1
|
Braun J, Bunzel M. Quantification of galacturonic acid in pectin-containing samples using a stable isotope dilution approach and LC-MS. Carbohydr Polym 2025; 365:123816. [PMID: 40490346 DOI: 10.1016/j.carbpol.2025.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/23/2025] [Accepted: 05/25/2025] [Indexed: 06/11/2025]
Abstract
Reliable quantification of galacturonic acids (GalA) is essential for understanding the structural and functional properties of pectin-containing materials. However, conventional photometric methods often suffer from low reproducibility, limited sensitivity, and poorly understood reactions involved during analysis. Here, an LC-MS-based method for the sensitive and precise determination of total GalA contents in soluble and insoluble dietary fiber fractions of pectin containing samples is presented. The method is based on the degradation of GalA to the characteristic product 5-formyl-2-furancarboxylic acid (5FFA) in concentrated sulfuric acid under optimized conditions. The degradation product is extracted and quantified by UHPLC-ESI-MS. To compensate for degradation and extraction variability, the internal standard 13C6-galacturonic acid is used. Quantification is achieved by single ion monitoring (SIM) of 5FFA and the equivalent 13C-labeled degradation product. The validated method was successfully applied to various sample materials, including isolated galacturonic acid oligosaccharide standards with defined degrees of polymerization and plant-derived dietary fiber samples such as carrot, apple, and citrus pulp. Comparison to a widely used colorimetric assay demonstrated that the results of the two methods differ if applied to soluble fiber samples. Thus, the LC-MS approach represents a robust alternative to photometric assays, offering enhanced sensitivity, precision, and applicability for pectin analysis.
Collapse
Affiliation(s)
- Johanna Braun
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76327 Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76327 Karlsruhe, Germany.
| |
Collapse
|
2
|
Kaur D, Sharma V, Joshi A, Batra N, Ramniwas S, Sharma AK. Pectinases as promising green biocatalysts having broad-spectrum applications: Recent trends, scope, and relevance. Biotechnol Appl Biochem 2023; 70:1663-1678. [PMID: 36977651 DOI: 10.1002/bab.2464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Pectinases are a collection of multiple enzymes that have a common substrate, that is, pectin. They can act on different parts of pectin due to the structural heterogeneity of pectin. Therefore, they have been placed in different groups, such as protopectinases, polygalacturonases, polymethylesterases, pectin lyases, and pectate lyases. They are naturally present both in multicellular organisms such as higher plants and in unicellular organisms such as microbes. In past decade, it has been witnessed that chemical and mechanical methods employed in industrial processes have led to environmental hazards and serious health disorders, thus increasing the search for eco-friendly approaches with minimal health risks. Hence, microbial enzymes have been extensively used as safer alternative for these environmentally unsafe methods. Among these microbial enzymes, pectinases hold great significance and is one of the principal enzymes that have been used commercially. It is predominantly used as a green biocatalyst for fruit, fiber, oil, textile, beverage, pulp, and paper industry. Thus, this review focuses on the structure of pectin, microbial sources of pectin, and principle industrial applications of pectinases.
Collapse
Affiliation(s)
- Damanjeet Kaur
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Varruchi Sharma
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Amit Joshi
- Department of Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| | - Navneet Batra
- Department of Biotechnology, GGDSD College, Chandigarh, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, India
| |
Collapse
|
3
|
Hu S, Zhu R, Yu XY, Wang BT, Ruan HH, Jin FJ. A High-Quality Genome Sequence of the Penicillium oxalicum 5-18 Strain Isolated from a Poplar Plantation Provides Insights into Its Lignocellulose Degradation. Int J Mol Sci 2023; 24:12745. [PMID: 37628925 PMCID: PMC10454814 DOI: 10.3390/ijms241612745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Studies on the degradation of plant cell wall polysaccharides by fungal extracellular enzymes have attracted recent attention from researchers. Xylan, abundant in hemicellulose, that play great role in connection between cellulose and lignin, has seen interest in its hydrolytic enzymatic complex. In this study, dozens of fungus species spanning genera were isolated from rotting leaves based on their ability to decompose xylan. Among these isolates, a strain with strong xylanase-producing ability was selected for further investigation by genome sequencing. Based on phylogenetic analysis of ITS (rDNA internal transcribed spacer) and LSU (Large subunit 28S rDNA) regions, the isolate was identified as Penicillium oxalicum. Morphological analysis also supported this finding. Xylanase activity of this isolated P. oxalicum 5-18 strain was recorded to be 30.83 U/mL using the 3,5-dinitro-salicylic acid (DNS) method. Further genome sequencing reveals that sequenced reads were assembled into a 30.78 Mb genome containing 10,074 predicted protein-encoding genes. In total, 439 carbohydrate-active enzymes (CAZymes) encoding genes were predicted, many of which were associated with cellulose, hemicellulose, pectin, chitin and starch degradation. Further analysis and comparison showed that the isolate P. oxalicum 5-18 contains a diverse set of CAZyme genes involved in degradation of plant cell wall components, particularly cellulose and hemicellulose. These findings provide us with valuable genetic information about the plant biomass-degrading enzyme system of P. oxalicum, facilitating a further exploration of the repertoire of industrially relevant lignocellulolytic enzymes of P. oxalicum 5-18.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng-Jie Jin
- College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.H.); (R.Z.); (X.-Y.Y.); (B.-T.W.); (H.-H.R.)
