 65:AAC.01316-20. [PMID: 33199382 DOI: 10.1128/aac.01316-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Antifungal azoles are the most widely used antifungal drugs in clinical and agricultural practice. Fungi can mount adaptive responses to azole stress by modifying the transcript levels of many genes, and the responsive mechanisms to azoles are the basis for fungi to develop azole resistance. In this study, we identified a new Zn(II)2Cys6 transcription factor, ADS-1, with a positive regulatory function in transcriptional responses to azole stress in the model filamentous fungal species Neurospora crassa Under ketoconazole (KTC) stress, the ads-1 transcript level was significantly increased in N. crassa Deletion of ads-1 increased susceptibility to different azoles, while its overexpression increased resistance to these azoles. The cdr4 gene, which encodes the key azole efflux pump, was positively regulated by ADS-1. Deletion of ads-1 reduced the transcriptional response by cdr4 to KTC stress and increased cellular KTC accumulation under KTC stress, while ads-1 overexpression had the opposite effect. ADS-1 also positively regulated the transcriptional response by erg11, which encodes the azole target lanosterol 14α-demethylase for ergosterol biosynthesis, to KTC stress. After KTC treatment, the ads-1 deletion mutant had less ergosterol but accumulated more lanosterol than the wild type, while ads-1 overexpression had the opposite effect. Homologs of ADS-1 are widely present in filamentous fungal species of Ascomycota but not in yeasts. Deletion of the gene encoding an ADS-1 homolog in Aspergillus flavus also increased susceptibility to KTC and itraconazole (ITZ). Besides, deletion of A. flavus ads-1 (Afads-1) significantly reduced the transcriptional responses by genes encoding homologs of CDR4 and ERG11 in A. flavus to KTC stress, and the deletion mutant accumulated more KTC but less ergosterol. Taken together, these findings demonstrate that the function and regulatory mechanism of ADS-1 homologs among different fungal species in azole responses and the basal resistance of azoles are highly conserved.
Collapse
|
3
|
Hsu Y, Arioka M. In vitro and in vivo characterization of genes involved in mannan degradation in Neurospora crassa. Fungal Genet Biol 2020; 144:103441. [PMID: 32777385 DOI: 10.1016/j.fgb.2020.103441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023]
Abstract
To better understand the roles of genes involved in mannan degradation in filamentous fungi, in this study we searched, identified, and characterized one putative GH5 endo-β-mannanase (GH5-7) and two putative GH2 mannan-degrading enzymes (GH2-1 and GH2-4) in Neurospora crassa. Real-time RT-PCR analyses showed that the expression levels of these genes were significantly up-regulated when the cells were grown in mannan-containing media where the induction level of gh5-7 was the highest. All three proteins were heterologously expressed and purified. GH5-7 displayed a substrate preference toward galactomannan by showing 10-times higher catalytic efficiency than to linear β-mannan. In contrast, GH2-1 preferred short manno-oligosaccharides or β-mannan as substrates. Compared to the wild type strain, the growth of Δgh5-7 and Δgh5-7Δgh2-4 mutants, but not Δgh2-1, Δgh2-4, and Δgh2-1Δgh2-4 mutants, was poor in the cultures containing glucomannan or galactomannan as the sole carbon source, suggesting that GH5-7 plays a critical role in the utilization of heteromannans in vivo. On the other hand, all the mutants showed significantly slow growth when grown in the medium containing linear β-mannan. Collectively, these results indicate that N. crassa can utilize glucomannan and galactomannan without GH2-1 and GH2-4, but efficient degradation of β-mannan requires a concerted action of three enzymes, GH5-7, GH2-1, and GH2-4.
