1
|
Nguyen MH, Palfy G, Fogeron ML, Ninot Pedrosa M, Zehnder J, Rimal V, Callon M, Lecoq L, Barnes A, Meier BH, Böckmann A. Analysis of the structure and interactions of the SARS-CoV-2 ORF7b accessory protein. Proc Natl Acad Sci U S A 2024; 121:e2407731121. [PMID: 39508769 PMCID: PMC11573672 DOI: 10.1073/pnas.2407731121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024] Open
Abstract
SARS-CoV-2 carries a sizeable number of proteins that are accessory to replication but may be essential for virus-host interactions and modulation of the host immune response. Here, we investigated the structure and interactions of the largely unknown ORF7b, a small membranous accessory membrane protein of SARS-CoV-2. We show that structural predictions indicate a transmembrane (TM) leucine zipper for ORF7b, and experimentally confirm the predominantly α-helical secondary structure within a phospholipid membrane mimetic by solid-state NMR. We also show that ORF7b forms heterogeneous higher-order multimers. We determined ORF7b interactions with cellular TM leucine zipper proteins using both biochemical and NMR approaches, providing evidence for ORF7b interaction with the TM domains of E-cadherin, as well as phospholamban. Our results place ORF7b as a hypothetical interferer in cellular processes that utilize leucine zipper motifs in transmembrane multimerization domains.
Collapse
Affiliation(s)
- Minh-Ha Nguyen
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Gyula Palfy
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Martí Ninot Pedrosa
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Johannes Zehnder
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Vaclav Rimal
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Morgane Callon
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Alexander Barnes
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Beat H Meier
- Department of Chemistry and Applied Biosciences, Institute of Molecular Physical Sciences, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche 5086 CNRS/Université de Lyon, 69367 Lyon, France
| |
Collapse
|
2
|
Babot M, Boulard Y, Agouda S, Pieri L, Fieulaine S, Bressanelli S, Gervais V. Oligomeric assembly of the C-terminal and transmembrane region of SARS-CoV-2 nsp3. J Virol 2024; 98:e0157523. [PMID: 38483167 PMCID: PMC11019948 DOI: 10.1128/jvi.01575-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/22/2024] [Indexed: 04/17/2024] Open
Abstract
As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.
Collapse
Affiliation(s)
- Marion Babot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Yves Boulard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Samira Agouda
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Pieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
3
|
Fogeron ML, Callon M, Lecoq L, Böckmann A. Cell-Free Synthesis of Bunyavirales Proteins in View of Their Structural Characterization by Nuclear Magnetic Resonance. Methods Mol Biol 2024; 2824:105-120. [PMID: 39039409 DOI: 10.1007/978-1-0716-3926-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The Rift Valley fever virus is one of the bunyaviruses on the WHO's priority list of pathogens that may cause future pandemics. A better understanding of disease progression and viral pathogenesis is urgently needed to develop treatments. The non-structural proteins NSs and NSm of human pathogenic bunyaviruses represent promising therapeutic targets, as they are often key virulence factors. However, their function is still poorly understood, and their structure is yet unknown, mainly because no successful production of these highly complex proteins has been reported. Here we propose a powerful combination of wheat germ cell-free protein synthesis and NMR to study the structure of these proteins and in particular detail cell-free synthesis and lipid reconstitution methods that can be applied to complex membrane proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| | | | | | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086 CNRS/Université de Lyon 1, Lyon, France.