| |
Collapse
|
4
|
Liu S, Tian L, Cong Y, Shi Q, Wang L, Lu Y, Wang L, Yang G. Recent advances in polygalacturonase: Industrial applications and challenges. Carbohydr Res 2023; 528:108816. [PMID: 37094533 DOI: 10.1016/j.carres.2023.108816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
This review focuses on the applications of polygalacturonase (PG), one of the most commercially produced enzymes on the biocatalyst market, in the food, beverage, feed, textile, and paper industries. Most PGs are acidic mesophilic enzymes, as shown by a summary of their biochemical properties. However, the acidic PGs discovered to date are insufficiently effective for industrial applications. The sequence and structural characteristics of thermophilic PGs are analyzed based on the results of extensive discussions regarding the catalytic mechanism and structural characteristics of PGs with shared right-handed parallel β-helical structures. In addition, the molecular modification methods for obtaining thermostable PGs are systematically presented. Notably, the demand for alkaline heat-resistant PGs has increased significantly concurrent with the biomanufacturing industry development. Therefore, this review also provides a theoretical guideline for mining heat-resistant PG gene resources and modifying PG thermostability.
Collapse
Affiliation(s)
- Siyi Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Linfang Tian
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Yuting Cong
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Qianqian Shi
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Lianshun Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanan Lu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Li Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Guojun Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian, 116023, China; Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China.
| |
Collapse
|
5
|
Zhang H, Yang FQ. A paper-based lateral flow strip assay based on enzyme-mediated pectin viscosity change for the determination of polygalacturonase activity. Microchem J 2023; 186:108322. [DOI: 10.1016/j.microc.2022.108322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Santana ML, Tavares IMDC, Costa FS, Teshima E, de Sena AR, Franco M, de Assis SA. The improvement of guava (Psidium guajava) juice quality using crude multi-enzymatic extracts obtained from yeasts. Biotechnol Appl Biochem 2022. [PMID: 36585894 DOI: 10.1002/bab.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Guava juice is cloudy and viscous, which hinders filtration, decreases yield, and causes the loss of quality after its processing and during storage. This study aimed to evaluate enzymatic treatment effects using crude multi-enzymatic extracts (CME) obtained from Rhodotorula mucilaginosa, Rhodotorula orizycola, and Pseudozyma sp. produced by submerse fermentation in the extraction of juice guava. Mixtures of 100 ml of guava pulp and multi-enzymatic extracts proposed by Doehlert planning were incubated under constant agitation at 150 rpm and 50°C, and a Doehlert design was applied as a multivariate optimization strategy. The optimal conditions using the multi-enzymatic extract were: 0.4% (v/v) of CME for 131 min for the multi-enzymatic treatment using Pseudozyma sp.; 3.0% (v/v) of CME for 154 min using the R. mucilaginosa CME; and 5.0% (v/v) of CME for 90 min using R. oryzicola. The maximum viscosity reduction values for the juices treated with the CME of yeasts were 10.33%, 86.38%, and 13.33% for the juices treated with the CME of Pseudozyma sp., R. mucilaginosa, and R. orizycola, respectively. The physical-chemical properties were improved after treatment with CMEs, yielding a reduction of clarity, increase of total soluble solids and reducing sugars, and decreasing the acidity (pH) for all treatments with enzymatic extracts of all strains. The yeasts studied showed a potential for CME production to be applied to juice, improving the quality of the juice, and R. mucilaginosa was the most prominent yeast due to most significant reduction of viscosity in guava juice.
