1
|
Li Z, Li X, Zhou Y, Lu M, Li M, Zhu Y, Wan Q. Rational design of GH11 xylanase to balance the activity-stability trade-off. Int J Biol Macromol 2025; 311:143063. [PMID: 40253048 DOI: 10.1016/j.ijbiomac.2025.143063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Enhancements of enzyme stability often compromise activity; thus, achieving an optimal balance between stability and activity poses a significant challenge in enzyme engineering. Our study investigated the stability-activity trade-off using the GH11 xylanase XynII as a model. A rational design strategy integrating crystal structure analysis and molecular dynamics simulations was used to distinguish regions important for structural stability and catalytic activity. Structural stability and activity were significantly enhanced by the introduction of two disulfide bonds involving four residues (T2C/T28C/R81C/T168C), which conferred a 75 % increase in activity, a 12.1 °C increase in Tm, and an 80-fold improvement in half-life compared to the wild-type enzyme. The incorporation of two additional mutations (Q125A/I129S) was shown to increase the catalytic activity by 30 % by enhancing the dynamics of the active site. Our results illustrate a successful strategy for simultaneously increasing activity and stability by optimizing the dynamics of the catalytic region and the rigidity of the noncatalytic region.
Collapse
Affiliation(s)
- Zhihong Li
- School of Biological Science, Jining Medical University, Rizhao 276827, China
| | - Xiang Li
- School of Biological Science, Jining Medical University, Rizhao 276827, China
| | - YiYi Zhou
- School of Biological Science, Jining Medical University, Rizhao 276827, China
| | - Meizi Lu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengjiao Li
- School of Biological Science, Jining Medical University, Rizhao 276827, China
| | - Youshuang Zhu
- School of Biological Science, Jining Medical University, Rizhao 276827, China
| | - Qun Wan
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Zhang Y, Liu X, Liu M, Han L, Zhao D, Rao H, Zhao X, Wang W, Hao J, Liu X. Enzymatic modification of whole wheat dough gluten matrix development and bread quality by a novel wheat arabino-xylanase from Podospora comata with its properties and substrate specificity mechanism. Int J Biol Macromol 2025; 310:142860. [PMID: 40203944 DOI: 10.1016/j.ijbiomac.2025.142860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
To promote greater gluten matrix development and improve whole wheat bread quality, a novel wheat arabino-xylanase (PcXyn11A) from Podospora comata was extracellularly expressed in Pichia pastoris. The enzymatic activity of the recombinant PcXyn11A reached 727 U/mL at 4.4 mg/mL concentration, following high cell-density fermentation in a 5-L fermenter. The optimal pH and temperature of the purified PcXyn11A were pH 7.5 and 55 °C, respectively. PcXyn11A exhibited a specific activity of 409 U/mg towards wheat arabinoxylan (non-starch polysaccharide). Structural analysis revealed that the Arg155 and Tyr156 residues of PcXyn11A could recognize the arabinose side chain of FAX3, while its Asn157 residue could recognize the ferulic acid side of FAX3 through hydrogen bonds. Moreover, enzymatic modification of whole wheat (WW) dough and bread by PcXyn11A were investigated. PcXyn11A treatment reduced the peak viscosity, final viscosity, and retrogradation value of the WW dough by 3.1 %, 2.2 %, and 2.4 % respectively. Additionally, PcXyn11A treatment decreased the C2, C5, and C5-C4 values of the WW dough by 8.9 %, 5.6 %, and 11.1 %, respectively. These results indicating that PcXyn11A could efficiently degrade wheat arabinoxylan to release water, improve gluten matrix structure, retard retrogradation, increase gas retention, and delay the aging of WW dough. Treatment with 4 mg/kg of PcXyn11A increased the bread volume by 11.45 % and decreased its hardness by 34.68 %, compared to the control. Moreover, the PcXyn11A-treated bread exhibited good anti-aging properties when stored at 4 °C for 1-5 d, with a reduction in hardness by 25.9-35.4 %. This study identified a novel wheat arabino-xylanase (PcXyn11A) that demonstrates excellent non-starch polysaccharide modification to retard retrogradation and improve WW bread quality, laying a solid foundation for its application in flour-based industries.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Xingyu Liu
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Mengqi Liu
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Lin Han
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Dandan Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Huan Rao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Xia Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China
| | - Wei Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, No. 16 Cangxing Street, Shijiazhuang, Hebei 050041, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China.