| |
Collapse
|
4
|
Liu J, Hu Y, Gu W, Lan H, Zhang Z, Jiang L, Xu X. Research progress on the application of cell-free synthesis systems for enzymatic processes. Crit Rev Biotechnol 2023; 43:938-955. [PMID: 35994247 DOI: 10.1080/07388551.2022.2090314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/24/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022]
Abstract
Cell-free synthesis systems can complete the transcription and translation process in vitro to produce complex proteins that are difficult to be expressed in traditional cell-based systems. Such systems also can be used for the assembly of efficient localized multienzyme cascades to synthesize products that are toxic to cells. Cell-free synthesis systems provide a simpler and faster engineering solution than living cells, allowing unprecedented design freedom. This paper reviews the latest progress on the application of cell-free synthesis systems in the field of enzymatic catalysis, including cell-free protein synthesis and cell-free metabolic engineering. In cell-free protein synthesis: complex proteins, toxic proteins, membrane proteins, and artificial proteins containing non-natural amino acids can be easily synthesized by directly controlling the reaction conditions in the cell-free system. In cell-free metabolic engineering, the synthesis of desired products can be made more specific and efficient by designing metabolic pathways and screening biocatalysts based on purified enzymes or crude extracts. Through the combination of cell-free synthesis systems and emerging technologies, such as: synthetic biology, microfluidic control, cofactor regeneration, and artificial scaffolds, we will be able to build increasingly complex biomolecule systems. In the next few years, these technologies are expected to mature and reach industrialization, providing innovative platforms for a wide range of biotechnological applications.
Collapse
Affiliation(s)
- Jie Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yongqi Hu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wanyi Gu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haiquan Lan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhidong Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Fieulaine S, Tubiana T, Bressanelli S. De novo modelling of HEV replication polyprotein: Five-domain breakdown and involvement of flexibility in functional regulation. Virology 2023; 578:128-140. [PMID: 36527931 DOI: 10.1016/j.virol.2022.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV), a major cause of acute viral hepatitis, is a single-stranded, positive-sense RNA virus. As such, it encodes a 1700-residue replication polyprotein pORF1 that directs synthesis of new viral RNA in infected cells. Here we report extensive modeling with AlphaFold2 of the full-length pORF1, and its production by in vitro translation. From this, we give a detailed update on the breakdown into domains of HEV pORF1. We also provide evidence that pORF1's N-terminal domain is likely to oligomerize to form a dodecameric pore, homologously to what has been described for Chikungunya virus. Beyond providing accurate folds for its five domains, our work highlights that there is no canonical protease encoded in pORF1 and that flexibility in several functionally important regions rather than proteolytic processing may serve to regulate HEV RNA synthesis.
Collapse
Affiliation(s)
- Sonia Fieulaine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Thibault Tubiana
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Stéphane Bressanelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| |
Collapse
|
7
|
Altincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, et alAltincekic N, Korn SM, Qureshi NS, Dujardin M, Ninot-Pedrosa M, Abele R, Abi Saad MJ, Alfano C, Almeida FCL, Alshamleh I, de Amorim GC, Anderson TK, Anobom CD, Anorma C, Bains JK, Bax A, Blackledge M, Blechar J, Böckmann A, Brigandat L, Bula A, Bütikofer M, Camacho-Zarco AR, Carlomagno T, Caruso IP, Ceylan B, Chaikuad A, Chu F, Cole L, Crosby MG, de Jesus V, Dhamotharan K, Felli IC, Ferner J, Fleischmann Y, Fogeron ML, Fourkiotis NK, Fuks C, Fürtig B, Gallo A, Gande SL, Gerez JA, Ghosh D, Gomes-Neto F, Gorbatyuk O, Guseva S, Hacker C, Häfner S, Hao B, Hargittay B, Henzler-Wildman K, Hoch JC, Hohmann KF, Hutchison MT, Jaudzems K, Jović K, Kaderli J, Kalniņš G, Kaņepe I, Kirchdoerfer RN, Kirkpatrick J, Knapp S, Krishnathas R, Kutz F, zur Lage S, Lambertz R, Lang A, Laurents D, Lecoq L, Linhard V, Löhr F, Malki A, Bessa LM, Martin RW, Matzel T, Maurin D, McNutt SW, Mebus-Antunes NC, Meier BH, Meiser N, Mompeán M, Monaca E, Montserret R, Mariño Perez L, Moser C, Muhle-Goll C, Neves-Martins TC, Ni X, Norton-Baker B, Pierattelli R, Pontoriero L, Pustovalova Y, Ohlenschläger O, Orts J, Da Poian AT, Pyper DJ, Richter C, Riek R, Rienstra CM, Robertson A, Pinheiro AS, Sabbatella R, Salvi N, Saxena K, Schulte L, Schiavina M, Schwalbe H, Silber M, Almeida MDS, Sprague-Piercy MA, Spyroulias GA, Sreeramulu S, Tants JN, Tārs K, Torres F, Töws S, Treviño MÁ, Trucks S, Tsika AC, Varga K, Wang Y, Weber ME, Weigand JE, Wiedemann C, Wirmer-Bartoschek J, Wirtz Martin MA, Zehnder J, Hengesbach M, Schlundt A. Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications. Front Mol Biosci 2021; 8:653148. [PMID: 34041264 PMCID: PMC8141814 DOI: 10.3389/fmolb.2021.653148] [Show More Authors] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 01/18/2023] Open
Abstract
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium's collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.