Collapse
Affiliation(s)
- Mona Liza Santana
- Department of Health, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | | | | | - Elisa Teshima
- Department of Technology, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Amanda Reges de Sena
- Department of Health, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil.,Microbiology Laboratory, Federal Education, Science and Technology Institute of Pernambuco, Barreiros, Pernambuco, Brazil
| | - Marcelo Franco
- Department of Exact Sciences and Technology, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | | |
Collapse
|
7
|
Dhayalan A, Thillainathan N, Velramar B, Athiyappagounder P, Sundaramoorthy D, Pachiappan P. Pectinase from a Fish Gut Bacterium, Aeromonas guangheii (SS6): Production, Cloning and Characterization. Protein J 2022; 41:572-590. [PMID: 36208356 DOI: 10.1007/s10930-022-10077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/28/2022]
Abstract
During the present research, 11 gut bacteria were isolated from the freshwater fish, Systomus sarana (General name: olive barb) and upon screening, the strains produced extracellular pectinase enzyme. Among them, the SS6 strain was found to produce a high quantity of 208.731 U/ml pectinase and through molecular characterization the SS6 strain was identified as Aeromonas guangheii. During the culture of SS6 strain, a set of parameters were optimized through the response surface methodology with a Box-Behnken design, for the production of the enzyme. The optimal conditions were found to be 2.11% of maltose, 2.20% of yeast extract, 6.5 of pH, and a temperature of 27.3 °C at 32-h incubation. Under the above conditions, the activity of pectinase production was enhanced to 371 U/ml. The purified pectinase's molecular weight was determined to be ~ 50 kDa (by 10% 2-D PAGE). Totally, nine peptides were identified from the purified pectinase enzyme through the MALDI-TOF-MS analysis and MASCOT tool was used to get the mass spectrum of the peak at 2211 of peptide that indicated the reference pectinase protein. The referenced gene primer (pectate lyases) was PCR amplified and its nucleotide sequence was analyzed. The exo-pelA gene was cloned in pREST vector, which was found to be over expressed in Escherichia coli BL21. The ORF encoded for a mature protein comprising of 425 amino acids (1236 nucleotides) with a predicted molecular weight of ~ 48.7 kDa. The present findings underline the potential of the fish-gut microbes as a source of biotechnologically important enzymes.
Collapse
Affiliation(s)
- Arul Dhayalan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India.,SRS of ICAR- National Dairy Research Institute, Adugodi, Bengaluru, Karnataka, 560030, India
| | - Natarajan Thillainathan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India.,Department of Biomedical Engineering, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Balasubramanian Velramar
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India.,Amity Institute of Biotechnology, Amity University, Raipur, Chhattisgarh, 493225, India
| | - Palanisammi Athiyappagounder
- Veterinary College & Research Institute, Tamil Nadu Veterinary & Animal Science University, Tirunelveli, Tamil Nadu, 627358, India
| | - Dhanasundaram Sundaramoorthy
- Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Perumal Pachiappan
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, 636011, India. .,Department of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
8
|
Patel VB, Chatterjee S, Dhoble AS. A review on pectinase properties, application in juice clarification, and membranes as immobilization support. J Food Sci 2022; 87:3338-3354. [PMID: 35781268 DOI: 10.1111/1750-3841.16233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
Pectic substances cause haziness and high viscosity of fruit juices. Pectinase enzymes are biological compounds that degrade pectic compounds. Nontoxicity and ecofriendly nature make pectinases excellent biocatalysts for juice clarification. However, the poor stability and nonreusability of pectinases trim down the effectiveness of the operation. The immobilization techniques have gained the attention of researchers as it augments the properties of the enzymes. Literature has reported the stability improvement of enzymes like lipase, laccase, hydrogen peroxidase, and cellulase upon immobilization on the membrane. However, only a few research articles divulge pectinase immobilization using a membrane. The catalysis-separation synergy of membrane-reactor has put indelible imprints in industrial applications. Immobilization of pectinase on the membrane can enhance its performance in juice processing. This review delineates the importance of physicochemical and kinematic properties of pectinases relating to the juice processing parameters. It also includes the influence of metal-ion cofactors on enzymes' activity. Considering the support and catalytic-separation facets of the membrane, the prediction of the membrane as support for pectinase immobilization has also been carried out.
Collapse
Affiliation(s)
- Vashishtha B Patel
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, India
| | - Somak Chatterjee
- Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, India
| | - Abhishek S Dhoble
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
9
|
Lu B, Xian L, Zhu J, Wei Y, Yang C, Cheng Z. A Novel Endo-Polygalacturonase from Penicillium oxalicum: Gene Cloning, Heterologous Expression and Its Use in Acidic Fruit Juice Extraction. J Microbiol Biotechnol 2022; 32:464-472. [PMID: 35001012 PMCID: PMC9628815 DOI: 10.4014/jmb.2112.12023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
An endo-polygalacturonase (endo-PGase) exhibiting excellent performance during acidic fruit juice production would be highly attractive to the fruit juice industry. However, candidate endo-PGases for this purpose have rarely been reported. In this study, we expressed a gene from Penicillium oxalicum in Pichia pastoris. The recombinant enzyme PoxaEnPG28C had an optimal enzyme activity at pH 4.5 and 45°C and was stable at pH 3.0-6.5 and < 45°C. The enzyme had a specific activity of 4,377.65 ± 55.37 U/mg towards polygalacturonic acid, and the Km and Vmax values of PoxaEnPG28C were calculated as 1.64 g/l and 6127.45 U/mg, respectively. PoxaEnPG28C increased the light transmittance of orange, lemon, strawberry and hawthorn juice by 13.9 ± 0.3%, 29.4 ± 3.8%, 95.7 ± 10.2% and 79.8 ± 1.7%, respectively; it reduced the viscosity of the same juices by 25.7 ± 1.6%, 52.0 ± 4.5%, 48.2 ± 0.7% and 80.5 ± 2.3%, respectively, and it increased the yield of the juices by 24.5 ± 0.7%, 12.7 ± 2.2%, 48.5 ± 4.2% and 104.5 ± 6.4%, respectively. Thus, PoxaEnPG28C could be considered an excellent candidate enzyme for acidic fruit juice production. Remarkably, fruit juice production using hawthorn as an material was reported for the first time.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, P.R. China
| | - Liang Xian
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, P.R. China
| | - Jing Zhu
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Yunyi Wei
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Chengwei Yang
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Zhong Cheng
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China,Corresponding author Phone: +86-771-5900891 Fax: +86-771-5900885 E-mail:
| |
Collapse
|
10
|
Pectinase from Microorganisms and Its Industrial Applications. ScientificWorldJournal 2022; 2022:1881305. [PMID: 35311220 PMCID: PMC8933074 DOI: 10.1155/2022/1881305] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
The utilization of microbial pectinase in different industries has been increased in its world demand. The major sources of pectinase are microorganisms mainly bacteria, fungi and yeast. The utilization of low-cost agro-industrial wastes as substrates has been preferable in pectinase production. Pectinase production faced various parameters optimization constraints such as temperature, pH and production times which are the main factors in pectinase production. The pectinase enzyme is getting attention due to its several advantages; hence, it needs to be explored further to take its maximum advantage in different industries. This review discusses the pectin substance structure, substrate for pectinase production, factors influencing pectinase production, the industrial application of microbial pectinase and also discusses challenges and future opportunities of applying microbial pectinase in industry.