Collapse
Affiliation(s)
- Yunhan Hsu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Manabu Arioka
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Japan.
| |
Collapse
|
4
|
Metagenomic Insights into Effects of Thiamine Supplementation on Carbohydrate-Active Enzymes' Profile in Dairy Cows Fed High-Concentrate Diets. Animals (Basel) 2020; 10:ani10020304. [PMID: 32074983 PMCID: PMC7070242 DOI: 10.3390/ani10020304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
As the co-enzyme of pyruvate formate-lyase under ruminal anaerobic condition, thiamine plays a critical role in carbohydrate metabolism in dairy cows. The objective of this study was to investigate the impacts of thiamine supplementation on ruminal carbohydrate-active enzymes. Twelve Holstein dairy cows were randomly assigned into three dietary treatments: control diet (CON; 20% starch, dry matter (DM) basis), high-concentrate diet (HC; 33.2% starch, DM basis) and a high-concentrate diet supplemented with 180 mg thiamine/kg DM (HCT; 33.2% starch, DM basis). Dry matter intake and milk production were recorded for 21 days. Rumen fluid samples were collected, and ruminal pH and volatile fatty acids (VFAs) were measured. The metagenome sequencing technique was used to detect the genes in ruminal microorganisms and identify putative carbohydrate-active enzymes. The total abundances of carbohydrate-active enzymes and fiber-degrading enzymes were both reduced by HC with no effect on starch-degrading enzymes compared with CON. However, the fiber-degrading enzymes and starch-degrading enzymes were both increased after thiamine supplementation. These results indicated that 180 mg thiamine /kg DM might effectively improve rumen carbohydrate metabolism through increasing the abundance of ruminal carbohydrate-active enzymes and consequently balanced the rumen volatile fatty acids and rumen pH, providing a practical strategy in preventing subacute ruminal acidosis in cows offered HC.
Collapse
|
5
|
Fuller KK, Dunlap JC, Loros JJ. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 2018; 102:3849-3863. [PMID: 29569180 DOI: 10.1007/s00253-018-8887-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.
Collapse
Affiliation(s)
- Kevin K Fuller
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA.
| | - Jay C Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH, USA. .,Department of Biochemistry and Cell Biology, Geisel School of Medicine, Hanover, NH, USA.
| |
Collapse
|
6
|
Identification of Glutaminyl Cyclase Genes Involved in Pyroglutamate Modification of Fungal Lignocellulolytic Enzymes. mBio 2017; 8:mBio.02231-16. [PMID: 28096492 PMCID: PMC5241404 DOI: 10.1128/mbio.02231-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The breakdown of plant biomass to simple sugars is essential for the production of second-generation biofuels and high-value bioproducts. Currently, enzymes produced from filamentous fungi are used for deconstructing plant cell wall polysaccharides into fermentable sugars for biorefinery applications. A post-translational N-terminal pyroglutamate modification observed in some of these enzymes occurs when N-terminal glutamine or glutamate is cyclized to form a five-membered ring. This modification has been shown to confer resistance to thermal denaturation for CBH-1 and EG-1 cellulases. In mammalian cells, the formation of pyroglutamate is catalyzed by glutaminyl cyclases. Using the model filamentous fungus Neurospora crassa, we identified two genes (qc-1 and qc-2) that encode proteins homologous to mammalian glutaminyl cyclases. We show that qc-1 and qc-2 are essential for catalyzing the formation of an N-terminal pyroglutamate on CBH-1 and GH5-1. CBH-1 and GH5-1 produced in a Δqc-1 Δqc-2 mutant, and thus lacking the N-terminal pyroglutamate modification, showed greater sensitivity to thermal denaturation, and for GH5-1, susceptibility to proteolytic cleavage. QC-1 and QC-2 are endoplasmic reticulum (ER)-localized proteins. The pyroglutamate modification is predicted to occur in a number of additional fungal proteins that have diverse functions. The identification of glutaminyl cyclases in fungi may have implications for production of lignocellulolytic enzymes, heterologous expression, and biotechnological applications revolving around protein stability. Pyroglutamate modification is the post-translational conversion of N-terminal glutamine or glutamate into a cyclized amino acid derivative. This modification is well studied in animal systems but poorly explored in fungal systems. In Neurospora crassa, we show that this modification takes place in the ER and is catalyzed by two well-conserved enzymes, ubiquitously conserved throughout the fungal kingdom. We demonstrate that the modification is important for the structural stability and aminopeptidase resistance of CBH-1 and GH5-1, two important cellulase enzymes utilized in industrial plant cell wall deconstruction. Many additional fungal proteins predicted in the genome of N. crassa and other filamentous fungi are predicted to carry an N-terminal pyroglutamate modification. Pyroglutamate addition may also be a useful way to stabilize secreted proteins and peptides, which can be easily produced in fungal production systems.