Collapse
Affiliation(s)
- Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sophie Marianne Korn
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nusrat Shahin Qureshi
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Dujardin
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Martí Ninot-Pedrosa
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Rupert Abele
- Institute for Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie Jose Abi Saad
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Fabio C. L. Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Islam Alshamleh
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisele Cardoso de Amorim
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multidisciplinary Center for Research in Biology (NUMPEX), Campus Duque de Caxias Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| | - Thomas K. Anderson
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cristiane D. Anobom
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chelsea Anorma
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adriaan Bax
- LCP, NIDDK, NIH, Bethesda, MD, United States
| | | | - Julius Blechar
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Louis Brigandat
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Anna Bula
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Matthias Bütikofer
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | | | - Teresa Carlomagno
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Icaro Putinhon Caruso
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Multiuser Center for Biomolecular Innovation (CMIB), Department of Physics, São Paulo State University (UNESP), São José do Rio Preto, Brazil
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Feixia Chu
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Marquise G. Crosby
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Karthikeyan Dhamotharan
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Isabella C. Felli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yanick Fleischmann
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Christin Fuks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Santosh L. Gande
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Juan Atilio Gerez
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Dhiman Ghosh
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Francisco Gomes-Neto
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Oksana Gorbatyuk
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | | | - Sabine Häfner
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Bing Hao
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Bruno Hargittay
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - K. Henzler-Wildman
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey C. Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marie T. Hutchison
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Katarina Jović
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Janina Kaderli
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Iveta Kaņepe
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert N. Kirchdoerfer
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI, United States
| | - John Kirkpatrick
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Robin Krishnathas
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Felicitas Kutz
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Susanne zur Lage
- Group of NMR-Based Structural Chemistry, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Roderick Lambertz
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andras Lang
- Leibniz Institute on Aging—Fritz Lipmann Institute (FLI), Jena, Germany
| | - Douglas Laurents
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | - Verena Linhard
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Frank Löhr
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anas Malki
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Tobias Matzel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Damien Maurin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Seth W. McNutt
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Nathane Cunha Mebus-Antunes
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beat H. Meier
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Mompeán
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Elisa Monaca
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, Palermo, Italy
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS/Lyon University, Lyon, France
| | | | - Celine Moser
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - Thais Cristtina Neves-Martins
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xiamonin Ni
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Frankfurt am Main, Germany
| | - Brenna Norton-Baker
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Roberta Pierattelli
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Letizia Pontoriero
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Yulia Pustovalova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | | | - Julien Orts
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Andrea T. Da Poian
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Roland Riek
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Chad M. Rienstra
- Department of Biochemistry and National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anderson S. Pinheiro
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Linda Schulte
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marco Schiavina
- Magnetic Resonance Centre (CERM), University of Florence, Sesto Fiorentino, Italy
- Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mara Silber
- IBG-4, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Marcius da Silva Almeida
- National Center of Nuclear Magnetic Resonance (CNRMN, CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marc A. Sprague-Piercy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | | | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jan-Niklas Tants
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Felix Torres
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Sabrina Töws
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Miguel Á. Treviño
- “Rocasolano” Institute for Physical Chemistry (IQFR), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ying Wang
- BMWZ and Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Marco E. Weber
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Julia E. Weigand
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Christoph Wiedemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Centre, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maria Alexandra Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Zehnder
- Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andreas Schlundt
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
8
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
9
|
Solid-State NMR for Studying the Structure and Dynamics of Viral Assemblies. Viruses 2020; 12:v12101069. [PMID: 32987909 PMCID: PMC7599928 DOI: 10.3390/v12101069] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Structural virology reveals the architecture underlying infection. While notably electron microscopy images have provided an atomic view on viruses which profoundly changed our understanding of these assemblies incapable of independent life, spectroscopic techniques like NMR enter the field with their strengths in detailed conformational analysis and investigation of dynamic behavior. Typically, the large assemblies represented by viral particles fall in the regime of biological high-resolution solid-state NMR, able to follow with high sensitivity the path of the viral proteins through their interactions and maturation steps during the viral life cycle. We here trace the way from first solid-state NMR investigations to the state-of-the-art approaches currently developing, including applications focused on HIV, HBV, HCV and influenza, and an outlook to the possibilities opening in the coming years.