Collapse
|
11
|
Karataş E, Tülek A, Çakar MM, Tamtürk F, Aktaş F, Binay B. From secretion in Pichia pastoris to application in apple juice processing: Exo-polygalacturonase from Sporothrix schenckii 1099-18. Protein Pept Lett 2021; 28:817-830. [PMID: 33413052 DOI: 10.2174/1871530321666210106110400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. OBJECTIVES The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. METHODS Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. RESULTS The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo-PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. CONCLUSION The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.
Collapse
Affiliation(s)
- Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Faruk Tamtürk
- Döhler Food & Beverage Ingredients, 70100 Merkez, Karaman. Turkey
| | - Fatih Aktaş
- Department of Environment Engineering, Duzce University, Konuralp 81100, Düzce. Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| |
Collapse
|
12
|
A rapid colorimetric LAMP assay for detection of Rhizoctonia solani AG-1 IA causing sheath blight of rice. Sci Rep 2020; 10:22022. [PMID: 33328516 PMCID: PMC7744555 DOI: 10.1038/s41598-020-79117-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Rhizoctonia solani is one of the most devastating pathogens. R. solani AG-1 IA causes sheath blight in rice, maize, and other Gramineous plants. Accurate identification is essential for the effective management of this pathogen. In the present study, a set of four primers were designed viz. RSPG1, RSPG2, RSPG4, and RSPG5 for polygalacturonase (PG) gene, an important virulence factor in phytopathogenic fungi. All four primer sets showed specific amplification of 300 bp (RSPG1F/R), 375 bp (RSPG2F/R), 500 bp (RSPG4F/R) and 336 bp (RSPG5F/R) amplicons. q-PCR detection using each primer sets could detect up to 10 pg of DNA. We also designed six primers (RS_pg_F3_1/RS_pg_B3_1, RS_pg_FIP_1.1/RS-pg_BIP_1.1, and RS_pg_LF_1/RS_pg_LB_1) for PG gene. Further, a colorimetric LAMP assay developed yielded visual confirmation of the pathogen within 45 min of sample collection when coupled with rapid high throughput template preparation method (rHTTP) from infected samples. The sensitivity of the LAMP assay was as low as 1.65 fg/µl of template DNA and could effectively detect R. solani AG-1 IA from diseased plant tissues and soil samples. The LAMP assay was highly specific for R. solani as it did not show any amplification with other AG groups of R. solani and closely related fungal and bacterial outgroups. This study will help in designing an effective point of care diagnostic method for early monitoring of R. solani and thereby planning timely preventive measures against the pathogen.
