1
|
Tarallo M, Hayhurst M, Loo TS, Gerth ML, Bradshaw RE. Heterologous Expression of Secreted Proteins from Phytophthora in Pichia pastoris Followed by Protein Purification by Immobilized Metal Ion Affinity (IMAC). Methods Mol Biol 2025; 2892:233-248. [PMID: 39729280 DOI: 10.1007/978-1-0716-4330-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This chapter describes the protocol for heterologous expression of Phytophthora proteins in the yeast Pichia pastoris. Two methods to prepare the constructs for expression are described, using two different strains of P. pastoris, as well as methods for protein expression and purification by immobilized metal ion affinity (IMAC). The combined protocol was used to successfully produce a Phytophthora pluvialis small, secreted cell death elicitor protein and a Phytophthora agathidicida glycoside hydrolase 12, PaXEG1, also a cell death-inducing protein.
Collapse
Affiliation(s)
- Mariana Tarallo
- Bioprotection Aotearoa, School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Max Hayhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Trevor S Loo
- Bioprotection Aotearoa, School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Monica L Gerth
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
2
|
Backer R, Engelbrecht J, van den Berg N. Differing Responses to Phytophthora cinnamomi Infection in Susceptible and Partially Resistant Persea americana (Mill.) Rootstocks: A Case for the Role of Receptor-Like Kinases and Apoplastic Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:928176. [PMID: 35837458 PMCID: PMC9274290 DOI: 10.3389/fpls.2022.928176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The hemibiotrophic plant pathogen Phytophthora cinnamomi Rands is the most devastating pathogen of avocado (Persea americana Mill.) and, as such, causes significant annual losses in the industry. Although the molecular basis of P. cinnamomi resistance in avocado and P. cinnamomi virulence determinants have been the subject of recent research, none have yet attempted to compare the transcriptomic responses of both pathogen and host during their interaction. In the current study, the transcriptomes of both avocado and P. cinnamomi were explored by dual RNA sequencing. The basis for partial resistance was sought by the inclusion of both susceptible (R0.12) and partially resistant (Dusa®) rootstocks sampled at early (6, 12 and 24 hours post-inoculation, hpi) and late time-points (120 hpi). Substantial differences were noted in the number of differentially expressed genes found in Dusa® and R0.12, specifically at 12 and 24 hpi. Here, the partially resistant rootstock perpetuated defense responses initiated at 6 hpi, while the susceptible rootstock abruptly reversed course. Instead, gene ontology enrichment confirmed that R0.12 activated pathways related to growth and development, essentially rendering its response at 12 and 24 hpi no different from that of the mock-inoculated controls. As expected, several classes of P. cinnamomi effector genes were differentially expressed in both Dusa® and R0.12. However, their expression differed between rootstocks, indicating that P. cinnamomi might alter the expression of its effector arsenal based on the rootstock. Based on some of the observed differences, several P. cinnamomi effectors were highlighted as potential candidates for further research. Similarly, the receptor-like kinase (RLK) and apoplastic protease coding genes in avocado were investigated, focusing on their potential role in differing rootstock responses. This study suggests that the basis of partial resistance in Dusa® is predicated on its ability to respond appropriately during the early stages following P. cinnamomi inoculation, and that important components of the first line of inducible defense, apoplastic proteases and RLKs, are likely to be important to the observed outcome.