Collapse
|
10
|
In vitro translation of virally-encoded replication polyproteins to recapitulate polyprotein maturation processes. Protein Expr Purif 2020; 175:105694. [PMID: 32681958 DOI: 10.1016/j.pep.2020.105694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/21/2022]
Abstract
Single-stranded, positive-sense RNA viruses encode essential replication polyproteins which are composed of several domains. They are usually subjected to finely regulated proteolytic maturation processes to generate cleavage intermediates and end-products. Both polyproteins and maturation products play multiple key roles that ultimately allow synthesis of viral genome progeny. Despite the importance of these proteins in the course of viral replication, their structural properties, including the conformational changes regulating their numerous functions, are poorly described at the structural level. This lack of information is mainly due to the extreme difficulty to express large, membrane-bound, multi-domain proteins with criteria suitable for structural biology methods. To tackle this challenge, we have used a wheat-germ cell-free expression system. We firstly establish that this approach allows to synthesize viral polyproteins encoded by two unrelated positive-sense RNA viruses, a human norovirus and a plant tymovirus. Then, we demonstrate that these polyproteins are fully functional and are spontaneously auto-cleaved by their active protease domain, giving rise to natural maturation products. Moreover, we show that introduction of point mutations in polyproteins allows to inhibit the proteolytic maturation process of each virus. This allowed us to express and partially purify the uncleaved full-length norovirus polyprotein and the tymoviral RNA-dependent RNA polymerase. Thus, this study provides a powerful tool to obtain soluble viral polyproteins and their maturation products in order to conduct challenging structural biology projects and therefore solve unanswered questions.
Collapse
|
11
|
Jirasko V, Lakomek N, Penzel S, Fogeron M, Bartenschlager R, Meier BH, Böckmann A. Proton-Detected Solid-State NMR of the Cell-Free Synthesized α-Helical Transmembrane Protein NS4B from Hepatitis C Virus. Chembiochem 2020; 21:1453-1460. [PMID: 31850615 PMCID: PMC7318649 DOI: 10.1002/cbic.201900765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 01/01/2023]
Abstract
Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1 H-detected 1 H,15 N and 3D 1 H,13 C,15 N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.
Collapse
Affiliation(s)
- Vlastimil Jirasko
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | | | - Susanne Penzel
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | - Marie‐Laure Fogeron
- Institut de Biologie et Chimie des ProteinesMMSBLabex EcofectUMR 5086 CNRSUniversité de Lyon7 passage du Vercors69367LyonFrance
| | - Ralf Bartenschlager
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityIm Neuenheimer Feld 34569120HeidelbergGermany
- Division of Virus-Associated Carcinogenesis (Germany)Cancer Research Center (DKFZ)Im Neuenheimer Feld 24269120HeidelbergGermany
| | - Beat H. Meier
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des ProteinesMMSBLabex EcofectUMR 5086 CNRSUniversité de Lyon7 passage du Vercors69367LyonFrance
| |
Collapse
|
12
|
David G, Fogeron ML, Montserret R, Lecoq L, Page A, Delolme F, Nassal M, Böckmann A. Phosphorylation and Alternative Translation on Wheat Germ Cell-Free Protein Synthesis of the DHBV Large Envelope Protein. Front Mol Biosci 2019; 6:138. [PMID: 31850370 PMCID: PMC6902406 DOI: 10.3389/fmolb.2019.00138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Wheat-germ cell-free protein synthesis (WG-CFPS) is a potent platform for the high-yield production of proteins. It is especially of interest for difficult-to-express eukaryotic proteins, such as toxic and transmembrane proteins, and presents an important tool in high-throughput protein screening. Until recently, an assumed drawback of WG-CFPS was a reduced capacity for post-translational modifications. Meanwhile, phosphorylation has been observed in WG-CFPS; yet, authenticity of the respective phosphorylation sites remained unclear. Here we show that a viral membrane protein, the duck hepatitis B virus (DHBV) large envelope protein (DHBs L), produced by WG-CFPS, is phosphorylated upon translation at the same sites as DHBs L produced during DHBV infection of primary hepatocytes. Furthermore, we show that alternative translation initiation of the L protein, previously identified in virus-producing hepatic cells, occurs on WG-CFPS as well. Together, these findings further strengthen the high potential of WG-CFPS to include the reproduction of specific modifications proteins experience in vivo.