Collapse
|
13
|
Chemical composition and physicochemical properties of mango juice extracted using polygalacturonase produced by Aspergillus awamori CICC 2040 on pretreated orange peel. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Karaoğlan M, Erden-Karaoğlan F. Effect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris. Enzyme Microb Technol 2020; 139:109589. [DOI: 10.1016/j.enzmictec.2020.109589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 01/17/2023]
|
15
|
Hocq L, Guinand S, Habrylo O, Voxeur A, Tabi W, Safran J, Fournet F, Domon JM, Mollet JC, Pilard S, Pau-Roblot C, Lehner A, Pelloux J, Lefebvre V. The exogenous application of AtPGLR, an endo-polygalacturonase, triggers pollen tube burst and repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:617-633. [PMID: 32215973 DOI: 10.1111/tpj.14753] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/14/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Plant cell wall remodeling plays a key role in the control of cell elongation and differentiation. In particular, fine-tuning of the degree of methylesterification of pectins was previously reported to control developmental processes as diverse as pollen germination, pollen tube elongation, emergence of primordia or elongation of dark-grown hypocotyls. However, how pectin degradation can modulate plant development has remained elusive. Here we report the characterization of a polygalacturonase (PG), AtPGLR, the gene for which is highly expressed at the onset of lateral root emergence in Arabidopsis. Due to gene compensation mechanisms, mutant approaches failed to determine the involvement of AtPGLR in plant growth. To overcome this issue, AtPGLR has been expressed heterologously in the yeast Pichia pastoris and biochemically characterized. We showed that AtPGLR is an endo-PG that preferentially releases non-methylesterified oligogalacturonides with a short degree of polymerization (< 8) at acidic pH. The application of the purified recombinant protein on Amaryllis pollen tubes, an excellent model for studying cell wall remodeling at acidic pH, induced abnormal pollen tubes or cytoplasmic leakage in the subapical dome of the pollen tube tip, where non-methylesterified pectin epitopes are detected. Those leaks could either be repaired by new β-glucan deposits (mostly callose) in the cell wall or promoted dramatic burst of the pollen tube. Our work presents the full biochemical characterization of an Arabidopsis PG and highlights the importance of pectin integrity in pollen tube elongation.
Collapse
Affiliation(s)
- Ludivine Hocq
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Sophie Guinand
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, EA 4358, SFR 4377 NORVEGE, IRIB, Tremplin I2C Carnot, 76000, Rouen, France
| | - Olivier Habrylo
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Aline Voxeur
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Wafae Tabi
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Josip Safran
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Françoise Fournet
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Jean-Marc Domon
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, EA 4358, SFR 4377 NORVEGE, IRIB, Tremplin I2C Carnot, 76000, Rouen, France
| | - Serge Pilard
- Plateforme Analytique, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Corinne Pau-Roblot
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale, Normandie Université, UNIROUEN, EA 4358, SFR 4377 NORVEGE, IRIB, Tremplin I2C Carnot, 76000, Rouen, France
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| | - Valérie Lefebvre
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, SFR Condorcet FR CNRS 3417, Université de Picardie, 33 Rue St Leu, 80039, Amiens, France
| |
Collapse
|
16
|
Production, thermodynamic characterization, and fruit juice quality improvement characteristics of an Exo-polygalacturonase from Penicillium janczewskii. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140379. [DOI: 10.1016/j.bbapap.2020.140379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 01/06/2023]
|
17
|
Ladeira Ázar RI, da Luz Morales M, Piccolo Maitan-Alfenas G, Falkoski DL, Ferreira Alfenas R, Guimarães VM. Apple juice clarification by a purified polygalacturonase from Calonectria pteridis. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2019.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Pagnonceli J, Rasbold L, Rocha G, Silva J, Kadowaki M, Simão R, Maller A. Biotechnological potential of an exo‐polygalacturonase of the new strain
Penicillium janthinellum
VI2R3M: biochemical characterization and clarification of fruit juices. J Appl Microbiol 2019; 127:1706-1715. [DOI: 10.1111/jam.14426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Affiliation(s)
- J. Pagnonceli
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - L.M. Rasbold
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - G.B. Rocha
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - J.L.C. Silva
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - M.K. Kadowaki
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - R.C.G. Simão
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| | - A. Maller
- Centro de Ciências Médicas e Farmacêuticas Universidade Estadual do Oeste do Paraná Cascavel, Paraná Brazil
| |
Collapse
|
19
|
Optimized production of Aspergillus aculeatus URM4953 polygalacturonases for pectin hydrolysis in hog plum (Spondias mombin L.) juice. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Recent advances in the production strategies of microbial pectinases—A review. Int J Biol Macromol 2019; 122:1017-1026. [DOI: 10.1016/j.ijbiomac.2018.09.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 02/01/2023]
|
21
|
Patidar MK, Nighojkar S, Kumar A, Nighojkar A. Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 2018; 8:199. [PMID: 29581931 DOI: 10.1007/s13205-018-1220-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
A plethora of solid substrates, cultivation conditions and enzyme assay methods have been used for efficient production and estimation of polygalacturonase and pectin methylesterase enzymes. Recent developments in industrial biotechnology offer several opportunities for the utilization of low cost agro-industrial waste in Solid State Fermentation (SSF) for the pectinolytic enzyme production using fungi. Fruit waste mainly citrus fruit waste alone and along with other agro-industrial waste has been explored in SSF for enzyme production. Agro-industrial waste, due to the economic advantage of low procuring cost has been employed in SSF bioreactors for pectinolytic enzyme production. Acidic pectinases produced by fungi are utilized especially in food industries for clarification of fruit juices. This review focuses on the recent developments in SSF processes utilizing agro-industrial residues for polygalacturonase and pectin methylesterase production, their various assay methods and applications in fruit juice industries.
