1
|
Meyer C, Arizzi A, Henson T, Aviran S, Longo ML, Wang A, Tan C. Designer artificial environments for membrane protein synthesis. Nat Commun 2025; 16:4363. [PMID: 40348791 PMCID: PMC12065789 DOI: 10.1038/s41467-025-59471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
Protein synthesis in natural cells involves intricate interactions between chemical environments, protein-protein interactions, and protein machinery. Replicating such interactions in artificial and cell-free environments can control the precision of protein synthesis, elucidate complex cellular mechanisms, create synthetic cells, and discover new therapeutics. Yet, creating artificial synthesis environments, particularly for membrane proteins, is challenging due to the poorly defined chemical-protein-lipid interactions. Here, we introduce MEMPLEX (Membrane Protein Learning and Expression), which utilizes machine learning and a fluorescent reporter to rapidly design artificial synthesis environments of membrane proteins. MEMPLEX generates over 20,000 different artificial chemical-protein environments spanning 28 membrane proteins. It captures the interdependent impact of lipid types, chemical environments, chaperone proteins, and protein structures on membrane protein synthesis. As a result, MEMPLEX creates new artificial environments that successfully synthesize membrane proteins of broad interest but previously intractable. In addition, we identify a quantitative metric, based on the hydrophobicity of the membrane-contacting amino acids, that predicts membrane protein synthesis in artificial environments. Our work allows others to rapidly study and resolve the "dark" proteome using predictive generation of artificial chemical-protein environments. Furthermore, the results represent a new frontier in artificial intelligence-guided approaches to creating synthetic environments for protein synthesis.
Collapse
Affiliation(s)
- Conary Meyer
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis School of Medicine, Davis, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Children's Northern, California, USA
| | - Sharon Aviran
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Genome Center, University of California, Davis, Davis, CA, 95616, USA
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California Davis School of Medicine, Davis, USA
- Institute for Pediatric Regenerative Medicine (IPRM), Shriners Children's Northern, California, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Wang Y, Weng S, Tang Y, Lin S, Liu X, Zhang W, Liu G, Pandi B, Wu Y, Ma L, Wang L. A transmembrane scaffold from CD20 helps recombinant expression of a chimeric claudin 18.2 in an in vitro coupled transcription and translation system. Protein Expr Purif 2024; 215:106392. [PMID: 37952787 DOI: 10.1016/j.pep.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Cluster of differentiation 20 (CD20) is a nonglycosylated, multispanning transmembrane protein specifically integrated by B lymphocytes. Similar to CD20, another four-pass transmembrane protein, claudin 18.2, has attracted attention as an emerging therapeutic target for cancer. However, their poor solubility and toxic nature often hinder downstream applications, such as antibody drug development. Therefore, developing a cost-effective method for producing drug targets with multiple membrane-spanning domains is crucial. In this study, a high yield of recombinant CD20 was achieved through an E. coli-based in vitro coupled transcription-translation system. Surface plasmon resonance results showed that rituximab (an antileukemia drug) has nanomolar affinity with the CD20 protein, which aligns with published results. Notably, a previously hard-to-express claudin 18.2 recombinant protein was successfully expressed in the same reaction system by replacing its membrane-spanning domains with the transmembrane domains of CD20. The folding of the extracellular domain of the chimeric protein was verified using a commercial anti-claudin 18 antibody. This study provides a novel concept for promoting the expression of four-pass transmembrane proteins and lays the foundation for the large-scale industrial production of membrane-associated drug targets, similar to claudin 18.2.
Collapse
Affiliation(s)
- Yao Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Shaoting Weng
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yajie Tang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Sen Lin
- Anyang Kindstar Global Medical Laboratory Ltd, Anyang, Henan province, 455000, China
| | - Xiayue Liu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Wenhui Zhang
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Boomi Pandi
- Department of bioinformatics, Alagappa University, Karaikudi, India
| | - Yinrong Wu
- Henan Panran Medical Equipment Co., Ltd, Anyang, Henan province, 455000, China
| | - Lei Ma
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Lin Wang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China.