Collapse
Affiliation(s)
- Guillaume David
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences CNRS UMS3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
13
|
Wang S, Fogeron ML, Schledorn M, Dujardin M, Penzel S, Burdette D, Berke JM, Nassal M, Lecoq L, Meier BH, Böckmann A. Combining Cell-Free Protein Synthesis and NMR Into a Tool to Study Capsid Assembly Modulation. Front Mol Biosci 2019; 6:67. [PMID: 31440516 PMCID: PMC6694763 DOI: 10.3389/fmolb.2019.00067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022] Open
Abstract
Modulation of capsid assembly by small molecules has become a central concept in the fight against viral infection. Proper capsid assembly is crucial to form the high molecular weight structures that protect the viral genome and that, often in concert with the envelope, allow for cell entry and fusion. Atomic details underlying assembly modulation are generally studied using preassembled protein complexes, while the activity of assembly modulators during assembly remains largely open and poorly understood, as necessary tools are lacking. We here use the full-length hepatitis B virus (HBV) capsid protein (Cp183) as a model to present a combination of cell-free protein synthesis and solid-state NMR as an approach which shall open the possibility to produce and analyze the formation of higher-order complexes directly on exit from the ribosome. We demonstrate that assembled capsids can be synthesized in amounts sufficient for structural studies, and show that addition of assembly modulators to the cell-free reaction produces objects similar to those obtained by addition of the compounds to preformed Cp183 capsids. These results establish the cell-free system as a tool for the study of capsid assembly modulation directly after synthesis by the ribosome, and they open the perspective of assessing the impact of natural or synthetic compounds, or even enzymes that perform post-translational modifications, on capsids structures.
Collapse
Affiliation(s)
- Shishan Wang
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | - Marie Dujardin
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | | | | | | | - Michael Nassal
- Internal Medicine II/Molecular Biology, University Hospital Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| |
Collapse
|
14
|
Abstract
Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Collapse
Affiliation(s)
- Aidan Tinafar
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Katariina Jaenes
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
15
|
Lacabanne D, Fogeron ML, Wiegand T, Cadalbert R, Meier BH, Böckmann A. Protein sample preparation for solid-state NMR investigations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:20-33. [PMID: 30803692 DOI: 10.1016/j.pnmrs.2019.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France; Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, 69367 Lyon, France.