| | - Xueqiang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang, Hebei 050018, China.
| |
Collapse
|
3
|
Liu X, Zhang Y, Qi X, Zhao D, Rao H, Zhao X, Li Y, Liu J, Qin Z, Hao J, Liu X. Advances of microbial xylanases in the application of flour industries: A comprehensive review. Int J Biol Macromol 2024; 282:137205. [PMID: 39489265 DOI: 10.1016/j.ijbiomac.2024.137205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Microbial xylanase has a wide range of applications, and many researchers favoring its utilization as an alternative to improve flour products. Wheat flour is the main raw material of flour products, although the content of arabinoxylan is not high in flour products, but it has a great influence on the quality of flour products, microbial xylanase can act on wheat arabinoxylan, so as to play the role of flour product improvement. This review carries out a description of the research progress on the application of xylanases in flour products in terms of xylanase properties, different families of xylanases and improvement mechanisms of xylanases in flour products. According to the properties of various microbial sources of xylanases, the suitable xylanase can be added to flour products, and the effect of xylanase towards wheat arabinoxylan in flour can be used to improve the quality of flour products. The molecular modification based on the properties of xylanase and the crystal structure of different families of xylanase and their substrate specificity toward wheat arabinoxylan are discussed. The article reviews the information about microbial xylanases in order to achieve better results in flour products and to provide a theoretical basis for their industrial application.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yuxi Zhang
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xiaoya Qi
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Dandan Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Huan Rao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Xia Zhao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China
| | - Yanxiao Li
- College of Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | - Jun Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, No. 17 Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Zhen Qin
- School of Life Sciences, Shanghai University, Baoshan District, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jianxiong Hao
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| | - Xueqiang Liu
- College of Food and Biology, Hebei University of Science and Technology, 26 Yuxiang Street, Shijiazhuang 050018, People's Republic of China.
| |
Collapse
|
4
|
Son BS, Kim SH, Sagong HY, Lee SR, Choi EJ. Improved Thermal Stability of a Novel Acidophilic Phytase. J Microbiol Biotechnol 2024; 34:1119-1125. [PMID: 38563103 PMCID: PMC11180912 DOI: 10.4014/jmb.2311.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70°C. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60°C. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80°C heat treatment without significant loss of or with increased activity.
Collapse
Affiliation(s)
- Byung Sam Son
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - So Hyeong Kim
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - Hye-Young Sagong
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - Su Rin Lee
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| | - Eun Jung Choi
- Institute of Biotechnology, CJ CheilJedang Co., Suwon 16495, Republic of Korea
| |
Collapse
|
5
|
Dhaver P, Pletschke B, Sithole B, Govinden R. Isolation, screening, preliminary optimisation and characterisation of thermostable xylanase production under submerged fermentation by fungi in Durban, South Africa. Mycology 2022; 13:271-292. [DOI: 10.1080/21501203.2022.2079745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Priyashini Dhaver
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| | - Brett Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Eastern Cape, South Africa
| | - Bruce Sithole
- Biorefinery Industry Development Facility, Council for Scientific and Industrial Research, Durban, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Roshini Govinden
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Liu X, Yan Q, Xue Y, Wang S, Yang H, Jiang Z. Biochemical characterization of a novel glycoside hydrolase family 11 xylanase from Chaetomium sp. suitable for bread making. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Cloning, expression, and characterization of a recombinant xylanase from Bacillus sonorensis T6. PLoS One 2022; 17:e0265647. [PMID: 35298551 PMCID: PMC8929556 DOI: 10.1371/journal.pone.0265647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/05/2022] [Indexed: 11/19/2022] Open
Abstract
Xylanase is one of industrial enzymes with diverse applications including the paper-bleaching industry and feed additives. Here, a strain having xylanolytic activity and identified as Bacillus sonorensis T6 was isolated from soil. A secretory enzyme was identified by mass-spectrometry as a xylanase of glycosyl hydrolase family 11, with a molecular weight of 23.3 kDa. The xylanase gene of Bacillus sonorensis T6 was cloned and expressed in Escherichia coli (yielding an enzyme designated as rXynT6-E) and in Pichia pastoris (yielding rXynT6-P). The recombinant xylanases were found to have optimal activity at 47–55°C and pH 6.0–7.0. The recombinant xylanase expressed in P. pastoris has 40% higher thermal stability than that expressed in E. coli. The recombinant xylanases retained 100% of activity after 10 h incubation in the pH range 3–11 and 68% of activity after 1 h at pH 2.0. The xylanase activities of rXynT6-E and rXynT6-P under optimal conditions were 1030.2 and 873.8 U/mg, respectively. The good stability in a wide range of pH and moderate temperatures may make the xylanase from Bacillus sonorensis T6 useful for various biotechnological applications, e.g., as an enzyme additive in the feed industry.