| |
Collapse
|
3
|
Bruni R, Laguerre A, Kaminska A, McSweeney S, Hendrickson WA, Liu Q. High-throughput cell-free screening of eukaryotic membrane protein expression in lipidic mimetics. Protein Sci 2022; 31:639-651. [PMID: 34910339 PMCID: PMC8862427 DOI: 10.1002/pro.4259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 12/16/2022]
Abstract
Membrane proteins play essential roles in cellular function and metabolism. Nonetheless, biophysical and structural studies of membrane proteins are impeded by the difficulty of their expression in and purification from heterologous cell-based systems. As an alternative to these cell-based systems, cell-free protein synthesis has proven to be an exquisite method for screening membrane protein targets in a variety of lipidic mimetics. Here we report a high-throughput screening workflow and apply it to screen 61 eukaryotic membrane protein targets. For each target, we tested its expression in lipidic mimetics: two detergents, two liposomes, and two nanodiscs. We show that 35 membrane proteins (57%) can be expressed in a soluble fraction in at least one of the mimetics with the two detergents performing significantly better than nanodiscs and liposomes, in that order. Using the established cell-free workflow, we studied the production and biophysical assays for mitochondrial pyruvate carrier (MPC) complexes. Our studies show that the complexes produced in cell-free are functionally competent in complex formation and substrate binding. Our results highlight the utility of using cell-free systems for screening and production of eukaryotic membrane proteins.
Collapse
Affiliation(s)
- Renato Bruni
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA
| | - Aisha Laguerre
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
Roche DiagnosticsSanta ClaraCaliforniaUSA
| | - Anna‐Maria Kaminska
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Present address:
New York Blood CenterNew YorkNew YorkUSA
| | | | - Wayne A. Hendrickson
- Center on Membrane Protein Production and Analysis (COMPPÅ)New York Structural Biology CenterNew YorkNew YorkUSA,Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkNew YorkUSA
| | - Qun Liu
- NSLS‐II, Brookhaven National LaboratoryUptonNew YorkUSA,Biology DepartmentBrookhaven National LaboratoryUptonNew YorkUSA
| |
Collapse
|
4
|
Kögler LM, Stichel J, Beck-Sickinger AG. Structural investigations of cell-free expressed G protein-coupled receptors. Biol Chem 2020; 401:97-116. [PMID: 31539345 DOI: 10.1515/hsz-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are of great pharmaceutical interest and about 35% of the commercial drugs target these proteins. Still there is huge potential left in finding molecules that target new GPCRs or that modulate GPCRs differentially. For a rational drug design, it is important to understand the structure, binding and activation of the protein of interest. Structural investigations of GPCRs remain challenging, although huge progress has been made in the last 20 years, especially in the generation of crystal structures of GPCRs. This is mostly caused by issues with the expression yield, purity or labeling. Cell-free protein synthesis (CFPS) is an efficient alternative for recombinant expression systems that can potentially address many of these problems. In this article the use of CFPS for structural investigations of GPCRs is reviewed. We compare different CFPS systems, including the cellular basis and reaction configurations, and strategies for an efficient solubilization. Next, we highlight recent advances in the structural investigation of cell-free expressed GPCRs, with special emphasis on the role of photo-crosslinking approaches to investigate ligand binding sites on GPCRs.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
5
|
Cell-Free Protein Synthesis of Small Intrinsically Disordered Proteins for NMR Spectroscopy. Methods Mol Biol 2020. [PMID: 32696360 DOI: 10.1007/978-1-0716-0524-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cell-free protein synthesis (CFPS) is an established method to produce recombinant proteins and has been used in a wide variety of applications. The use of CFPS has almost from the onset been favorably linked to the production of isotopically labelled proteins for NMR spectroscopy as the resulting labelling of the produced protein is defined by the chosen amino acids during reaction setup. Here we describe how to set up production and isotopic labelling of small intrinsically disordered proteins (IDPs) for NMR spectroscopy applications using an E. coli-based CFPS system in batch mode.
