1
|
Chun H, Kurasawa JH, Olivares P, Marakasova ES, Shestopal SA, Hassink GU, Karnaukhova E, Migliorini M, Obi JO, Smith AK, Wintrode PL, Durai P, Park K, Deredge D, Strickland DK, Sarafanov AG. Characterization of interaction between blood coagulation factor VIII and LRP1 suggests dynamic binding by alternating complex contacts. J Thromb Haemost 2022; 20:2255-2269. [PMID: 35810466 PMCID: PMC9804390 DOI: 10.1111/jth.15817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Deficiency in blood coagulation factor VIII (FVIII) results in life-threating bleeding (hemophilia A) treated by infusions of FVIII concentrates. To improve disease treatment, FVIII has been modified to increase its plasma half-life, which requires understanding mechanisms of FVIII catabolism. An important catabolic actor is hepatic low density lipoprotein receptor-related protein 1 (LRP1), which also regulates many other clinically significant processes. Previous studies showed complexity of FVIII site for binding LRP1. OBJECTIVES To characterize binding sites between FVIII and LRP1 and suggest a model of the interaction. METHODS A series of recombinant ligand-binding complement-type repeat (CR) fragments of LRP1 including mutated variants was generated in a baculovirus system and tested for FVIII interaction using surface plasmon resonance, tissue culture model, hydrogen-deuterium exchange mass spectrometry, and in silico. RESULTS Multiple CR doublets within LRP1 clusters II and IV were identified as alternative FVIII-binding sites. These interactions follow the canonical binding mode providing major binding energy, and additional weak interactions are contributed by adjacent CR domains. A representative CR doublet was shown to have multiple contact sites on FVIII. CONCLUSIONS FVIII and LRP1 interact via formation of multiple complex contacts involving both canonical and non-canonical binding combinations. We propose that FVIII-LRP1 interaction occurs via switching such alternative binding combinations in a dynamic mode, and that this mechanism is relevant to other ligand interactions of the low-density lipoprotein receptor family members including LRP1.
Collapse
Affiliation(s)
- Haarin Chun
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - James H. Kurasawa
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
Biologics Engineering, R&D, AstraZeneca, GaithersburgMarylandUSA
| | - Philip Olivares
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Ekaterina S. Marakasova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
(1) Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver SpringMarylandUSA
- Present address:
George Mason University, School of Systems Biology, FairfaxVirginiaUSA
| | - Svetlana A. Shestopal
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Gabriela U. Hassink
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
- Present address:
GSK‐Rockville Center for Vaccines Research, RockvilleMarylandUSA
| | - Elena Karnaukhova
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| | - Mary Migliorini
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Juliet O. Obi
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ally K. Smith
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Patrick L. Wintrode
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Prasannavenkatesh Durai
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Keunwan Park
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungRepublic of Korea
| | - Daniel Deredge
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory DiseasesDepartments of Surgery and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Andrey G. Sarafanov
- Center for Biologics Evaluation and ResearchU.S. Food and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
2
|
Shestopal SA, Parunov LA, Olivares P, Chun H, Ovanesov MV, Pettersson JR, Sarafanov AG. Isolated Variable Domains of an Antibody Can Assemble on Blood Coagulation Factor VIII into a Functional Fv-like Complex. Int J Mol Sci 2022; 23:ijms23158134. [PMID: 35897712 PMCID: PMC9330781 DOI: 10.3390/ijms23158134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Single-chain variable fragments (scFv) are antigen-recognizing variable fragments of antibodies (FV) where both subunits (VL and VH) are connected via an artificial linker. One particular scFv, iKM33, directed against blood coagulation factor VIII (FVIII) was shown to inhibit major FVIII functions and is useful in FVIII research. We aimed to investigate the properties of iKM33 enabled with protease-dependent disintegration. Three variants of iKM33 bearing thrombin cleavage sites within the linker were expressed using a baculovirus system and purified by two-step chromatography. All proteins retained strong binding to FVIII by surface plasmon resonance, and upon thrombin cleavage, dissociated into VL and VH as shown by size-exclusion chromatography. However, in FVIII activity and low-density lipoprotein receptor-related protein 1 binding assays, the thrombin-cleaved iKM33 variants were still inhibitory. In a pull-down assay using an FVIII-affinity sorbent, the isolated VH, a mixture of VL and VH, and intact iKM33 were carried over via FVIII analyzed by electrophoresis. We concluded that the isolated VL and VH assembled into scFv-like heterodimer on FVIII, and the isolated VH alone also bound FVIII. We discuss the potential use of both protease-cleavable scFvs and isolated Fv subunits retaining high affinity to the antigens in various practical applications such as therapeutics, diagnostics, and research.