Collapse
|
8
|
Cai J, Chen XL, Fan JX, Huang XM, Li R, Sun XD, Li QQ, Li DY. Cloning and Heterologous Expression of a Novel Xylanase Gene TAX1 from Trichoderma atroviride and Its Application in the Deconstruction of Corn Stover. Appl Biochem Biotechnol 2021; 193:3029-3044. [PMID: 33970424 DOI: 10.1007/s12010-021-03582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Xylanase plays a vital role in the efficient utilization of xylan, which accounts for up to 30% of plant dry matter. However, the production cost of xylanase remains high, and the enzymatic characteristics of xylanases of most microorganisms are not suitable for industrial production. Therefore, it is of great significance to discover and develop new and efficient xylanases. In this study, the xylanase gene TAX1 (672 bp cDNA) was cloned from Trichoderma atroviride 3.3013 and expressed in Pichia pastoris. The TAX1 gene encoded a 223-amino acid protein (TAX1) with a molecular weight of 24.2 kDa which showed high similarity to glycoside hydrolase family 11. Enzyme activity assay verified that the recombinant xylanase TAX1 had optimal activity (215.3 IU/mL) at 50°C and pH 6.0. Stable working conditions were measured as pH 4.0-7.0 and 40-60°C. By adding Zn2+, the relative enzymatic activity of recombinant TAX1 was enhanced by 26%. The recombinant xylanase showed high activity toward birchwood xylan and corn stover. The Km and Kcat for xylan and corn stover were 0.36 mg/mL and 0.204 S-1 and 0.48 mg/mL and 0.149 S-1, respectively. The enzymatic activity of the TAX1 produced by P. pastoris was about 2.4-4 times higher that directly isolated from T. atroviride, so engineered P. pastoris for xylanase production could be an ideal candidate for industrial enzyme production.
Collapse
Affiliation(s)
- Jin Cai
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China
| | - Xiu-Ling Chen
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jin-Xia Fan
- Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- The College of Engineering, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xiao-Mei Huang
- Heilongjiang Vocational College of Agricultural Technology, Jiamusi, 154007, People's Republic of China.