| |
Collapse
|
16
|
Zhang Y, Huang Q, Deng Z, Xu Y, Liu T. Enhancing the efficiency of cell-free protein synthesis system by systematic titration of transcription and translation components. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
David G, Fogeron ML, Schledorn M, Montserret R, Haselmann U, Penzel S, Badillo A, Lecoq L, André P, Nassal M, Bartenschlager R, Meier BH, Böckmann A. Structural Studies of Self-Assembled Subviral Particles: Combining Cell-Free Expression with 110 kHz MAS NMR Spectroscopy. Angew Chem Int Ed Engl 2018; 57:4787-4791. [PMID: 29457857 DOI: 10.1002/anie.201712091] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/25/2018] [Indexed: 01/08/2023]
Abstract
Viral membrane proteins are prime targets in combatting infection. Still, the determination of their structure remains a challenge, both with respect to sample preparation and the need for structural methods allowing for analysis in a native-like lipid environment. Cell-free protein synthesis and solid-state NMR spectroscopy are promising approaches in this context, the former with respect to its great potential in the native expression of complex proteins, and the latter for the analysis of membrane proteins in lipids. Herein, we show that milligram amounts of the small envelope protein of the duck hepatitis B virus (DHBV) can be produced by cell-free expression, and that the protein self-assembles into subviral particles. Proton-detected 2D NMR spectra recorded at a magic-angle-spinning frequency of 110 kHz on <500 μg protein show a number of isolated peaks with line widths comparable to those of model membrane proteins, paving the way for structural studies of this protein that is homologous to a potential drug target in HBV infection.
Collapse
Affiliation(s)
- Guillaume David
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | | | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Uta Haselmann
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis Germany, Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Susanne Penzel
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France.,RD-Biotech, Recombinant Protein Unit, 3 rue Henri Baigue, 25000, Besançon, France
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Patrice André
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale Unité 1111, Centre National de la Recherche Scientifique Unités Mixte de Recherche, 5308, Lyon, France.,Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.,Université de Lyon, Laboratoire de Virologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.,Division of Virus-Associated Carcinogenesis Germany, Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| |
Collapse
|
18
|
David G, Fogeron M, Schledorn M, Montserret R, Haselmann U, Penzel S, Badillo A, Lecoq L, André P, Nassal M, Bartenschlager R, Meier BH, Böckmann A. Strukturelle Untersuchung subviraler Partikel durch die Kombination von zellfreier Proteinherstellung mit 110 kHz MAS‐NMR‐Spektroskopie. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guillaume David
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS Université de Lyon 7 passage du Vercors 69367 Lyon Frankreich
| | - Marie‐Laure Fogeron
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS Université de Lyon 7 passage du Vercors 69367 Lyon Frankreich
| | | | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS Université de Lyon 7 passage du Vercors 69367 Lyon Frankreich
| | - Uta Haselmann
- Department für Infektiologie Molekulare Virologie Universitätsklinikum Heidelberg Im Neuenheimer Feld 345 69120 Heidelberg Deutschland
- Abteilung Virus-assoziierte Karzinogenese Deutsches Krebsforschungszentrum (DKFZ) Im Neuenheimer Feld 242 69120 Heidelberg Deutschland
| | - Susanne Penzel
- Lab. für Physikalische Chemie ETH Zürich 8093 Zürich Schweiz
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS Université de Lyon 7 passage du Vercors 69367 Lyon Frankreich
- RD-Biotech Recombinant Protein Unit 3 rue Henri Baigue 25000 Besançon Frankreich
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS Université de Lyon 7 passage du Vercors 69367 Lyon Frankreich
| | - Patrice André
- Centre International de Recherche en Infectiologie Institut National de la Santé et de la Recherche Médicale Unité 1111 Centre National de la Recherche Scientifique Unités Mixte de Recherche 5308 Lyon Frankreich
- Ecole Normale Supérieure de Lyon, Lyon, France Université Claude Bernard Lyon 1 Villeurbanne Frankreich
- Université de Lyon, Lyon, France Laboratoire de Virologie Hôpital de la Croix-Rousse Hospices Civils de Lyon Lyon Frankreich
| | - Michael Nassal
- Universitätsklinikum Freiburg Klinik für Innere Medizin II/ Molekulare Biologie Hugstetter Straße 55 79106 Freiburg Deutschland
| | - Ralf Bartenschlager
- Department für Infektiologie Molekulare Virologie Universitätsklinikum Heidelberg Im Neuenheimer Feld 345 69120 Heidelberg Deutschland
- Abteilung Virus-assoziierte Karzinogenese Deutsches Krebsforschungszentrum (DKFZ) Im Neuenheimer Feld 242 69120 Heidelberg Deutschland
| | - Beat H. Meier
- Lab. für Physikalische Chemie ETH Zürich 8093 Zürich Schweiz
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, MMSB, Labex Ecofect, UMR 5086 CNRS Université de Lyon 7 passage du Vercors 69367 Lyon Frankreich
| |
Collapse
|
19
|
Fogeron ML, Badillo A, Penin F, Böckmann A. Wheat Germ Cell-Free Overexpression for the Production of Membrane Proteins. Methods Mol Biol 2017; 1635:91-108. [PMID: 28755365 DOI: 10.1007/978-1-4939-7151-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Due to their hydrophobic nature, membrane proteins are notoriously difficult to express in classical cell-based protein expression systems. Often toxic, they also undergo degradation in cells or aggregate in inclusion bodies, making delicate issues further solubilization and renaturation. These are major bottlenecks in their structural and functional analysis. The wheat germ cell-free (WGE-CF) system offers an effective alternative not only to classical cell-based protein expression systems but also to other cell-free systems for the expression of membrane proteins. The WGE-CF indeed allows the production of milligram amounts of membrane proteins in a detergent-solubilized, homogenous, and active form. Here, we describe the method to produce a viral integral membrane protein, which is the non-structural protein 2 (NS2) of hepatitis C virus, in view of structural studies by solid-state NMR in a native-like lipid environment.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69007, Lyon, France.