Collapse
|
7
|
Samal A, Craig JP, Coradetti ST, Benz JP, Eddy JA, Price ND, Glass NL. Network reconstruction and systems analysis of plant cell wall deconstruction by Neurospora crassa. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:225. [PMID: 28947916 PMCID: PMC5609067 DOI: 10.1186/s13068-017-0901-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plant biomass degradation by fungal-derived enzymes is rapidly expanding in economic importance as a clean and efficient source for biofuels. The ability to rationally engineer filamentous fungi would facilitate biotechnological applications for degradation of plant cell wall polysaccharides. However, incomplete knowledge of biomolecular networks responsible for plant cell wall deconstruction impedes experimental efforts in this direction. RESULTS To expand this knowledge base, a detailed network of reactions important for deconstruction of plant cell wall polysaccharides into simple sugars was constructed for the filamentous fungus Neurospora crassa. To reconstruct this network, information was integrated from five heterogeneous data types: functional genomics, transcriptomics, proteomics, genetics, and biochemical characterizations. The combined information was encapsulated into a feature matrix and the evidence weighted to assign annotation confidence scores for each gene within the network. Comparative analyses of RNA-seq and ChIP-seq data shed light on the regulation of the plant cell wall degradation network, leading to a novel hypothesis for degradation of the hemicellulose mannan. The transcription factor CLR-2 was subsequently experimentally shown to play a key role in the mannan degradation pathway of N. crassa. CONCLUSIONS Here we built a network that serves as a scaffold for integration of diverse experimental datasets. This approach led to the elucidation of regulatory design principles for plant cell wall deconstruction by filamentous fungi and a novel function for the transcription factor CLR-2. This expanding network will aid in efforts to rationally engineer industrially relevant hyper-production strains.
Collapse
Affiliation(s)
- Areejit Samal
- Institute for Systems Biology, Seattle, WA 98109 USA
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- The Institute of Mathematical Sciences, Homi Bhabha National Institute, Chennai, 600113 India
- The Abdus Salam International Centre for Theoretical Physics, 34151 Trieste, Italy
| | - James P. Craig
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Samuel T. Coradetti
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - J. Philipp Benz
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Holzforschung München, TUM School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - James A. Eddy
- Institute for Systems Biology, Seattle, WA 98109 USA
| | | | - N. Louise Glass
- Energy Biosciences Institute, University of California Berkeley, Berkeley, CA 94704 USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
8
|
Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO. Heterologous gene expression in filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2016; 81:1-61. [PMID: 22958526 DOI: 10.1016/b978-0-12-394382-8.00001-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.
