1
|
Torres de Oliveira C, Alexandrino de Assis M, Lourenço Franco Cairo JP, Damasio A, Guimarães Pereira GA, Mazutti MA, de Oliveira D. Functional characterization and structural insights of three cutinases from the ascomycete Fusarium verticillioides. Protein Expr Purif 2024; 216:106415. [PMID: 38104791 DOI: 10.1016/j.pep.2023.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Cutinases are serine esterases that belong to the α/β hydrolases superfamily. The natural substrates for these enzymes are cutin and suberin, components of the plant cuticle, the first barrier in the defense system against pathogen invasion. It is well-reported that plant pathogens produce cutinases to facilitate infection. Fusarium verticillioides, one important corn pathogens, is an ascomycete upon which its cutinases are poorly explored. Consequently, the objective of this study was to perform the biochemical characterization of three precursor cutinases (FvCut1, FvCut2, and FvCut3) from F. verticillioides and to obtain structural insights about them. The cutinases were produced in Escherichia coli and purified. FvCut1, FvCut2, and FvCut3 presented optimal temperatures of 20, 40, and 35 °C, and optimal pH of 9, 7, and 8, respectively. Some chemicals stimulated the enzymatic activity. The kinetic parameters revealed that FvCut1 has higher catalytic efficiency (Kcat/Km) in the p-nitrophenyl-butyrate (p-NPB) substrate. Nevertheless, the enzymes were not able to hydrolyze polyethylene terephthalate (PET). Furthermore, the three-dimensional models of these enzymes showed structural differences among them, mainly FvCut1, which presented a narrower opening cleft to access the catalytic site. Therefore, our study contributes to exploring the diversity of fungal cutinases and their potential biotechnological applications.
Collapse
Affiliation(s)
- Caroline Torres de Oliveira
- Department of Chemical and Food Engineering, Technology Center, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Michelle Alexandrino de Assis
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | | | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | | | - Marcio Antonio Mazutti
- Department of Chemical Engineering, Technology Center, Federal University of Santa Maria, UFSM, Santa Maria, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Technology Center, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil.
| |
Collapse
|
2
|
Makryniotis K, Nikolaivits E, Gkountela C, Vouyiouka S, Topakas E. Discovery of a polyesterase from Deinococcus maricopensis and comparison to the benchmark LCC ICCG suggests high potential for semi-crystalline post-consumer PET degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131574. [PMID: 37150100 DOI: 10.1016/j.jhazmat.2023.131574] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Plastic pollution remains a significant environmental challenge, with conventional waste management strategies proving insufficient in addressing the problem. Enzymatic degradation has emerged as a promising alternative, with LCCICCG, an engineered metagenome-derived cutinase, being the most effective in degrading polyethylene terephthalate (PET), the most commonly produced and discarded polyester. However, more efficient PET-hydrolases are needed for the upscaling of a PET-waste biorefinery. In this regard, the study reports the characterization of a novel, phylogenetically distinct, thermophilic polyesterase from Deinococcus maricopensis (DmPETase) and its comparison to LCCICCG. DmPETase is capable of degrading various synthetic polymers, including PET, polyurethane, as well as four semi-crystalline aliphatic polyesters. DmPETase was found to be comparable to LCCICCG at 50 °C in degrading semi-crystalline sections of post-consumer PET bottles, but it appeared to be less sensitive to crystallinity degree increase. This property makes DmPETase a new template for protein engineering endeavors to create an efficient biocatalyst to be integrated into the bio-recycling process of PET waste, without the need for amorphization of the materials.