Collapse
|
3
|
Ebihara T, Masuda A, Takahashi D, Hino M, Mon H, Kakino K, Fujii T, Fujita R, Ueda T, Lee JM, Kusakabe T. Production of scFv, Fab, and IgG of CR3022 Antibodies Against SARS-CoV-2 Using Silkworm-Baculovirus Expression System. Mol Biotechnol 2021; 63:1223-1234. [PMID: 34304364 PMCID: PMC8310559 DOI: 10.1007/s12033-021-00373-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/16/2021] [Indexed: 01/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is currently spreading around the world and causing many casualties. Antibodies against such emerging infectious diseases are one of the important tools for basic viral research and the development of diagnostic and therapeutic agents. CR3022 is a monoclonal antibody against the receptor binding domain (RBD) of the spike protein (S protein) of SARS-CoV found in SARS patients, but it was also shown to have strong affinity for that of SARS-CoV-2. In this study, we produced large amounts of three formats of CR3022 antibodies (scFv, Fab and IgG) with high purity using a silkworm-baculovirus expression vector system. Furthermore, SPR measurements showed that the affinity of those silkworm-produced IgG antibodies to S protein was almost the same as that produced in mammalian expression system. These results indicate that the silkworm-baculovirus expression system is an excellent expression system for emerging infectious diseases that require urgent demand for diagnostic agents and therapeutic agents.
Collapse
Affiliation(s)
- Takeru Ebihara
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Daisuke Takahashi
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masato Hino
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tadashi Ueda
- Laboratory of Protein Structure, Function and Design, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Faculty of Agriculture, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Kordi S, Rahmati-Yamchi M, Asghari Vostakolaei M, Barzegari A, Abdolalizadeh J. Purification of a Novel Anti-VEGFR2 Single Chain Antibody Fragment and Evaluation of Binding Affinity by Surface Plasmon Resonance. Adv Pharm Bull 2019; 9:64-69. [PMID: 31011559 PMCID: PMC6468230 DOI: 10.15171/apb.2019.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/23/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Purpose: The single-chain variable fragment (scFv) domain of antibodies is now considered as
one of the therapeutic tools that can be produced by phage display technology (PDT). Antibody
purification is one of the most important steps in antibodies production. The aim of study was
purification and characterization of anti-VEGFR2 scFv antibody fragments.
Methods: After the coating of vascular endothelial growth factor receptor 2 (VEGFR2) peptide
in ELISA microplates, the phage display library of Tomlinson was used for antibody isolation.
The targeted scFv was purified by chromatography using a zeolite-based column. The purity and
functional assessment of purified scFv were evaluated by sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) and western blotting techniques, respectively. Affinity binding
was evaluated by surface plasmon resonance (SPR).
Results: The desired scFv was selected after four stages of biopanning. SDS-PAGE analysis
showed a 28 kDa scFv with high purity (>90%). The western bloting analysis confirmed the
binding of produced scFv antibody to the desired peptide. The affinity binding of scFv antibody
analyzed by SPR was about 60 μM.
Conclusion: In this study, the novel scFv antibody against VEGFR2 peptide was purified by
chromatography column containing zeolite. Based on our findings the produced antibody may
be applied for diagnosis or targeting of VEGFR2 in antibody-based therapy strategies.