Collapse
Affiliation(s)
- Xiaoyun Su
- Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution
| | | | | | | | | |
Collapse
|
9
|
Direct target network of the Neurospora crassa plant cell wall deconstruction regulators CLR-1, CLR-2, and XLR-1. mBio 2015; 6:e01452-15. [PMID: 26463163 PMCID: PMC4620465 DOI: 10.1128/mbio.01452-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fungal deconstruction of the plant cell requires a complex orchestration of a wide array of intracellular and extracellular enzymes. In Neurospora crassa, CLR-1, CLR-2, and XLR-1 have been identified as key transcription factors regulating plant cell wall degradation in response to soluble sugars. The XLR-1 regulon was defined using a constitutively active mutant allele, resulting in hemicellulase gene expression and secretion under noninducing conditions. To define genes directly regulated by CLR-1, CLR-2, and XLR-1, we performed chromatin immunoprecipitation and next-generation sequencing (ChIPseq) on epitope-tagged constructs of these three transcription factors. When N. crassa is exposed to plant cell wall material, CLR-1, CLR-2, and XLR-1 individually bind to the promoters of the most strongly induced genes in their respective regulons. These include promoters of genes encoding cellulases for CLR-1 and CLR-2 (CLR-1/CLR-2) and promoters of genes encoding hemicellulases for XLR-1. CLR-1 bound to its regulon under noninducing conditions; however, this binding alone did not translate into gene expression and enzyme secretion. Motif analysis of the bound genes revealed conserved DNA binding motifs, with the CLR-2 motif matching that of its closest paralog in Saccharomyces cerevisiae, Gal4p. Coimmunoprecipitation studies showed that CLR-1 and CLR-2 act in a homocomplex but not as a CLR-1/CLR-2 heterocomplex. Understanding fungal regulation of complex plant cell wall deconstruction pathways in response to multiple environmental signals via interconnected transcriptional circuits provides insight into fungus/plant interactions and eukaryotic nutrient sensing. Coordinated optimization of these regulatory networks is likely required for optimal microbial enzyme production.
Collapse
|
10
|
Zhang F, Zhang XM, Yin YR, Li WJ. Cloning, expression and characterization of a novel GH5 exo/endoglucanase of Thermobifida halotolerans YIM 90462(T) by genome mining. J Biosci Bioeng 2015; 120:644-9. [PMID: 26026381 DOI: 10.1016/j.jbiosc.2015.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/30/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
The 1389-bp thcel5A gene, which encodes a family 5 of glycoside hydrolases (GH5), was screened from the draft genome of Thermobifida halotolerans YIM 90462(T). ThCel5A was most similar (77% identity) to a GH5 endoglucanase from Thermobifida fusca YX, followed by cellulases from Nocardiopsis dassonvillei subsp. dassonvillei DSM 43111, Nocardiopsis alba ATCC BAA-2165, and Kribbella flavida DSM 17836. The deduced amino acid sequence of ThCel5A, which consisted of 462 amino acid residues, encompassed a family 2 cellulose-binding module and a GH5 catalytic domain. Notably, ThCel5A hydrolysed soluble as well as insoluble cellulose substrates. The enzymatic hydrolysis assay showed that the activity of recombinant ThCel5A was optimized at pH 8.0 and 50°C. Moreover, it retained hydrolytic activity in the presence of various metal ions and >90% activity within the range of pH 8.0-9.0 after 30 min at 50°C. These results suggested that this enzyme has considerable potential in industrial applications.
Collapse
Affiliation(s)
- Feng Zhang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Xiao-Mei Zhang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| | - Yi-Rui Yin
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China
| | - Wen-Jun Li
- College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, PR China; Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
11
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
12
|
Cai P, Gu R, Wang B, Li J, Wan L, Tian C, Ma Y. Evidence of a critical role for cellodextrin transporte 2 (CDT-2) in both cellulose and hemicellulose degradation and utilization in Neurospora crassa. PLoS One 2014; 9:e89330. [PMID: 24586693 PMCID: PMC3930720 DOI: 10.1371/journal.pone.0089330] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/18/2014] [Indexed: 11/19/2022] Open
Abstract
CDT-1 and CDT-2 are two cellodextrin transporters discovered in the filamentous fungus Neurospora crassa. Previous studies focused on characterizing the role of these transporters in only a few conditions, including cellulose degradation, and the function of these two transporters is not yet completely understood. In this study, we show that deletion of cdt-2, but not cdt-1, results in growth defects not only on Avicel but also on xylan. cdt-2 can be highly induced by xylan, and this mutant has a xylodextrin consumption defect. Transcriptomic analysis of the cdt-2 deletion strain on Avicel and xylan showed that major cellulase and hemicellulase genes were significantly down-regulated in the cdt-2 deletion strain and artificial over expression of cdt-2 in N. crassa increased cellulase and hemicellulase production. Together, these data clearly show that CDT-2 plays a critical role in hemicellulose sensing and utilization. This is the first time a sugar transporter has been assigned a function in the hemicellulose degradation pathway. Furthermore, we found that the transcription factor XLR-1 is the major regulator of cdt-2, while cdt-1 is primarily regulated by CLR-1. These results deepen our understanding of the functions of both cellodextrin transporters, particularly for CDT-2. Our study also provides novel insight into the mechanisms for hemicellulose sensing and utilization in N. crassa, and may be applicable to other cellulolytic filamentous fungi.