Collapse
Affiliation(s)
- Robert Backer
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Engelbrecht
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Jin J, Shew HD. Impacts of Continued Exposure to a Susceptible Host Genotype on Aggressiveness of Phytophthora nicotianae Isolates Adapted to Multiple Sources of Partial Resistance. PLANT DISEASE 2022; 106:373-381. [PMID: 34282925 DOI: 10.1094/pdis-09-20-1972-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pathogen adaptation can threaten the durability of partial resistance. Mixed plantings of susceptible and partially resistant varieties may prolong the effectiveness of partial resistance, but little is known about how continued exposure to a susceptible genotype can change the aggressiveness of pathogen isolates adapted to a source of partial resistance. The objective of this study was to examine the effects of continued exposure to a highly susceptible tobacco genotype on isolates of Phytophthora nicotianae that had been adapted to partial resistance. Isolates of P. nicotianae previously adapted to two sources of partial resistance were continually exposed to either the original host of adaptation or a susceptible host. After six generations of host exposure, isolates obtained from the partially resistant and the susceptible hosts were compared for their aggressiveness on the resistant host and for differences in expression of genes associated with pathogenicity and aggressiveness. Results suggested that exposure to the susceptible tobacco genotype reduced aggressiveness of isolates adapted to partial resistance in K 326 Wz/- but not of isolates adapted to partial resistance in Fla 301. Quantification of pathogenicity-associated gene expression using qRT-PCR suggested the rapid change in aggressiveness of isolates adapted to Wz-sourced partial resistance may have resulted from modification in gene expression in multiple genes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
4
|
Mukhammadiev RS, Mukhammadiev RS, Skvortsov EV, Valiullin LR, Glinushkin AP, Bagaeva TV. Isolation, Purification, and Characterization of a Lectin from the Fungus Fusarium solani 4. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Lectin I from Bauhinia variegata (BVL-I) expressed by Pichia pastoris inhibits initial adhesion of oral bacteria in vitro. Int J Biol Macromol 2016; 93:913-918. [DOI: 10.1016/j.ijbiomac.2016.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 12/19/2022]
|
6
|
Martinez T, Texier H, Nahoum V, Lafitte C, Cioci G, Heux L, Dumas B, O’Donohue M, Gaulin E, Dumon C. Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica. PLoS One 2015; 10:e0137481. [PMID: 26390127 PMCID: PMC4577117 DOI: 10.1371/journal.pone.0137481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1–1 and 1–2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL’s CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB.
Collapse
Affiliation(s)
- Thomas Martinez
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Hélène Texier
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- Cinabio ADISSEO France SAS, Hall Gilbert Durand 3, 135 avenue de Rangueil, 31077 Toulouse, France
| | - Virginie Nahoum
- Université de Toulouse, UPS, IPBS, Toulouse, F-31077, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Centre National de la Recherche Scientifique (CNRS), Toulouse, F-31077, France
| | - Claude Lafitte
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Gianluca Cioci
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | | | - Bernard Dumas
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Michael O’Donohue
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
| | - Elodie Gaulin
- Université Toulouse 3, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, F-31326, Castanet-Tolosan, France
| | - Claire Dumon
- Université de Toulouse; INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- * E-mail:
| |
Collapse
|
7
|
Li Y, Li T, Li J, Liu D, Yang J, Yang J, Zhang F, Sun S. Molecular cloning, expression, and characterization of a Sophora alopecuroides lectin from Escherichia coli. Acta Biochim Biophys Sin (Shanghai) 2014; 46:749-56. [PMID: 25033829 DOI: 10.1093/abbs/gmu060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sophora alopecuroides lectin (SAL) has been isolated from the seeds and confirmed to have antifungal and antitumor activities, and presently the preparation of the natural lectin was cumbersome, time-consuming, and the yield was relatively low for further analysis. In this study, the signal peptide of lectin, the modification sites, and the secondary structure were analyzed, and the three-dimensional structures of SAL were modeled. The gene of SAL was amplified by the reverse transcription polymerase chain reaction, and cloned into the pET-30a vector and expressed in Escherichia coli BL21(DE3) by the induction of isopropyl-beta-d-thiogalactopyranoside. Totally, 400 mg of recombinant SAL (rSAL) was purified from 1 l of bacterial culture through Ni-NTA agarose column and the purity reached 95%. The recombinant protein was further confirmed by western blot using rSAL-specific antibody. The biological activity analysis results showed that rSAL exclusively bound to d-galactose and had universal hemagglutinating activities to human A, B, O, and AB, and rabbit and mouse erythrocytes. rSAL also inhibited the growth of fungi, the proliferation of cancer cells, and the HIV-I reverse transcriptase activity. In conclusion, this study indicates that rSAL can be produced in large quantities in the prokaryotic expression system and the recombinant protein still retains the various biological activities, which will make the large-scale production of SAL recombinant protein at dramatically reduced cost possible.