Collapse
Affiliation(s)
- Konstantinos Makryniotis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| | - Christina Gkountela
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Nikolaivits E, Taxeidis G, Gkountela C, Vouyiouka S, Maslak V, Nikodinovic-Runic J, Topakas E. A polyesterase from the Antarctic bacterium Moraxella sp. degrades highly crystalline synthetic polymers. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128900. [PMID: 35452981 DOI: 10.1016/j.jhazmat.2022.128900] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/24/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
The uncontrolled release of plastics in the environment has rendered them ubiquitous around the planet, threatening the wildlife and human health. Biodegradation and valorization of plastics has emerged as an eco-friendly alternative to conventional management techniques. Discovery of novel polymer-degrading enzymes with diversified properties is hence an important task in order to explore different operational conditions for plastic-waste upcycling. In the present study, a barely studied psychrophilic enzyme (MoPE) from the Antractic bacterium Moraxella sp. was heterologously expressed, characterized and its potential in polymer degradation was further investigated. Based on its amino acid composition and structure, MoPE resembled PET-degrading enzymes, sharing features from both mesophilic and thermophilic homologues. MoPE hydrolyzes non-biodegradable plastics, such as polyethylene terephthalate and polyurethane, as well as biodegradable synthetic polyesters, such as polycaprolactone, polyhydroxy butyrate, polybutylene succinate and polylactic acid. The mass fraction crystallinity of the aliphatic polymers tested ranged from 11% to 64% highlighting the potential of the enzyme to hydrolyze highly crystalline plastics. MoPE was able to degrade different types of amorphous and semi-crystalline PET, releasing water-soluble monomers and showed synergy with a feruloyl esterase of the tannase family for the release of terephthalic acid. Based on the above, MoPE was characterized as a versatile psychrophilic polyesterase demonstrating a broad-range plastics degradation potential.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Gkountela
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Veselin Maslak
- University of Belgrade, Faculty of Chemistry, Belgrade, Serbia
| | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Magalhães RP, Cunha JM, Sousa SF. Perspectives on the Role of Enzymatic Biocatalysis for the Degradation of Plastic PET. Int J Mol Sci 2021; 22:11257. [PMID: 34681915 PMCID: PMC8540959 DOI: 10.3390/ijms222011257] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 12/25/2022] Open
Abstract
Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.
Collapse
Affiliation(s)
- Rita P. Magalhães
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Jorge M. Cunha
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Sérgio F. Sousa
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal; (R.P.M.); (J.M.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Djapovic M, Milivojevic D, Ilic-Tomic T, Lješević M, Nikolaivits E, Topakas E, Maslak V, Nikodinovic-Runic J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. CHEMOSPHERE 2021; 275:130005. [PMID: 33640747 DOI: 10.1016/j.chemosphere.2021.130005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 05/29/2023]
Abstract
Polyethylene terephthalate (PET) is widely used material and as such became highly enriched in nature. It is generally considered inert and safe plastic, but due to the recent increased efforts to break-down PET using biotechnological approaches, we realized the scarcity of information about structural analysis of possible degradation products and their ecotoxicological assessment. Therefore, in this study, 11 compounds belonging to the group of PET precursors and possible degradation products have been comprehensively characterized. Seven of these compounds including 1-(2-hydroxyethyl)-4-methylterephthalate, ethylene glycol bis(methyl terephthalate), methyl bis(2-hydroxyethyl terephtahalate), 1,4-benzenedicarboxylic acid, 1,4-bis[2-[[4-(methoxycarbonyl)benzoyl]oxy]ethyl] ester and methyl tris(2-hydroxyethyl terephthalate) corresponding to mono-, 1.5-, di-, 2,5- and trimer of PET were synthetized and structurally characterized for the first time. In-silico druglikeness and physico-chemical properties of these compounds were predicted using variety of platforms. No antimicrobial properties were detected even at 1000 μg/mL. Ecotoxicological impact of the compounds against marine bacteria Allivibrio fischeri proved that the 6 out of 11 tested PET-associated compounds may be classified as harmful to aquatic microorganisms, with PET trimer being one of the most toxic. In comparison, most of the compounds were not toxic on human lung fibroblasts (MRC-5) at 200 μg/mL with inhibiting concentration (IC50) values of 30 μg/mL and 50 μg/mL determined for PET dimer and trimer. Only three of these compounds including PET monomer were toxic to nematode Caenorhabditis elegans at high concentration of 500 μg/mL. In terms of the applicative potential, PET dimer can be used as suitable substrate for the screening, identification and characterization of novel PET-depolymerizing enzymes.