| | - Rui Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xu-Dong Sun
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qing-Qing Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dong-Yu Li
- Northeast Agricultural University, Harbin, 150030, People's Republic of China
| |
Collapse
|
9
|
Duman-Özdamar ZE, Binay B. Production of Industrial Enzymes via Pichia pastoris as a Cell Factory in Bioreactor: Current Status and Future Aspects. Protein J 2021; 40:367-376. [DOI: 10.1007/s10930-021-09968-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
|
10
|
Cloning, expression and characterization of a thermo-alkali-stable xylanase from Aspergillus oryzae LC1 in Escherichia coli BL21(DE3). Protein Expr Purif 2020; 168:105551. [DOI: 10.1016/j.pep.2019.105551] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 11/21/2022]
|
11
|
Mao PW, Li LD, Wang YL, Bai XH, Zhou XW. Optimization of the fermentation parameters for the production of Ganoderma lucidum immunomodulatory protein by Pichia pastoris. Prep Biochem Biotechnol 2019; 50:357-364. [PMID: 31846385 DOI: 10.1080/10826068.2019.1703194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In order to obtain a better fermentation parameter for the production of recombinant Ganoderma lucidum immunomodulatory protein (rFIP-glu), an engineered Pichia pastoris GS115 was investigated on the fermentation time, temperature, methanol concentration and initial pH of media, while immunomodulatory activities of the rFIP-glu was confirmed. L9(33) orthogonal experiment were firstly employed to optimize various fermentation parameters in the shake-flask level. The optimized fermentation parameters were subsequently verified in a 5 L fermenter. Biological activities including cell viability and tumor necrosis factor-alpha (TNF-α) mRNA of the rFIP-glu were evaluated on murine macrophage RAW264.7 cells. The results showed that the yield of rFIP-glu was up to 368.71 μg/ml in the shake-flask, and 613.47 μg/ml in the 5 L fermenter, when the Pichia pastoris was incubated in basic media with the methanol concentration 1.0% and initial pH 6.5, and with constant shaking at 280 rpm for 4 days at 26 °C. In vitro assays of biological activity indicated that rFIP-glu had significant toxicity against RAW264.7 cells, and possessed the ability to induce TNF-α mRNA expression in macrophage RAW264.7 cells. In conclusion, engineered P. pastoris showed a good fermentation property under the optimum fermentation parameters. It could be a candidate industrial strain for further study.
Collapse
Affiliation(s)
- Pei-Wen Mao
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liu-Dingji Li
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu-Liang Wang
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiao-Hui Bai
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
12
|
Cintra LC, da Costa IC, de Oliveira ICM, Fernandes AG, Faria SP, Jesuíno RSA, Ravanal MC, Eyzaguirre J, Ramos LP, de Faria FP, Ulhoa CJ. The boosting effect of recombinant hemicellulases on the enzymatic hydrolysis of steam-treated sugarcane bagasse. Enzyme Microb Technol 2019; 133:109447. [PMID: 31874680 DOI: 10.1016/j.enzmictec.2019.109447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
To increase the efficiency of enzyme cocktails in deconstructing cellulose and hemicelluloses present in the plant cell wall, a combination of enzymes with complementary activities is required. Xylan is the main hemicellulose component of energy crops and for its complete hydrolysis a system consisting of several enzymes acting cooperatively, including endoxylanases (XYN), β-xylosidases (XYL) and α-l-arabinofuranosidases (ABF) is necessary. The current work aimed at evaluating the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of steam-exploded sugarcane bagasse (SEB). One recombinant endoxylanase (HXYN2) and one recombinant β-xylosidase (HXYLA) from Humicola grisea var thermoidea, together with an α-l-arabinofuranosidase (AFB3) from Penicillium pupurogenum, all produced in Pichia pastoris, were used to formulate an efficient enzyme mixture for SEB hydrolysis using a 23 Central Composite Rotatable Design (CCRD). The most potent enzyme for SEB hydrolysis was ABF3. Subsequently, the optimal enzyme mixture was used in combination with commercial cellulases (Accellerase 1500), either simultaneously or in sequential experiments. The supplementation of Accellerase 1500 with hemicellulases enhanced the glucose yield from SEB hydrolysis by 14.6%, but this effect could be raised to 50% when hemicellulases were added prior to hydrolysis with commercial cellulases. These results were supported by scanning electron microscopy, which revealed the effect of enzymatic hydrolysis on SEB fibers. Our results show the potential of complementary enzyme activities to improve enzymatic hydrolysis of SEB, thus improving the efficiency of the hydrolytic process.