Collapse
Affiliation(s)
- Pengli Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ruimeng Gu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bang Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Li Wan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
RETRACTED ARTICLE: The effects of each beta-glucosidase gene deletion on cellulase gene regulation in Neurospora crassa (online publication: DOI 10.1007/s10482-013- 9972-7). Antonie Van Leeuwenhoek 2013; 105:269. [PMID: 24000093 DOI: 10.1007/s10482-013-9972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/09/2013] [Indexed: 11/26/2022]
Abstract
Takao Kasuga and Zhiliang Fan were listed as co-authors without their acknowledgement and would like to be removed from the authors list. This article is retracted on request of Weihua Wu due to inconsistent errors of intracellular and total beta-glucosidase activities assay and the mycelia weight measurement in this paper. These errors led to inaccurate results of total and intracellular beta-glucosidase activities, and the normalized endoglucanases and exoglucanases activities and therefore compromise the partial conclusions of this publication.
Collapse
|
14
|
Rabe F, Ajami-Rashidi Z, Doehlemann G, Kahmann R, Djamei A. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis. Mol Microbiol 2013; 89:179-88. [PMID: 23692401 DOI: 10.1111/mmi.12269] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 12/01/2022]
Abstract
Salicylic acid (SA) is a key plant defence hormone which plays an important role in local and systemic defence responses against biotrophic pathogens like the smut fungus Ustilago maydis. Here we identified Shy1, a cytoplasmic U. maydis salicylate hydroxylase which has orthologues in the closely related smuts Ustilago hordei and Sporisorium reilianum. shy1 is transcriptionally induced during the biotrophic stages of development but not required for virulence during seedling infection. Shy1 activity is needed for growth on plates with SA as a sole carbon source. The trigger for shy1 transcriptional induction is SA, suggesting the possibility of a SA sensing mechanism in this fungus.
Collapse
Affiliation(s)
- Franziska Rabe
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043, Marburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Wu W, Hildebrand A, Kasuga T, Xiong X, Fan Z. Direct cellobiose production from cellulose using sextuple beta-glucosidase gene deletion Neurospora crassa mutants. Enzyme Microb Technol 2013; 52:184-9. [PMID: 23410930 DOI: 10.1016/j.enzmictec.2012.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/27/2012] [Accepted: 12/29/2012] [Indexed: 11/17/2022]
Abstract
Direct cellobiose production from cellulose by a genetically modified fungus-Neurospora crassa, was explored in this study. A library of N. crassa sextuple beta-glucosidase (bgl) gene deletion strains was constructed. Various concentrations of cellobiose were detected in the culture broth of the N. crassa sextuple beta-glucosidase (bgl) gene deletion strains when grown on Avicel without exogenous cellulase addition. The sextuple bgl deletion strains expressing one of the three basally transcribed bgl genes are the best cellobiose producers. For most sextuple strains, the multiple bgl gene deletion has no negative effect on the production of other cellulases. The induction of major endoglucanases and exoglucanases on Avicel in most of the sextuple bgl deletions strains was as fast as or faster than that of the wild type, except for strain F4. The best cellobiose producing strain, F5, produced 7.7 g/L of cellobiose from 20 g/L of Avicel in four days and utilized the Avicel as fast as did the wild type (even in the presence of high cellobiose concentration). The cellobiose yield from cellulose was about 48.3%.