Collapse
Affiliation(s)
- Milica Djapovic
- University of Belgrade, Faculty of Chemistry, Studentski Trg 16, P.O. Box 51, Belgrade, 11158, Serbia
| | - Dusan Milivojevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000, Belgrade, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000, Belgrade, Serbia
| | - Marija Lješević
- University of Belgrade-Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, 11000, Belgrade, Serbia
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, School of Chemical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780, Athens, Greece
| | - Veselin Maslak
- University of Belgrade, Faculty of Chemistry, Studentski Trg 16, P.O. Box 51, Belgrade, 11158, Serbia.
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000, Belgrade, Serbia.
| |
Collapse
|
6
|
Chen S, Wu Y, Su L, Wu J. Contribution of disulfide bond to the stability of Thermobifida fusca cutinase. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2018.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Abstract
Cutinases are α/β hydrolases, and their role in nature is the degradation of cutin. Such enzymes are usually produced by phytopathogenic microorganisms in order to penetrate their hosts. The first focused studies on cutinases started around 50 years ago. Since then, numerous cutinases have been isolated and characterized, aiming at the elucidation of their structure–function relations. Our deeper understanding of cutinases determines the applications by which they could be utilized; from food processing and detergents, to ester synthesis and polymerizations. However, cutinases are mainly efficient in the degradation of polyesters, a natural function. Therefore, these enzymes have been successfully applied for the biodegradation of plastics, as well as for the delicate superficial hydrolysis of polymeric materials prior to their functionalization. Even though research on this family of enzymes essentially began five decades ago, they are still involved in many reports; novel enzymes are being discovered, and new fields of applications arise, leading to numerous related publications per year. Perhaps the future of cutinases lies in their evolved descendants, such as polyesterases, and particularly PETases. The present article reviews the biochemical and structural characteristics of cutinases and cutinase-like hydrolases, and their applications in the field of bioremediation and biocatalysis.
Collapse
|
8
|
Nikolaivits E, Makris G, Topakas E. Immobilization of a Cutinase from Fusarium oxysporum and Application in Pineapple Flavor Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3505-3511. [PMID: 28403608 DOI: 10.1021/acs.jafc.7b00659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the present study, the immobilization of a cutinase from Fusarium oxysporum was carried out as cross-linked enzyme aggregates. Under optimal immobilization conditions, acetonitrile was selected as precipitant, utilizing 9.4 mg protein/mL and 10 mM glutaraldehyde as cross-linker. The immobilized cutinase (imFocut5a) was tested in isooctane for the synthesis of short-chain butyrate esters, displaying enhanced thermostability compared to the free enzyme. Pineapple flavor (butyl butyrate) synthesis was optimized, leading to a conversion yield of >99% after 6 h, with an initial reaction rate of 18.2 mmol/L/h. Optimal reaction conditions were found to be 50 °C, a vinyl butyrate/butanol molar ratio of 3:1, vinyl butyrate concentration of 100 mM, and enzyme loading of 11 U. Reusability studies of imFocut5a showed that after four consecutive runs, the reaction yield reaches 54% of the maximum. The efficient bioconversion offers a sustainable and environmentally friendly process for the production of "natural" aroma compounds essential for the food industry.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens , 9 Heroon Polytechniou Street, Zographou Campus, 15780 Athens, Greece
| | - Georgios Makris
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens , 9 Heroon Polytechniou Street, Zographou Campus, 15780 Athens, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens , 9 Heroon Polytechniou Street, Zographou Campus, 15780 Athens, Greece
| |
Collapse
|