Collapse
Affiliation(s)
- Mukesh Kumar Patidar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| | - Sadhana Nighojkar
- Mata Gujri College of Professional Studies, A.B. Road, Indore, 452001 India
| | - Anil Kumar
- 3School of Biotechnology, Devi Ahilya University, Khandwa Road, Indore, 452001 India
| | - Anand Nighojkar
- Maharaja Ranjit Singh College of Professional Sciences, Hemkunt Campus, Khandwa Road, Indore, 452001 India
| |
Collapse
|
22
|
Evaluation of Macerating Pectinase Enzyme Activity under Various Temperature, pH and Ethanol Regimes. BEVERAGES 2018. [DOI: 10.3390/beverages4010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The polygalacturonase (PGU), hemicellulase (mannanase) and protease enzyme activities in commercial macerating, pectinase-enzyme preparations commonly used by wineries in Ontario (Scottzyme Color X and Color Pro) were measured under various simulated process conditions (temperature, pH, and ethanol concentration). Treatments included three temperatures (15, 20 and 30 °C; pH = 3.0, 3.5, 4.0 and 5.0; ethanol = 0%), four pH levels (3.0, 3.5, 4.0 and 5.0; temperature = 15, 20, 30 and 50 °C; ethanol = 0%), and four ethanol concentrations ((2.5, 5, 7.5 and 10%); temperature = 20 °C and pH = 3.5.) Polygalacturonase enzyme activity in Color X increased linearly with temperature at all pH levels, and increased with pH at all temperature regimes. Polygalacturonase activity decreased with increasing ethanol. Color X mannanase activity increased with temperatures between 15 and 40 °C, and decreased with increased pH between 3.0 and 5.0. Response of mannanase to ethanol was cubic with a sharp decrease between 8 and 10% ethanol. Protease activity increased linearly with temperatures between 20 and 40 °C. These data suggest that the PGU, mannanase and protease components in these enzyme products provide sufficient activities within the ranges of pH, temperature, and ethanol common during the initial stages of red wine fermentations, although low must temperatures (<20 °C) and presence of ethanol would likely lead to sub-optimal enzyme activities.
Collapse
|
23
|
|
24
|
Anand G, Yadav S, Yadav D. Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus niger MTCC 478 suitable for clarification of orange juice. 3 Biotech 2017; 7:122. [PMID: 28567634 PMCID: PMC5451361 DOI: 10.1007/s13205-017-0760-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/02/2017] [Indexed: 10/19/2022] Open
Abstract
Polygalacturonases (PG) represent an important member of pectinases group of enzymes with immense industrial applications. A fungal strain Aspergillus niger MTCC478 was used for the production of polygalacturonase both under submerged and solid-state fermentation condition. Further its production was optimized under solid-state fermentation condition with media comprising of wheat bran and tea extract. Purification of an exo-PG was achieved by acetone precipitation (60-90%) and CM-cellulose column chromatography revealing 15.28-fold purification with a specific activity of 33.47 U/mg protein and 1.2% yield. A relative molecular mass of purified PG was approximately 124.0 kDa. The pH and temperature optimum was found to be 4 and 50 °C, respectively. The k cat and K m value for degradation of PGA by the purified enzyme was found to be 194 s-1 and 2.3 mg/mL, respectively. Cu2+ was found to enhance the PG activity while Ag+ completely inhibited the enzyme activity. The application of the purified PG in orange juice clarification was elucidated.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Sangeeta Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India.
| |
Collapse
|
25
|
Patidar MK, Nighojkar A, Nighojkar S, Kumar A. Purification and Characterization of Polygalacturonase Produced by Aspergillus niger AN07 in Solid State Fermentation. CANADIAN JOURNAL OF BIOTECHNOLOGY 2017. [DOI: 10.24870/cjb.2017-000102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Purification and biochemical characterization of an exo-polygalacturonase from Aspergillus flavus MTCC 7589. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Amin F, Bhatti HN, Bilal M, Asgher M. Purification, Kinetic, and Thermodynamic Characteristics of an Exo-polygalacturonase from Penicillium notatum with Industrial Perspective. Appl Biochem Biotechnol 2017; 183:426-443. [DOI: 10.1007/s12010-017-2455-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 03/12/2017] [Indexed: 10/19/2022]
|
28
|
Amin F, Bhatti HN, Bilal M, Asgher M. Multiple Parameter Optimizations for Enhanced Biosynthesis of Exo-polygalacturonase Enzyme and its Application in Fruit Juice Clarification. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2016-0256] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The present study investigated the potential of several indigenous fungal strains to produce industrially important exo-polygalacturonase (exo-PG) utilizing locally available agro-industrial wastes in solid-state fermentation (SSF). Amongst various substrates employed, wheat bran supported the highest biosynthesis of exo-PG. Different process variables such as, fermentation duration, moisture level, pH and temperature were optimized using one-variable-at-a-time (OVAT) statistical approach. Results revealed that an initial medium pH of 3.0 at 35 °C together with MnSO4, glycine and pectin have progressive influence on exo-PG synthesis by P. notatum, while C. versicolor displayed utmost enzyme activity at pH 5.0, temperature 30 °C, moisture 50 % using CaCO3, (NH4)2SO4, and lactose as nutritional sources. The enzymatic cocktail treatment achieved a significantly improved clarity by reducing the turbidities, viscosities and absorbance’s of three fruit juices. Scaling up of various fermentation parameters might have potential to produce enhanced activities of exo-PG for different industrial sectors, particularly in food industry.