Collapse
Affiliation(s)
- Weihua Wu
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
16
|
Light-inducible system for tunable protein expression in Neurospora crassa. G3-GENES GENOMES GENETICS 2012; 2:1207-12. [PMID: 23050231 PMCID: PMC3464113 DOI: 10.1534/g3.112.003939] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/06/2012] [Indexed: 12/29/2022]
Abstract
Filamentous fungi are important model systems for understanding eukaryotic cellular processes, including the study of protein expression. A salient feature of fungi is the ability of the protein-processing machinery to perform all of the extensive posttranslational modifications needed in the complex world of eukaryotic organisms, making them great hosts for production of eukaryotic proteins. In the model organism Neurospora crassa, several regulatable promoters have been used for heterologous gene expression but all suffer from leaky expression absent stimuli or an inability to induce protein expression at levels greater than those seen in vivo. To increase and better control in vivo protein expression in Neurospora, we have harnessed the light-induced vvd promoter. vvd promoter-driven mRNA expression is dependent upon light, shows a graded response, and is rapidly shut off when returned to the dark. The vvd promoter is a highly tunable and regulatable system, which could be a useful instrument for those interested in efficient and controllable gene expression.
Collapse
|
17
|
Schmoll M, Tian C, Sun J, Tisch D, Glass NL. Unravelling the molecular basis for light modulated cellulase gene expression - the role of photoreceptors in Neurospora crassa. BMC Genomics 2012; 13:127. [PMID: 22462823 PMCID: PMC3364853 DOI: 10.1186/1471-2164-13-127] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/31/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Light represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina) have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa. RESULTS We show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC) formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose. CONCLUSIONS Genome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa.
Collapse
Affiliation(s)
- Monika Schmoll
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
- Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Wien, Austria
| | - Chaoguang Tian
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jianping Sun
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
| | - Doris Tisch
- Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9, 1060 Wien, Austria
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Deciphering transcriptional regulatory mechanisms associated with hemicellulose degradation in Neurospora crassa. EUKARYOTIC CELL 2012; 11:482-93. [PMID: 22345350 DOI: 10.1128/ec.05327-11] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hemicellulose, the second most abundant plant biomass fraction after cellulose, is widely viewed as a potential substrate for the production of liquid fuels and other value-added materials. Degradation of hemicellulose by filamentous fungi requires production of many different enzymes, which are induced by biopolymers or its derivatives and regulated mainly at the transcriptional level through transcription factors (TFs). Neurospora crassa, a model filamentous fungus, expresses and secretes enzymes required for plant cell wall deconstruction. To better understand genes specifically associated with degradation of hemicellulose, we applied secretome and transcriptome analysis to N. crassa grown on beechwood xylan. We identified 34 secreted proteins and 353 genes with elevated transcription on xylan. The xylanolytic phenotype of strains with deletions in genes identified from the secretome and transcriptome analysis of the wild type was assessed, revealing functions for known and unknown proteins associated with hemicellulose degradation. By evaluating phenotypes of strains containing deletions of predicted TF genes in N. crassa, we identified a TF (XLR-1; xylan degradation regulator 1) essential for hemicellulose degradation that is an ortholog to XlnR/XYR1 in Aspergillus and Trichoderma species, respectively, a major transcriptional regulator of genes encoding both cellulases and hemicellulases. Deletion of xlr-1 in N. crassa abolished growth on xylan and xylose, but growth on cellulose and cellulolytic activity were only slightly affected. To determine the regulatory mechanisms for hemicellulose degradation, we explored the transcriptional regulon of XLR-1 under xylose, xylanolytic, and cellulolytic conditions. XLR-1 regulated only some predicted hemicellulase genes in N. crassa and was required for a full induction of several cellulase genes. Hemicellulase gene expression was induced by a combination of release from carbon catabolite repression (CCR) and induction. This systematic analysis illustrates the similarities and differences in regulation of hemicellulose degradation among filamentous fungi.