Collapse
Affiliation(s)
- Lorena Cardoso Cintra
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; School of Veterinary and Animal Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Izadora Cristina Moreira de Oliveira
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Amanda Gregorim Fernandes
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Syd Pereira Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | | | - Maria Cristina Ravanal
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile; Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Eyzaguirre
- Department of Biological Sciences, Andrés Bello University, Santiago, Chile
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of Paraná, Curitiba, PR, Brazil
| | - Fabrícia Paula de Faria
- Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil
| | - Cirano José Ulhoa
- Department of Cellular Biology, University of Brasília, Brasília, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
13
|
Dang Y, Liu M, Wu X. Recombinant rice xylanase-inhibiting protein inhibits GH11 endo-xylanases through competitive inhibition. Protein Expr Purif 2019; 156:17-24. [DOI: 10.1016/j.pep.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/23/2018] [Accepted: 12/28/2018] [Indexed: 12/22/2022]
|
14
|
Xia J, Wang Q, Luo Q, Chen Y, Liao XR, Guan ZB. Secretory expression and optimization of Bacillus pumilus CotA-laccase mutant GWLF in Pichia pastoris and its mechanism on Evans blue degradation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Duckweed (Lemna minor) is a novel natural inducer of cellulase production in Trichoderma reesei. J Biosci Bioeng 2018; 127:486-491. [PMID: 30366719 DOI: 10.1016/j.jbiosc.2018.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/13/2018] [Accepted: 09/26/2018] [Indexed: 02/03/2023]
Abstract
An inducer is crucial for cellulase production. In this study, duckweed was used as an inducer of cellulase production by Trichoderma reesei RUT C30. In a reaction induced by 50 g/L duckweed in shake flasks, the filter-paper activity (FPA) reached 6.5 FPU/mL, a value comparable to that induced by avicel. The enzyme-hydrolysis rate induced by steam-exploded corn stalk was 54.2%, representing a 28% improvement over that induced by avicel. The duckweed starch was hydrolyzed to glucose, which was subsequently used for biomass accumulation during the fermentation process. Furthermore, to optimize the control of the fermentation process, a combined substrate of avicel and duckweed was used to induce cellulase production by T. reesei RUT C30. The cellulase production and hydrolysis rates of the combined substrate, compared with avicel alone, were 39.6% and 36.7% higher, respectively. The results of this study suggest that duckweed is a good inducer of cellulase production in T. reesei, and it might aid in decreasing the cost of lignocellulosic materials hydrolysis.
Collapse
|
16
|
Borin GP, Carazzolle MF, Dos Santos RAC, Riaño-Pachón DM, Oliveira JVDC. Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30. Front Bioeng Biotechnol 2018; 6:151. [PMID: 30406095 PMCID: PMC6204389 DOI: 10.3389/fbioe.2018.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
The biomass-degrading fungus Trichoderma reesei has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of T. reesei, the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the T. reesei RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our in silico analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of T. reesei strains and to decrease the production costs of 2G ethanol.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
17
|
Zhu Y, Nadia E, Yao Y, Shi Z, Ren G. Tandem repeated expression of lunasin gene in Pichia pastoris and its anti-inflammatory activity in vitro. J Biosci Bioeng 2018; 126:1-8. [DOI: 10.1016/j.jbiosc.2018.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/16/2022]
|
18
|
Improved thermostability of a metagenomic glucose-tolerant β-glycosidase based on its X-ray crystal structure. Appl Microbiol Biotechnol 2017; 101:8353-8363. [DOI: 10.1007/s00253-017-8525-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/08/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022]
|
19
|
High copy and stable expression of the xylanase XynHB in Saccharomyces cerevisiae by rDNA-mediated integration. Sci Rep 2017; 7:8747. [PMID: 28821784 PMCID: PMC5562786 DOI: 10.1038/s41598-017-08647-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/17/2017] [Indexed: 01/26/2023] Open
Abstract
Xylanase is a widely-used additive in baking industry for enhancing dough and bread quality. Several xylanases used in baking industry were expressed in different systems, but their expression in antibiotic free vector system is highly essential and safe. In the present study, an alternative rDNA-mediated technology was developed to increase the copy number of target gene by integrating it into Saccharomyces cerevisiae genome. A xylanase-encoding gene xynHB from Bacillus sp. was cloned into pHBM367H and integrated into S. cerevisiae genome through rDNA-mediated recombination. Exogenous XynHB expressed by recombinant S. cerevisiae strain A13 exhibited higher degradation activity towards xylan than other transformants. The real-time PCR analysis on A13 genome revealed the presence of 13.64 copies of xynHB gene. Though no antibiotics have been used, the genetic stability and the xylanase activity of xynHB remained stable up to 1,011 generations of cultivation. S. cerevisiae strain A13 expressing xylanase reduced the required kneading time and increased the height and diameter of the dough size, which would be safe and effective in baking industry as no antibiotics-resistance risk. The new effective rDNA-mediated technology without using antibiotics here provides a way to clone other food related industrial enzymes for applications.