Collapse
|
29
|
Pinheiro VE, Desagiacomo CCV, Michelin M, Maller A, Monteiro LMO, Jorge JA, Polizeli MDLTDM. Neosartorya glabra polygalacturonase produced from fruit peels as inducers has the potential for application in passion fruit and apple juices. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.16316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Summary Polygalacturonases are enzymes with the biotechnological potential for use in fruit juice clarification and for the enhancement of filtration efficiency. The aim of this work was to assess the production of polygalacturonase by the fungus Neosartorya glabra by means of solid-state and submerged fermentation using fruit peel residues as the carbon source, and also apply the enzyme in the clarification and decrease in viscosity of passion fruit and apple juices. The highest polygalacturonase (4.52 U/g/h) production was obtained by means of submerged fermentation in Vogel´s medium (1964) containing orange peel – Bahia variety (Citrus sinensis), at a concentration of 1.5% (w/v, dried mass) at 30-35°C for 72 h. The polygalacturonase of the crude extract presented optimal activity at 60°C and pH 5.5. The enzyme retained around 90% of the initial activity after 180 minutes at 40°C, and 50% of the initial activity after 150 minutes at 50°C. The enzyme was shown to be stable at acid pH values (3.0-6.5) after 120 minutes at 25oC. All these favourable enzymatic properties make the polygalacturonase attractive for potential uses in the industry of pectin-rich fruit juices, since the application of the crude extract to passion fruit (Passiflora edulis) juice caused an 80% reduction in viscosity and 75% decrease in light absorbance. In the processing of apple pulp juice (Malus domestica), there was a 50% reduction in viscosity and 78% decrease in light absorbance.
Collapse
|
30
|
Anand G, Yadav S, Yadav D. Purification and characterization of polygalacturonase from Aspergillus fumigatus MTCC 2584 and elucidating its application in retting of Crotalaria juncea fiber. 3 Biotech 2016; 6:201. [PMID: 28330273 PMCID: PMC5033773 DOI: 10.1007/s13205-016-0517-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 11/26/2022] Open
Abstract
Polygalacturonases represents an important member of pectinases group of enzymes with diverse industrial applications and is widely distributed among fungi, bacteria, yeasts, plants and some plant parasitic nematodes. An endo-polygalacturonase from a new fungal source Aspergillus fumigatus MTCC 2584 was produced under solid-state fermentation conditions and was purified simply by acetone precipitation and gel-filtration chromatography technique. The approximate molecular weight of the purified PG was found to be 43.0 kDa as revealed by SDS-PAGE. The pH optimum of the purified enzyme was found to be 10.0 and was stable in the pH range of 7-10. The optimum temperature of purified PG was found to be 30 °C. The Km and Kcat of the purified enzyme were 2.4 mg/ml and 44 s-1, respectively, and the metal ions Cu2+ and K+ were found to enhance the enzyme activity while Ag+, Ca2+ and Hg2+ were inhibitory in nature. Based on its alkaline nature, the potential of purified PG in retting of natural fiber Crotalaria juncea was elucidated in the absence of EDTA. This is probably the first report of alkaline PG from Aspergillus fumigatus.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Sangeeta Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India.