Collapse
|
19
|
Zhang Z, Donaldson AA, Ma X. Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 2012; 30:913-9. [PMID: 22306162 DOI: 10.1016/j.biotechadv.2012.01.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Enzymatic hydrolysis of pre-treated lignocellulosic biomass is an ideal alternative to acid hydrolysis for bio-ethanol production, limited primarily by pre-treatment requirements and economic considerations arising from enzyme production costs and specific activities. The quest for cheaper and better enzymes has prompted years of bio-prospecting, strain optimization through genetic engineering, enzyme characterization for simple and complex lignocellulosic feedstock, and the development of pre-treatment strategies to mitigate inhibitory effects. The recent shift to systematic characterizations of de novo mixtures of purified proteins is a promising indicator of maturation within this field of study, facilitating progression towards feedstock assay-based rapid enzyme mixture optimization. It is imperative that international standards be developed to enable meaningful comparisons between these studies and the construction of a database of enzymatic activities and kinetics, aspects of which are explored here-in. Complementary efforts to improve the economic viability of enzymatic hydrolysis through process integration and reactor design are also considered, where membrane-confinement shows significant promise despite the associated technological challenges. Significant advancements in enzyme technology towards the economic conversion of lignocellulosic biomass should be expected within the next few years as systematic research in enzyme activities conforms to that of traditional reaction engineering.
Collapse
Affiliation(s)
- Zisheng Zhang
- Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Street, Ottawa, Canada K1N 6N5
| | | | | |
Collapse
|
20
|
Sun J, Glass NL. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One 2011; 6:e25654. [PMID: 21980519 PMCID: PMC3183063 DOI: 10.1371/journal.pone.0025654] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In filamentous ascomycete fungi, the utilization of alternate carbon sources is influenced by the zinc finger transcription factor CreA/CRE-1, which encodes a carbon catabolite repressor protein homologous to Mig1 from Saccharomyces cerevisiae. In Neurospora crassa, deletion of cre-1 results in increased secretion of amylase and β-galactosidase. METHODOLOGY/PRINCIPAL FINDINGS Here we show that a strain carrying a deletion of cre-1 has increased cellulolytic activity and increased expression of cellulolytic genes during growth on crystalline cellulose (Avicel). Constitutive expression of cre-1 complements the phenotype of a N. crassa Δcre-1 strain grown on Avicel, and also results in stronger repression of cellulolytic protein secretion and enzyme activity. We determined the CRE-1 regulon by investigating the secretome and transcriptome of a Δcre-1 strain as compared to wild type when grown on Avicel versus minimal medium. Chromatin immunoprecipitation-PCR of putative target genes showed that CRE-1 binds to only some adjacent 5'-SYGGRG-3' motifs, consistent with previous findings in other fungi, and suggests that unidentified additional regulatory factors affect CRE-1 binding to promoter regions. Characterization of 30 mutants containing deletions in genes whose expression level increased in a Δcre-1 strain under cellulolytic conditions identified novel genes that affect cellulase activity and protein secretion. CONCLUSIONS/SIGNIFICANCE Our data provide comprehensive information on the CRE-1 regulon in N. crassa and contribute to deciphering the global role of carbon catabolite repression in filamentous ascomycete fungi during plant cell wall deconstruction.
Collapse
Affiliation(s)
- Jianping Sun
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Phillips CM, Iavarone AT, Marletta MA. Quantitative Proteomic Approach for Cellulose Degradation by Neurospora crassa. J Proteome Res 2011; 10:4177-85. [DOI: 10.1021/pr200329b] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher M. Phillips
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| | - Anthony T. Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720, United States
| | - Michael A. Marletta
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|