Collapse
Affiliation(s)
- Shirafkan Kordi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati-Yamchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Asghari Vostakolaei
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Centre for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Abdolalizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Paramedical Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Baskaran D, Chinnappan K, Manivasagan R, Mahadevan DK. Partitioning of crude protein from aqua waste using PEG 600-inorganic salt Aqueous Two-Phase Systems. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cdc.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Parunov LA, Surov SS, Liang Y, Lee TK, Ovanesov MV. Can the diagnostic reliability of the thrombin generation test as a global haemostasis assay be improved? The impact of calcium chloride concentration. Haemophilia 2017; 23:466-475. [PMID: 28205396 DOI: 10.1111/hae.13174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Thrombin generation test (TGT) is a global haemostasis assay with a potential to predict bleeding tendencies and treatment effects in patients with haemophilia. Despite 15 years of clinical research, the diagnostic value of TGT remains controversial, possibly due to suboptimal sensitivity to coagulation deficiencies, robustness and reproducibility. OBJECTIVE The goal of this study was to explore the effect of calcium chloride (CaCl2 ) concentration on the TGT's response to intrinsic coagulation factors (F) VIII, IX and XIa. METHODS Normal and factor-deficient plasmas supplemented with lacking coagulation factor and different CaCl2 levels were tested by calibrated thrombinography assay. RESULTS Thrombin peak height (TPH) was strongly CaCl2 dependent, increasing sharply from no TG at 5 mm to a peak at 13.8 mm of CaCl2 (95% confidence interval [CI]: 13.0, 14.5) in normal and normalized deficient plasmas and at 11.9 mm (CI: 9.7, 14.2) in deficient plasmas, and then decreasing slowly to a complete inhibition at 30-40 mm. In contrast, TG lag time, time to peak and endogenous thrombin potential were nearly insensitive to CaCl2 concentrations between 10 and 20 mm. The maximal difference between the TPH in deficient and supplemented plasmas was observed at 15.5 mm (CI: 12.8, 18.1). CONCLUSION Variations in CaCl2 concentration in the assay mixture and sodium citrate concentrations in patient plasma samples may affect TGT responses, sensitivity and result in increased inter- and intra-laboratory variance. Implementation of TGT by clinical and quality control laboratories may require optimization of CaCl2 concentration.
Collapse
Affiliation(s)
- L A Parunov
- Office of Tissues and Advanced Therapies, CBER, US Food and Drug Administration, Silver Spring, MD, USA.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - S S Surov
- Office of Tissues and Advanced Therapies, CBER, US Food and Drug Administration, Silver Spring, MD, USA.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Y Liang
- Office of Tissues and Advanced Therapies, CBER, US Food and Drug Administration, Silver Spring, MD, USA
| | - T K Lee
- Office of Tissues and Advanced Therapies, CBER, US Food and Drug Administration, Silver Spring, MD, USA
| | - M V Ovanesov
- Office of Tissues and Advanced Therapies, CBER, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
7
|
de Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact 2015; 14:125. [PMID: 26330219 PMCID: PMC4557595 DOI: 10.1186/s12934-015-0320-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 08/20/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Antibodies have been a pillar of basic research, while their relevance in clinical diagnostics and therapy is constantly growing. Consequently, the production of both conventional and fragment antibodies constantly faces more demanding challenges for the improvement of their quantity and quality. The answer to such an increasing need has been the development of a wide array of formats and alternative production platforms. This review offers a critical comparison and evaluation of the different options to help the researchers interested in expressing recombinant antibodies in their choice. RESULTS Rather than the compilation of an exhaustive list of the recent publications in the field, this review intendeds to analyze the development of the most innovative or fast-growing strategies. These have been illustrated with some significant examples and, when possible, compared with the existing alternatives. Space has also been given to those solutions that might represent interesting opportunities or that investigate critical aspects of the production optimization but for which the available data as yet do not allow for a definitive judgment. CONCLUSIONS The take-home message is that there is a clear process of progressive diversification concerning the antibody expression platforms and an effort to yield directly application-adapted immune-reagents rather than generic naked antibodies that need further in vitro modification steps before becoming usable.