| |
Collapse
|
20
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
21
|
Fogeron ML, Jirasko V, Penzel S, Paul D, Montserret R, Danis C, Lacabanne D, Badillo A, Gouttenoire J, Moradpour D, Bartenschlager R, Penin F, Meier BH, Böckmann A. Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus. JOURNAL OF BIOMOLECULAR NMR 2016; 65:87-98. [PMID: 27233794 DOI: 10.1007/s10858-016-0040-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/21/2016] [Indexed: 06/05/2023]
Abstract
We describe the expression of the hepatitis C virus nonstructural protein 4B (NS4B), which is an integral membrane protein, in a wheat germ cell-free system, the subsequent purification and characterization of NS4B and its insertion into proteoliposomes in amounts sufficient for multidimensional solid-state NMR spectroscopy. First spectra of the isotopically [(2)H,(13)C,(15)N]-labeled protein are shown to yield narrow (13)C resonance lines and a proper, predominantly α-helical fold. Clean residue-selective leucine, isoleucine and threonine-labeling is demonstrated. These results evidence the suitability of the wheat germ-produced integral membrane protein NS4B for solid-state NMR. Still, the proton linewidth under fast magic angle spinning is broader than expected for a perfect sample and possible causes are discussed.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Vlastimil Jirasko
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Susanne Penzel
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Clément Danis
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Denis Lacabanne
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
- Recombinant Protein Unit, RD-Biotech, 3 rue Henri Baigue, 25000, Besançon, France
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011, Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, 1011, Lausanne, Switzerland
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093, Zurich, Switzerland.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
22
|
Fogeron ML, Paul D, Jirasko V, Montserret R, Lacabanne D, Molle J, Badillo A, Boukadida C, Georgeault S, Roingeard P, Martin A, Bartenschlager R, Penin F, Böckmann A. Functional expression, purification, characterization, and membrane reconstitution of non-structural protein 2 from hepatitis C virus. Protein Expr Purif 2015; 116:1-6. [PMID: 26325423 DOI: 10.1016/j.pep.2015.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/25/2015] [Accepted: 08/28/2015] [Indexed: 01/14/2023]
Abstract
Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - David Paul
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Vlastimil Jirasko
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Roland Montserret
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Denis Lacabanne
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Jennifer Molle
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Aurélie Badillo
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France; RD-Biotech, Recombinant Protein Unit, Besançon, France
| | - Célia Boukadida
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Diderot - Sorbonne Paris Cité, Paris, France
| | - Sonia Georgeault
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Plate-Forme RIO des Microscopies, PPF ASB, Université François Rabelais and CHRU de Tours, Tours, France; INSERM U966, Universite François Rabelais and CHRU de Tours, Tours, France
| | - Annette Martin
- Institut Pasteur, Unit of Molecular Genetics of RNA Viruses, CNRS UMR 3569, Université Paris Diderot - Sorbonne Paris Cité, Paris, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France.
| |
Collapse
|