Collapse
|
6
|
Ådén J, Mushtaq AU, Dingeldein A, Wallgren M, Gröbner G. A novel recombinant expression and purification approach for the full-length anti-apoptotic membrane protein Bcl-2. Protein Expr Purif 2020; 172:105628. [PMID: 32209420 DOI: 10.1016/j.pep.2020.105628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/17/2020] [Indexed: 12/23/2022]
Abstract
Programmed cell death (apoptosis) is an essential mechanism in life that tightly regulates embryogenesis and removal of harmful cells. Besides an extrinsic pathway, an intrinsic (mitochondrial) apoptotic pathway exists where mitochondria are actively involved in cellular clearance in response to internal stress signals. Pro-apoptotic (death) and anti-apoptotic (survival) members of the B cell CLL/lymphoma-2 (Bcl-2) protein family meet at the mitochondrion's surface where they accurately regulate apoptosis. Overexpression of the anti-apoptotic Bcl-2 protein is a hallmark for many types of cancers and in particular for many treatment resistant tumors. Bcl-2 is a membrane protein residing in the mitochondrial outer membrane. Due to its typical membrane protein features including very limited solubility, it is difficult to express and to purify. Therefore, most biophysical and structural studies have used truncated, soluble versions. However, to understand its membrane-coupled function and structure, access to sufficient amount of full-length human Bcl-2 protein is a necessity. Here, we present a novel, E. coli based approach for expression and purification of preparative amounts of the full-length human isoform 2 of Bcl-2 (Bcl-2(2)), solubilized in detergent micelles, which allows for easy exchange of the detergent.
Collapse
Affiliation(s)
- Jörgen Ådén
- Department of Chemistry, University of Umeå, SE -901 87, Umeå, Sweden
| | - Ameeq Ul Mushtaq
- Department of Chemistry, University of Umeå, SE -901 87, Umeå, Sweden
| | - Artur Dingeldein
- Department of Chemistry, University of Umeå, SE -901 87, Umeå, Sweden
| | - Marcus Wallgren
- Department of Chemistry, University of Umeå, SE -901 87, Umeå, Sweden
| | - Gerhard Gröbner
- Department of Chemistry, University of Umeå, SE -901 87, Umeå, Sweden.
| |
Collapse
|
7
|
Yue K, Trung TN, Zhu Y, Kaldenhoff R, Kai L. Co-Translational Insertion of Aquaporins into Liposome for Functional Analysis via an E. coli Based Cell-Free Protein Synthesis System. Cells 2019; 8:E1325. [PMID: 31717877 PMCID: PMC6912355 DOI: 10.3390/cells8111325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/06/2023] Open
Abstract
Aquaporins are important and well-studied water channel membrane proteins. However, being membrane proteins, sample preparation for functional analysis is tedious and time-consuming. In this paper, we report a new approach for the co-translational insertion of two aquaporins from Escherichia coli and Nicotiana tabacum using the CFPS system. This was done in the presence of liposomes with a modified procedure to form homogenous proteo-liposomes suitable for functional analysis of water permeability using stopped-flow spectrophotometry. Two model aquaporins, AqpZ and NtPIP2;1, were successfully incorporated into the liposome in their active forms. Shifted green fluorescent protein was fused to the C-terminal part of AqpZ to monitor its insertion and status in the lipid environment. This new fast approach offers a fast and straightforward method for the functional analysis of aquaporins in both prokaryotic and eukaryotic organisms.
Collapse
Affiliation(s)
- Ke Yue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China;
| | - Tran Nam Trung
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany; (T.N.T.); (R.K.)
| | - Yiyong Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ralf Kaldenhoff
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany; (T.N.T.); (R.K.)
| | - Lei Kai
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 22116, China;
- Department of Biology, Applied Plant Sciences, Technische Universität Darmstadt, Schnittspahn Strasse 10, D-64287 Darmstadt, Germany; (T.N.T.); (R.K.)