Collapse
Affiliation(s)
- Ario de Marco
- Department of Biomedical Sciences and Engineering, University of Nova Gorica, Glavni Trg 9, 5261, Vipava, Slovenia.
| |
Collapse
|
8
|
Kurasawa JH, Shestopal SA, Woodle SA, Ovanesov MV, Lee TK, Sarafanov AG. Cluster III of low-density lipoprotein receptor-related protein 1 binds activated blood coagulation factor VIII. Biochemistry 2014; 54:481-9. [PMID: 25486042 DOI: 10.1021/bi5011688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP) mediates clearance of blood coagulation factor VIII (FVIII). In LRP, FVIII binds the complement-type repeats (CRs) of clusters II and IV, which also bind a majority of other LRP ligands. No ligand is known for LRP cluster I, and only three ligands, including the LRP chaperone alpha-2 macroglobulin receptor-associated protein (RAP), bind cluster III. Using surface plasmon resonance, we found that in addition to clusters II and IV, activated FVIII (FVIIIa) binds cluster III. The specificity of this interaction was confirmed using an anti-FVIII antibody fragment, which inhibited the binding. Recombinant fragments of cluster III and its site-directed mutagenesis were used to localize the cluster's site for binding FVIIIa to CR.14-19. The interactive site of FVIIIa was localized within its A1/A3'-C1-C2 heterodimer (HDa), which is a major physiological remnant of FVIIIa. In mice, the clearance of HDa was faster than that of FVIII and prolonged in the presence of RAP, which is known to inhibit interactions of LRP with its ligands. In accordance with this, the cluster III site for RAP (CR.15-19) was found to overlap that for FVIIIa. Altogether, our findings support the involvement of LRP in FVIIIa catabolism and suggest a greater significance of the biological role of cluster III compared to that previously known.
Collapse
Affiliation(s)
- James H Kurasawa
- Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993-0002, United States
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Kurasawa JH, Shestopal SA, Karnaukhova E, Struble EB, Lee TK, Sarafanov AG. Mapping the binding region on the low density lipoprotein receptor for blood coagulation factor VIII. J Biol Chem 2013; 288:22033-41. [PMID: 23754288 DOI: 10.1074/jbc.m113.468108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low density lipoprotein receptor (LDLR) was shown to mediate clearance of blood coagulation factor VIII (FVIII) from the circulation. To elucidate the mechanism of interaction of LDLR and FVIII, our objective was to identify the region of the receptor necessary for binding FVIII. Using surface plasmon resonance, we found that LDLR exodomain and its cluster of complement-type repeats (CRs) bind FVIII in the same mode. This indicated that the LDLR site for FVIII is located within the LDLR cluster. Similar results were obtained for another ligand of LDLR, α-2-macroglobulin receptor-associated protein (RAP), a common ligand of receptors from the LDLR family. We further generated a set of recombinant fragments of the LDLR cluster and assessed their structural integrity by binding to RAP and by circular dichroism. A number of fragments overlapping CR.2-5 of the cluster were positive for binding RAP and FVIII. The specificity of these interactions was tested by site-directed mutagenesis of conserved tryptophans within the LDLR fragments. For FVIII, the specificity was also tested using a single-chain variable antibody fragment directed against the FVIII light chain as a competitor. Both cases resulted in decreased binding, thus confirming its specificity. The mutagenic study also showed an importance of the conserved tryptophans in LDLR for both ligands, and the competitive binding results showed an involvement of the light chain of FVIII in its interaction with LDLR. In conclusion, the region of CR.2-5 of LDLR was defined as the binding site for FVIII and RAP.
Collapse
Affiliation(s)
- James H Kurasawa
- Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|