Collapse
|
20
|
Shang T, Si D, Zhang D, Liu X, Zhao L, Hu C, Fu Y, Zhang R. Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. BMC Biotechnol 2017. [PMID: 28633643 PMCID: PMC5479016 DOI: 10.1186/s12896-017-0361-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xylanase degrades xylan into monomers of various sizes by catalyzing the endohydrolysis of the 1,4-β-D-xylosidic linkage randomly, possessing potential in wide industrial applications. Most of xylanases are susceptible to be inactive when suffering high temperature and high alkaline process. Therefore, it is necessary to develop a high amount of effective thermoalkaliphilic xylanases. This study aims to enhance thermoalkaliphilic xylanase production in Pichia pastoris through fermentation parameters optimization and novel efficient fed-batch strategy in high cell-density fermentation. RESULTS Recombinant xylanase activity increased 12.2%, 7.4%, 12.0% and 9.9% by supplementing the Pichia pastoris culture with 20 g/L wheat bran, 5 mg/L L-histidine, 10 mg/L L-tryptophan and 10 mg/L L-methionine in shake flasks, respectively. Investigation of nutritional fermentation parameters, non-nutritional fermentation parameters and feeding strategies in 1 L bioreactor and 1 L shake flask revealed that glycerol and methanol feeding strategies were the critical factors for high cell density and xylanase activity. In 50 L bioreactor, a novel glycerol feeding strategy and a four-stage methanol feeding strategy with a stepwise increase in feeding rate were developed to enhance recombinant xylanase production. In the initial 72 h of methanol induction, the linear dependence of xylanase activity on methanol intake was observed (R2 = 0.9726). The maximum xylanase activity was predicted to be 591.2 U/mL, while the actual maximum xylanase activity was 560.7 U/mL, which was 7.05 times of that in shake flask. Recombinant xylanase retained 82.5% of its initial activity after pre-incubation at 80 °C for 50 min (pH 8.0), and it exhibited excellent stability in the broad temperature (60-80 °C) and pH (pH 8.0-11.0) ranges. CONCLUSIONS Efficient glycerol and methanol fed-batch strategies resulting in desired cell density and xylanase activity should be applied in other P. pastoris fermentation for other recombinant proteins production. Recombinant xylanases with high pH- and thermal-stability showed potential in various industrial applications.
Collapse
Affiliation(s)
- Tingting Shang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dayong Si
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Dongyan Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuhui Liu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Longmei Zhao
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471003, China
| | - Cong Hu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yu Fu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science & Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
21
|
Ergün BG, Çalık P. Lignocellulose degrading extremozymes produced by Pichia pastoris: current status and future prospects. Bioprocess Biosyst Eng 2016; 39:1-36. [PMID: 26497303 DOI: 10.1007/s00449-015-1476-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/21/2015] [Indexed: 02/06/2023]
Abstract
In this review article, extremophilic lignocellulosic enzymes with special interest on xylanases, β-mannanases, laccases and finally cellulases, namely, endoglucanases, exoglucanases and β-glucosidases produced by Pichia pastoris are reviewed for the first time. Recombinant lignocellulosic extremozymes are discussed from the perspectives of their potential application areas; characteristics of recombinant and native enzymes; the effects of P. pastoris expression system on recombinant extremozymes; and their expression levels and applied strategies to increase the enzyme expression yield. Further, effects of enzyme domains on activity and stability, protein engineering via molecular dynamics simulation and computational prediction, and site-directed mutagenesis and amino acid modifications done are also focused. Superior enzyme characteristics and improved stability due to the proper post-translational modifications and better protein folding performed by P. pastoris make this host favourable for extremozyme production. Especially, glycosylation contributes to the structure, function and stability of enzymes, as generally glycosylated enzymes produced by P. pastoris exhibit better thermostability than non-glycosylated enzymes. However, there has been limited study on enzyme engineering to improve catalytic efficiency and stability of lignocellulosic enzymes. Thus, in the future, studies should focus on protein engineering to improve stability and catalytic efficiency via computational modelling, mutations, domain replacements and fusion enzyme technology. Also metagenomic data need to be used more extensively to produce novel enzymes with extreme characteristics and stability.