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
8
|
Kögler LM, Stichel J, Kaiser A, Beck-Sickinger AG. Cell-Free Expression and Photo-Crosslinking of the Human Neuropeptide Y 2 Receptor. Front Pharmacol 2019; 10:176. [PMID: 30881304 PMCID: PMC6405639 DOI: 10.3389/fphar.2019.00176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of different proteins, which are involved in physiological processes throughout the entire body. Furthermore, they represent important drug targets. For rational drug design, it is important to get further insights into the binding mode of endogenous ligands as well as of therapeutic agents at the respective target receptors. However, structural investigations usually require homogenous, solubilized and functional receptors, which is still challenging. Cell-free expression methods have emerged in the last years and many different proteins are successfully expressed, including hydrophobic membrane proteins like GPCRs. In this work, an Escherichia coli based cell-free expression system was used to express the neuropeptide Y2 receptor (Y2R) for structural investigations. This GPCR was expressed in two different variants, a C-terminal enhanced green fluorescent fusion protein and a cysteine deficient variant. In order to obtain soluble receptors, the expression was performed in the presence of mild detergents, either Brij-35 or Brij-58, which led to high amounts of soluble receptor. Furthermore, the influence of temperature, pH value and additives on protein expression and solubilization was tested. For functional and structural investigations, the receptors were expressed at 37°C, pH 7.4 in the presence of 1 mM oxidized and 5 mM reduced glutathione. The expressed receptors were purified by ligand affinity chromatography and functionality of Y2R_cysteine_deficient was verified by a homogenous binding assay. Finally, photo-crosslinking studies were performed between cell-free expressed Y2R_cysteine_deficient and a neuropeptide Y (NPY) analog bearing the photoactive, unnatural amino acid p-benzoyl-phenylalanine at position 27 and biotin at position 22 for purification. After enzymatic digestion, fragments of crosslinked receptor were identified by mass spectrometry. Our findings demonstrate that, in contrast to Y1R, NPY position 27 remains flexible when bound to Y2R. These results are in agreement with the suggested binding mode of NPY at Y2R.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
9
|
Aw R, Polizzi KM. Biosensor‐assisted engineering of a high‐yield
Pichia pastoris
cell‐free protein synthesis platform. Biotechnol Bioeng 2019; 116:656-666. [DOI: 10.1002/bit.26901] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rochelle Aw
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| | - Karen M. Polizzi
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| |
Collapse
|
10
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
11
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
12
|
Rebuffet E, Frick A, Järvå M, Törnroth-Horsefield S. Cell-free production and characterisation of human uncoupling protein 1-3. Biochem Biophys Rep 2017; 10:276-281. [PMID: 28955755 PMCID: PMC5614671 DOI: 10.1016/j.bbrep.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 11/22/2022] Open
Abstract
The uncoupling proteins (UCPs) leak protons across the inner mitochondrial membrane, thus uncoupling the proton gradient from ATP synthesis. The main known physiological role for this is heat generation by UCP1 in brown adipose tissue. However, UCPs are also believed to be important for protection against reactive oxygen species, fine-tuning of metabolism and have been suggested to be involved in disease states such as obesity, diabetes and cancer. Structural studies of UCPs have long been hampered by difficulties in sample preparation with neither expression in yeast nor refolding from inclusion bodies in E. coli yielding sufficient amounts of pure and stable protein. In this study, we have developed a protocol for cell-free expression of human UCP1, 2 and 3, resulting in 1 mg pure protein per 20 mL of expression media. Lauric acid, a natural UCP ligand, significantly improved protein thermal stability and was therefore added during purification. Secondary structure characterisation using circular dichroism spectroscopy revealed the proteins to consist of mostly α-helices, as expected. All three UCPs were able to bind GDP, a well-known physiological inhibitor, as shown by the Fluorescence Resonance Energy Transfer (FRET) technique, suggesting that the proteins are in a natively folded state. A protocol for cell-free expression of human uncoupling protein 1–3 is described. Addition of native membrane components increased expression levels. Addition of lauric acid increased protein stability in solution. CD spectroscopy confirms alpha-helical secondary structure as expected. All proteins binds GDP as demonstrated by Fluorescence Resonance Energy Transfer.