| |
Collapse
|
31
|
Sassi AH, Tounsi H, Trigui-Lahiani H, Bouzouita R, Romdhane ZB, Gargouri A. A low-temperature polygalacturonase from P. occitanis: characterization and application in juice clarification. Int J Biol Macromol 2016; 91:158-64. [DOI: 10.1016/j.ijbiomac.2016.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
32
|
Jaramillo PMD, Andreaus J, Neto GPDS, Castro CFDS, Filho EXF. The characterization of a pectin-degrading enzyme fromAspergillus oryzaegrown on passion fruit peel as the carbon source and the evaluation of its potential for industrial applications. BIOCATAL BIOTRANSFOR 2016. [DOI: 10.3109/10242422.2016.1168817] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Patidar MK, Nighojkar S, Kumar A, Nighojkar A. Papaya peel valorization for production of acidic pectin methylesterase by Aspergillus tubingensis and its application for fruit juice clarification. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2016.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Biochemical characterization of three distinct polygalacturonases from Neosartorya fischeri P1. Food Chem 2015; 188:569-75. [DOI: 10.1016/j.foodchem.2015.05.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 11/19/2022]
|
35
|
In situ immobilization of commercial pectinase in rigid polyurethane foam and application in the hydrolysis of pectic oligosaccharides. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
36
|
Pili J, Danielli A, Zeni J, Trentini MMS, Cansian RL, Toniazzo G, Valduga E. Utilization of Orange Peel, Corn Steep Liquor, and Parboiled Rice Water in the Production of Polygalacturonase from Aspergillus niger. Ind Biotechnol (New Rochelle N Y) 2015. [DOI: 10.1089/ind.2015.0011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jonaina Pili
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | | | - Jamile Zeni
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| | | | | | | | - Eunice Valduga
- Department of Food Engineering, URI Erechim, Erechim, Brazil
| |
Collapse
|
37
|
Improvement in Thermostability of an Achaetomium sp. Strain Xz8 Endopolygalacturonase via the Optimization of Charge-Charge Interactions. Appl Environ Microbiol 2015. [PMID: 26209675 DOI: 10.1128/aem.01363-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improving enzyme thermostability is of importance for widening the spectrum of application of enzymes. In this study, a structure-based rational design approach was used to improve the thermostability of a highly active, wide-pH-range-adaptable, and stable endopolygalacturonase (PG8fn) from Achaetomium sp. strain Xz8 via the optimization of charge-charge interactions. By using the enzyme thermal stability system (ETSS), two residues--D244 and D299--were inferred to be crucial contributors to thermostability. Single (D244A and D299R) and double (D244A/D299R) mutants were then generated and compared with the wild type. All mutants showed improved thermal properties, in the order D244A < D299R < D244A/D299R. In comparison with PG8fn, D244A/D299R showed the most pronounced shifts in temperature of maximum enzymatic activity (Tmax), temperature at which 50% of the maximal activity of an enzyme is retained (T50), and melting temperature (Tm), of about 10, 17, and 10.2°C upward, respectively, with the half-life (t1/2) extended by 8.4 h at 50°C and 45 min at 55°C. Another distinguishing characteristic of the D244A/D299R mutant was its catalytic activity, which was comparable to that of the wild type (23,000 ± 130 U/mg versus 28,000 ± 293 U/mg); on the other hand, it showed more residual activity (8,400 ± 83 U/mg versus 1,400 ± 57 U/mg) after the feed pelleting process (80°C and 30 min). Molecular dynamics (MD) simulation studies indicated that mutations at sites D244 and D299 lowered the overall root mean square deviation (RMSD) and consequently increased the protein rigidity. This study reveals the importance of charge-charge interactions in protein conformation and provides a viable strategy for enhancing protein stability.
Collapse
|
38
|
Wang S, Lian Z, Wang L, Yang X, Liu Y. Preliminary investigations on a polygalacturonase from Aspergillus fumigatus in Chinese Pu’er tea fermentation. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0061-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Polygalacturonase is one kind of pectinases which hydrolyze the alpha-1,4 glycosidic bond between galacturonic acid residue. Polygalacturonase has been widely used in the fields of food, biofuel, and textile industries, in which thermostable polygalacturonase is often demanded at high temperatures of 50–60 °C. Herein, we reported a thermostable polygalacturonase producing from Aspergillus fumigatus isolated from the pile fermentation of Pu’er tea in China.
Results
The thermophilic polygalacturonase-producing strain was identified as A. fumigatus L45 on basis of its morphology, physicochemical properties, and 18S rDNA analysis. The crucial fermentation parameters affecting polygalacturonase activity were optimized by response surface methodology (RSM); the optimum fermentation parameters were the following: inoculums concentration of 0.07 % (v/v), fermentation time of 36 h, pH of 5.0, and temperature of 45 °C. Under the optimized conditions, the highest polygalacturonase activity of 359.1 ± 10.1 U/mL was obtained. The polygalacturonase showed good thermostability and pH stability. The enzyme was activated by metal ions Zn2+ and Mg2+, but inhibited by K+. However, Na+ and Ca2+ showed little effects on its activity. K
m and V
max values were estimated to be 35.0 mg/mL and 7.69 μmol/mL/min, respectively.
Conclusions
A polygalacturonase from A. fumigatus L45 was preliminarily investigated, the crucial fermentation parameters were optimized by RSM, and the properties of polygalacturonase was examined. The polygalacturonase showed good thermostability and pH stability, which suggested the enzyme has potential applications in the biofuel and textile industries.
Collapse
|
39
|
Bushina EV, Rubtsova EA, Rozhkova AM, Sinitsyna OA, Koshelev AV, Matys VY, Nemashkalov VA, Sinitsyn AP. Developing the producers of cellulolytic and pectinolytic enzymes based on the fungus Penicillium verruculosum. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815040043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Trentini MMS, Toniazzo G, Zeni J, Pili J, Di Luccio M, Valduga E. Purification of pectinases from Aspergillus niger ATCC 9642 by ethanol precipitation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Dey TB, Adak S, Bhattacharya P, Banerjee R. Purification of polygalacturonase from Aspergillus awamori Nakazawa MTCC 6652 and its application in apple juice clarification. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Tai ES, Hsieh PC, Sheu SC. Effect of polygalacturonase and feruloyl esterase from Aspergillus tubingensis on demucilage and quality of coffee beans. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|