Collapse
|
22
|
Xu X, Liu MQ, Huo WK, Dai XJ. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution. Enzyme Microb Technol 2016; 86:59-66. [DOI: 10.1016/j.enzmictec.2016.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/03/2016] [Accepted: 02/07/2016] [Indexed: 12/29/2022]
|
23
|
Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates. Appl Microbiol Biotechnol 2016; 100:8043-51. [PMID: 27138202 DOI: 10.1007/s00253-016-7563-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/10/2016] [Accepted: 04/17/2016] [Indexed: 12/17/2022]
Abstract
Trichoderma reesei Xyn III, an endo-β-1,4-xylanase belonging to glycoside hydrolase family 10 (GH10), is vital for the saccharification of xylans in plant biomass. However, its enzymatic thermostability and hydrolytic activity on insoluble substrates are low. To overcome these difficulties, the thermostability of Xyn III was improved using random mutagenesis and directed evolution, and its hydrolytic activity on insoluble substrates was improved by creating a chimeric protein. In the screening of thermostable Xyn III mutants from a random mutagenesis library, we identified two amino acid residues, Gln286 and Asn340, which are important for the thermostability of Xyn III. The Xyn III Gln286Ala/Asn340Tyr mutant showed xylanase activity even after heat treatment at 60 °C for 30 min or 50 °C for 96 h, indicating a dramatic enhancement in thermostability. In addition, we found that the addition of a xylan-binding domain (XBD) to the C-terminal of Xyn III improved its hydrolytic activity on insoluble xylan.
Collapse
|
24
|
García-Fernández R, Ziegelmüller P, González L, Mansur M, Machado Y, Redecke L, Hahn U, Betzel C, Chávez MDLÁ. Two variants of the major serine protease inhibitor from the sea anemone Stichodactyla helianthus, expressed in Pichia pastoris. Protein Expr Purif 2016; 123:42-50. [PMID: 26993255 DOI: 10.1016/j.pep.2016.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022]
Abstract
The major protease inhibitor from the sea anemone Stichodactyla helianthus (ShPI-1) is a non-specific inhibitor that binds trypsin and other trypsin-like enzymes, as well as chymotrypsin, and human neutrophil elastase. We performed site-directed mutagenesis of ShPI-1 to produce two variants (rShPI-1/K13L and rShPI/Y15S) that were expressed in Pichia pastoris, purified, and characterized. After a single purification step, 65 mg and 15 mg of protein per liter of culture supernatant were obtained for rShPI-1/K13L and rShPI/Y15S, respectively. Functional studies demonstrated a 100-fold decreased trypsin inhibitory activity as result of the K13L substitution at the reactive (P1) site. This protein variant has a novel tight-binding inhibitor activity of pancreatic elastase and increased activity toward neutrophil elastase in comparison to rShPI-1A. In contrast, the substitution Y15S at P2' site did not affect the Ki value against trypsin, but did reduce activity 10-fold against chymotrypsin and neutrophil elastase. Our results provide two new ShPI-1 variants with modified inhibitory activities, one of them with increased biomedical potential. This study also offers new insight into the functional impact of the P1 and P2' sites on ShPI-1 specificity.
Collapse
Affiliation(s)
| | - Patrick Ziegelmüller
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Faculty for Mathematics Informatics and Natural Sciences, University of Hamburg, Germany
| | - Lidice González
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de la Habana, Cuba
| | | | - Yoan Machado
- Centro de Inmunología Molecular, La Habana, Cuba
| | - Lars Redecke
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Germany
| | - Ulrich Hahn
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Faculty for Mathematics Informatics and Natural Sciences, University of Hamburg, Germany
| | - Christian Betzel
- Institute of Biochemistry and Molecular Biology, Department of Chemistry, Faculty for Mathematics Informatics and Natural Sciences, University of Hamburg, Germany
| | | |
Collapse
|