Collapse
Affiliation(s)
- Etienne Rebuffet
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Anna Frick
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Michael Järvå
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden
| | - Susanna Törnroth-Horsefield
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Gothenburg, Sweden.,Department of Biochemistry and Structural Biology, Centre for Molecular Protein Science, Lund University, Box 124, 221 00 Lund, Sweden
| |
Collapse
|
13
|
Sjöhamn J, Båth P, Neutze R, Hedfalk K. Applying bimolecular fluorescence complementation to screen and purify aquaporin protein:protein complexes. Protein Sci 2016; 25:2196-2208. [PMID: 27643892 PMCID: PMC5119558 DOI: 10.1002/pro.3046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
Protein:protein interactions play key functional roles in the molecular machinery of the cell. A major challenge for structural biology is to gain high‐resolution structural insight into how membrane protein function is regulated by protein:protein interactions. To this end we present a method to express, detect, and purify stable membrane protein complexes that are suitable for further structural characterization. Our approach utilizes bimolecular fluorescence complementation (BiFC), whereby each protein of an interaction pair is fused to nonfluorescent fragments of yellow fluorescent protein (YFP) that combine and mature as the complex is formed. YFP thus facilitates the visualization of protein:protein interactions in vivo, stabilizes the assembled complex, and provides a fluorescent marker during purification. This technique is validated by observing the formation of stable homotetramers of human aquaporin 0 (AQP0). The method's broader applicability is demonstrated by visualizing the interactions of AQP0 and human aquaporin 1 (AQP1) with the cytoplasmic regulatory protein calmodulin (CaM). The dependence of the AQP0‐CaM complex on the AQP0 C‐terminus is also demonstrated since the C‐terminal truncated construct provides a negative control. This screening approach may therefore facilitate the production and purification of membrane protein:protein complexes for later structural studies by X‐ray crystallography or single particle electron microscopy.
Collapse
Affiliation(s)
- Jennie Sjöhamn
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, SE-405 30, Sweden
| |
Collapse
|
14
|
Bocharova OV, Urban AS, Nadezhdin KD, Bocharov EV, Arseniev AS. Cell-free expression of the APP transmembrane fragments with Alzheimer's disease mutations using algal amino acid mixture for structural NMR studies. Protein Expr Purif 2016; 123:105-11. [PMID: 27071311 DOI: 10.1016/j.pep.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/07/2016] [Accepted: 04/07/2016] [Indexed: 12/23/2022]
Abstract
Structural investigations need ready supply of the isotope labeled proteins with inserted mutations n the quantities sufficient for the heteronuclear NMR. Though cell-free expression system has been widely used in the past years, high startup cost and complex compound composition prevent many researches from the developing this technique, especially for membrane protein production. Here we demonstrate the utility of a robust, cost-optimized cell-free expression technique for production of the physiologically important transmembrane fragment of amyloid precursor protein, APP686-726, containing Alzheimer's disease mutations in the juxtamembrane (E693G, Arctic form) and the transmembrane parts (V717G, London form, or L723P, Australian form). The protein cost was optimized by varying the FM/RM ratio as well as the amino acid concentration. We obtained the wild-type and mutant transmembrane fragments in the pellet mode of continuous exchange cell-free system consuming only commercial algal mixture of the (13)C,(15)N-labeled amino acids. Scaling up analytical tests, we achieved milligram quantity yields of isotope labeled wild-type and mutant APP686-726 for structural studies by high resolution NMR spectroscopy in membrane mimicking environment. The described approach has from 5 to 23-fold cost advantage over the bacterial expression methods described earlier and 1.5 times exceeds our previous result obtained with the longer APP671-726WT fragment.
Collapse
Affiliation(s)
- Olga V Bocharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia.
| | - Anatoly S Urban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141700, Dolgoprudny, Russia
| | - Kirill D Nadezhdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141700, Dolgoprudny, Russia
| | - Eduard V Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia; National Research Centre "Kurchatov Institute", Dept. Complex NBIC-technologies, Akad. Kurchatova pl. 1, 123182, Moscow, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997, Moscow, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141700, Dolgoprudny, Russia
| |
Collapse
|
15
|
Peuker S, Andersson H, Gustavsson E, Maiti KS, Kania R, Karim A, Niebling S, Pedersen A, Erdelyi M, Westenhoff S. Efficient Isotope Editing of Proteins for Site-Directed Vibrational Spectroscopy. J Am Chem Soc 2016; 138:2312-8. [DOI: 10.1021/jacs.5b12680] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sebastian Peuker
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Hanna Andersson
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Emil Gustavsson
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Kiran Sankar Maiti
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Rafal Kania
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Alavi Karim
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Stephan Niebling
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anders Pedersen
- Swedish
NMR Centre at the University of Gothenburg, P.O. Box 465, SE-405 30 Gothenburg, Sweden
| | - Mate Erdelyi
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department
of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
16
|
Fogeron ML, Paul D, Jirasko V, Montserret R, Lacabanne D, Molle J, Badillo A, Boukadida C, Georgeault S, Roingeard P, Martin A, Bartenschlager R, Penin F, Böckmann A. Functional expression, purification, characterization, and membrane reconstitution of non-structural protein 2 from hepatitis C virus. Protein Expr Purif 2015; 116:1-6. [PMID: 26325423 DOI: 10.1016/j.pep.2015.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 01/14/2023]
Abstract
Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Vlastimil Jirasko
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Denis Lacabanne
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Jennifer Molle
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France; RD-Biotech, Recombinant Protein Unit, Besançon, France
| | - Célia Boukadida
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Diderot - Sorbonne Paris Cité, Paris, France
| | - Sonia Georgeault
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France; INSERM U966, Universite François Rabelais and CHRU de Tours, Tours, France
| | - Annette Martin
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Diderot - Sorbonne Paris Cité, Paris, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France.