Collapse
Affiliation(s)
- Yang Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China
| | - Tingting Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China
| | - Dongliang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China
| | - Jie Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China
| | - Jianhua Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China
| | - Surong Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumuqi 830046, China
| |
Collapse
|
8
|
Larroque M, Barriot R, Bottin A, Barre A, Rougé P, Dumas B, Gaulin E. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses. BMC Genomics 2012; 13:605. [PMID: 23140525 PMCID: PMC3532174 DOI: 10.1186/1471-2164-13-605] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/25/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oomycetes are fungal-like microorganisms evolutionary distinct from true fungi, belonging to the Stramenopile lineage and comprising major plant pathogens. Both oomycetes and fungi express proteins able to interact with cellulose, a major component of plant and oomycete cell walls, through the presence of carbohydrate-binding module belonging to the family 1 (CBM1). Fungal CBM1-containing proteins were implicated in cellulose degradation whereas in oomycetes, the Cellulose Binding Elicitor Lectin (CBEL), a well-characterized CBM1-protein from Phytophthora parasitica, was implicated in cell wall integrity, adhesion to cellulosic substrates and induction of plant immunity. RESULTS To extend our knowledge on CBM1-containing proteins in oomycetes, we have conducted a comprehensive analysis on 60 fungi and 7 oomycetes genomes leading to the identification of 518 CBM1-containing proteins. In plant-interacting microorganisms, the larger number of CBM1-protein coding genes is expressed by necrotroph and hemibiotrophic pathogens, whereas a strong reduction of these genes is observed in symbionts and biotrophs. In fungi, more than 70% of CBM1-containing proteins correspond to enzymatic proteins in which CBM1 is associated with a catalytic unit involved in cellulose degradation. In oomycetes more than 90% of proteins are similar to CBEL in which CBM1 is associated with a non-catalytic PAN/Apple domain, known to interact with specific carbohydrates or proteins. Distinct Stramenopile genomes like diatoms and brown algae are devoid of CBM1 coding genes. A CBM1-PAN/Apple association 3D structural modeling was built allowing the identification of amino acid residues interacting with cellulose and suggesting the putative interaction of the PAN/Apple domain with another type of glucan. By Surface Plasmon Resonance experiments, we showed that CBEL binds to glycoproteins through galactose or N-acetyl-galactosamine motifs. CONCLUSIONS This study provides insight into the evolution and biological roles of CBM1-containing proteins from oomycetes. We show that while CBM1s from fungi and oomycetes are similar, they team up with different protein domains, either in proteins implicated in the degradation of plant cell wall components in the case of fungi or in proteins involved in adhesion to polysaccharidic substrates in the case of oomycetes. This work highlighted the unique role and evolution of CBM1 proteins in oomycete among the Stramenopile lineage.
Collapse
Affiliation(s)
- Mathieu Larroque
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Roland Barriot
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaire, Toulouse F-31000, France
- Centre National de la Recherche Scientifique; LMGM, Toulouse F-31000, France
| | - Arnaud Bottin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Annick Barre
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Pierre Rougé
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
- Present address: Université de Toulouse, UPS, Laboratoire PHARMA-DEV IRD UMR 152, 35 Chemin des Maraîchers, Toulouse 31400, France
| | - Bernard Dumas
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| | - Elodie Gaulin
- Université de Toulouse, UPS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan, F-31326, France
- CNRS, Laboratoire de Recherche en Sciences Végétales, 24 chemin de Borde Rouge, BP42617, Auzeville, Castanet-Tolosan F-31326, France
| |
Collapse
|