| |
Collapse
|
17
|
Gayet L, Lenormand JL. [Biomimetic sensors in biomedical research]. Med Sci (Paris) 2015; 31:654-9. [PMID: 26152170 DOI: 10.1051/medsci/20153106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The recent research on both the synthesis of membrane proteins by cell-free systems and the reconstruction of planar lipid membranes, has led to the development of a cross-technology to produce biosensors or filters. Numerous biomimetic membranes are currently being standardized and used by the industry, such as filters containing aquaporin for water desalination, or used in routine at the laboratory scale, for example the bacteriorhodopsin as a light sensor. In the medical area, several fields of application of these biomimetic membranes are under consideration today, particularly for the screening of therapeutic molecules and for the developing of new tools in diagnosis, patient monitoring and personalized medicine.
Collapse
Affiliation(s)
- Landry Gayet
- Laboratoire TIMC IMAG, UMR5525, équipe TheREx, CNRS/université Joseph Fourier, bâtiment Jean Roget, domaine de la Merci, 38700 La Tronche, France
| | - Jean-Luc Lenormand
- Laboratoire TIMC IMAG, UMR5525, équipe TheREx, CNRS/université Joseph Fourier, bâtiment Jean Roget, domaine de la Merci, 38700 La Tronche, France
| |
Collapse
|
18
|
Kovácsová G, Gustavsson E, Wang J, Kreir M, Peuker S, Westenhoff S. Cell-free expression of a functional pore-only sodium channel. Protein Expr Purif 2015; 111:42-7. [PMID: 25770647 PMCID: PMC4430601 DOI: 10.1016/j.pep.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/01/2015] [Accepted: 03/04/2015] [Indexed: 01/10/2023]
Abstract
Voltage-gated sodium channels participate in the propagation of action potentials in excitable cells. Eukaryotic Navs are pseudo homotetrameric polypeptides, comprising four repeats of six transmembrane segments (S1-S6). The first four segments form the voltage-sensing domain and S5 and S6 create the pore domain with the selectivity filter. Prokaryotic Navs resemble these characteristics, but are truly tetrameric. They can typically be efficiently synthesized in bacteria, but production in vitro with cell-free synthesis has not been demonstrated. Here we report the cell-free expression and purification of a prokaryotic tetrameric pore-only sodium channel. We produced milligram quantities of the functional channel protein as characterized by size-exclusion chromatography, infrared spectroscopy and electrophysiological recordings. Cell-free expression enables advanced site-directed labelling, post-translational modifications, and special solubilization schemes. This enables next-generation biophysical experiments to study the principle of sodium ion selectivity and transport in sodium channels.
Collapse
Affiliation(s)
- Gabriela Kovácsová
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Jiajun Wang
- Nanion Technologies GmbH, Gabrielenstraße 9, 80636 Munich, Germany
| | - Mohamed Kreir
- Nanion Technologies GmbH, Gabrielenstraße 9, 80636 Munich, Germany
| | - Sebastian Peuker
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden.
| | - Sebastian Westenhoff
- Department of Chemistry, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
19
|
Su P, Ji X, Liu C, Gao W, Fu R, Tang C, Cheng B. Brij-58 template synthesis of self-assembled thermostable lamellar crystalline zirconia via a reflux-hydrothermal hybrid method. RSC Adv 2015. [DOI: 10.1039/c5ra05296c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The possible mechanism was illustrated above. Brij-58's hydrophilic head interacts with ZrO2+ and hydrophobic alkyl chain segments prefers to be close to each other to form a bilayer template (BLT). With the template guide, the TSLCZ were generated.
Collapse
Affiliation(s)
- Penghe Su
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Xiujie Ji
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Chao Liu
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Wenjun Gao
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Ranran Fu
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| | - Chengchun Tang
- School of Materials Science and Engineering
- Hebei University of Technology
- Tianjin 300130
- China
| | - Bowen Cheng
- State Key Laboratory of Hollow Fiber Membrane Materials and Processes
- Tianjin Polytechnic University
- Tianjin 300387
- China
| |
Collapse
|
20
|
Sugiki T, Fujiwara T, Kojima C. Latest approaches for efficient protein production in drug discovery. Expert Opin Drug Discov 2014; 9:1189-204. [PMID: 25046062 DOI: 10.1517/17460441.2014.941801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Pharmaceutical research looks to discover and develop new compounds which influence the function of disease-associated proteins or respective protein-protein interactions. Various scientific methods are available to discover those compounds, such as high-throughput screening of a library comprising chemical or natural compounds and computational rational drug design. The goal of these methods is to identify the seed compounds of future pharmaceuticals through the use of these technologies and laborious experiments. For every drug discovery effort made, the possession of accurate functional and structural information of the disease-associated proteins helps to assist drug development. Therefore, the investigation of the tertiary structure of disease-associated proteins and respective protein-protein interactions at the atomic level are of crucial importance for successful drug discovery. AREAS COVERED In this review article, the authors broadly outline current techniques utilized for recombinant protein production. In particular, the authors focus on bacterial expression systems using Escherichia coli as the living bioreactor. EXPERT OPINION The recently developed pCold-glutathione S-transferase (GST) system is one of the best systems for soluble protein expression in E. coli. Where the pCold-GST system does not succeed, it is preferable to change the host from E. coli to higher organisms such as yeast expression systems like Pichia pastoris and Kluyveromyces lactis. The selection of an appropriate expression system for each desired protein and the optimization of experimental conditions significantly contribute toward the successful outcome of any drug discovery study.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Osaka University, Institute for Protein Research , 3-2, Yamadaoka, Suita, Osaka 565-0871 , Japan
| | | | | |
Collapse
|
21
|
An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins. J Biotechnol 2014; 178:12-22. [DOI: 10.1016/j.jbiotec.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/08/2014] [Accepted: 02/14/2014] [Indexed: 11/19/2022]
|
22
|
Bernhard F, Tozawa Y. Cell-free expression--making a mark. Curr Opin Struct Biol 2013; 23:374-80. [PMID: 23628286 DOI: 10.1016/j.sbi.2013.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 11/27/2022]
Abstract
Cell-free protein production opens new perspectives for the direct manipulation of expression compartments in combination with reduced complexity of physiological requirements. The technology is therefore in particular suitable for the general synthesis of difficult proteins including toxins and membrane proteins as well as for the analysis of their functional folding in artificial environments. A further key application of cell-free expression is the fast and economic labeling of proteins for structural and functional applications. Two extract sources, wheat embryos and Escherichia coli cells, are currently employed for the preparative scale cell-free production of proteins. Recent achievements in structural characterization include cell-free synthesized membrane proteins and even larger protein assemblies may become feasible.
Collapse
Affiliation(s)
- Frank Bernhard
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
23
|
Emami S, Fan Y, Munro R, Ladizhansky V, Brown LS. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra. JOURNAL OF BIOMOLECULAR NMR 2013; 55:147-155. [PMID: 23344971 DOI: 10.1007/s10858-013-9710-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ((13)C/(15)N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.
Collapse
Affiliation(s)
- Sanaz Emami
- Departments of Physics, and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
24
|
Shadiac N, Nagarajan Y, Waters S, Hrmova M. Close allies in membrane protein research: Cell-free synthesis and nanotechnology. Mol Membr Biol 2013; 30:229-45. [DOI: 10.3109/09687688.2012.762125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Ma Y, Ghoshdastider U, Wang J, Ye W, Dötsch V, Filipek S, Bernhard F, Wang X. Cell-free expression of human glucosamine 6-phosphate N-acetyltransferase (HsGNA1) for inhibitor screening. Protein Expr Purif 2012; 86:120-126. [PMID: 23036358 DOI: 10.1016/j.pep.2012.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 12/27/2022]
Abstract
Glucosamine 6-phosphate N-acetyltransferase (GNA1; EC 2.3.1.4) is required for the de novo synthesis of N-acetyl-d-glucosamine-6-phosphate (GlcNAc-6P), which is an essential precursor in Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) biosynthesis pathway. Therefore, GNA1 is indispensable for the viability of organisms. Here, a novel cell-free expression strategy was developed to efficiently produce large amounts of human GNA1(HsGNA1) and HsGNA1-sGFP for throughput inhibitor screening. The binding site of inhibitor glucose-6-phosphate (G6P) to hGNA was identified by simulated annealing. Subtle differences to the binding site of Aspergillius GNA1(AfGNA1) can be harnessed for inhibitor design. HsGNA1 may be also useful as an antimicrobial and chemotherapeutic target against cancer. Additionally HsGNA1 inhibitors/modulators can possibly be administered with other drugs in the next generation of personalized medicine.
Collapse
Affiliation(s)
- Yi Ma
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cell-free protein synthesis of membrane (1,3)-β-d-glucan (curdlan) synthase: co-translational insertion in liposomes and reconstitution in nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:743-57. [PMID: 23063656 DOI: 10.1016/j.bbamem.2012.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 09/25/2012] [Accepted: 10/04/2012] [Indexed: 01/07/2023]
Abstract
A membrane-embedded curdlan synthase (CrdS) from Agrobacterium is believed to catalyse a repetitive addition of glucosyl residues from UDP-glucose to produce the (1,3)-β-d-glucan (curdlan) polymer. We report wheat germ cell-free protein synthesis (WG-CFPS) of full-length CrdS containing a 6xHis affinity tag and either Factor Xa or Tobacco Etch Virus proteolytic sites, using a variety of hydrophobic membrane-mimicking environments. Full-length CrdS was synthesised with no variations in primary structure, following analysis of tryptic fragments by MALDI-TOF/TOF Mass Spectrometry. Preparative scale WG-CFPS in dialysis mode with Brij-58 yielded CrdS in mg/ml quantities. Analysis of structural and functional properties of CrdS during protein synthesis showed that CrdS was co-translationally inserted in DMPC liposomes during WG-CFPS, and these liposomes could be purified in a single step by density gradient floatation. Incorporated CrdS exhibited a random orientation topology. Following affinity purification of CrdS, the protein was reconstituted in nanodiscs with Escherichia coli lipids or POPC and a membrane scaffold protein MSP1E3D1. CrdS nanodiscs were characterised by small-angle X-ray scattering using synchrotron radiation and the data obtained were consistent with insertion of CrdS into bilayers. We found CrdS synthesised in the presence of the Ac-AAAAAAD surfactant peptide or co-translationally inserted in liposomes made from E. coli lipids to be catalytically competent. Conversely, CrdS synthesised with only Brij-58 was inactive. Our findings pave the way for future structural studies of this industrially important catalytic membrane protein.
Collapse
|
27
|
Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. Biotechniques 2012; 53:163-74. [DOI: 10.2144/0000113924] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli-based cell extract is a vital component of inexpensive and high-yielding cell-free protein synthesis reactions. However, effective preparation of E. coli cell extract is limited to high-pressure (French press-style or impinge-style) or bead mill homogenizers, which all require a significant capital investment. Here we report the viability of E. coli cell extract prepared using equipment that is both common to biotechnology laboratories and able to process small volume samples. Specifically, we assessed the low-capital-cost lysis techniques of: (i) sonication, (ii) bead vortex mixing, (iii) freeze-thaw cycling, and (iv) lysozyme incubation to prepare E. coli cell extract for cell-free protein synthesis (CFPS). We also used simple shake flask fermentations with a commercially available E. coli strain. In addition, RNA polymerase was overexpressed in the E. coli cells prior to lysis, thus eliminating the need to add independently purified RNA polymerase to the CFPS reaction. As a result, high-yielding E. coli-based extract was prepared using equipment requiring a reduced capital investment and common to biotechnology laboratories. To our knowledge, this is the first successful prokaryote-based CFPS reaction to be carried out with extract prepared by sonication or bead vortex mixing.
Collapse
|