1
|
Inouye S, Sato JI, Sahara-Miura Y, Tomabechi Y, Sumida Y, Sekine SI, Shirouzu M, Hosoya T. Reverse mutants of the catalytic 19 kDa mutant protein (nanoKAZ/nanoLuc) from Oplophorus luciferase with coelenterazine as preferred substrate. PLoS One 2022; 17:e0272992. [PMID: 36129943 PMCID: PMC9491549 DOI: 10.1371/journal.pone.0272992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
Native Oplophorus luciferase (OpLase) and its catalytic 19 kDa protein (wild KAZ) show highest luminescence activity with coelenterazine (CTZ) among CTZ analogs. Mutated wild KAZ with 16 amino acid substitutions (nanoKAZ/nanoLuc) utilizes bis-coelenterazine (bis-CTZ) as the preferred substrate and exhibits over 10-fold higher maximum intensity than CTZ. To understand the substrate selectivity of nanoKAZ between CTZ and bis-CTZ, we prepared the reverse mutants of nanoKAZ by amino acid replacements with the original amino acid residue of wild KAZ. The reverse mutant with L18Q and V27L substitutions (QL-nanoKAZ) exhibited 2.6-fold higher maximum intensity with CTZ than that of nanoKAZ with bis-CTZ. The catalytic properties of QL-nanoKAZ including substrate specificity, luminescence spectrum, luminescence kinetics, luminescence products of CTZ, and luminescence inhibition by deaza-CTZ analogs were characterized and were compared with other CTZ-utilizing luciferases such as Gaussia and Renilla luciferases. Thus, QL-nanoKAZ with CTZ could be used as a potential reporter protein for various luminescence assay systems. Furthermore, the crystal structure of QL-nanoKAZ was determined at 1.70 Å resolution. The reverse mutation at the L18Q and V27L positions of α2-helix in nanoKAZ led to changes in the local structures of the α4-helix and the β6- and β7-sheets, and might enhance its binding affinity and oxidation efficiency with CTZ to emit light.
Collapse
Affiliation(s)
- Satoshi Inouye
- Yokohama Research Center, JNC Co., Kanazawa-ku, Yokohama, Japan
- * E-mail:
| | - Jun-ichi Sato
- Yokohama Research Center, JNC Co., Kanazawa-ku, Yokohama, Japan
| | | | - Yuri Tomabechi
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Tsurumi-ku, Yokohama, Japan
| | - Yuto Sumida
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Chuo-ku, Kobe, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Tsurumi-ku, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Tsurumi-ku, Yokohama, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), Chuo-ku, Kobe, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
2
|
Nakao Y, Yokawa S, Kohno T, Suzuki T, Hattori M. Visualization of Reelin secretion from primary cultured neurons by bioluminescence imaging. J Biochem 2022; 171:591-598. [PMID: 35171273 DOI: 10.1093/jb/mvac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/10/2022] [Indexed: 11/14/2022] Open
Abstract
Reelin is a secreted glycoprotein important for brain development and synaptic plasticity in the adult brain. Some reports suggest that Reelin is secreted from the nerve terminals and functions as a neurotransmitter. However, the mechanism of Reelin secretion is unknown. In this study, we visualized Reelin secretion by bioluminescence imaging using a fusion protein of Reelin and Gaussia luciferase (GLase-Reelin). GLase-Reelin expressed in HEK293T cells was correctly processed and secreted. Luminescence signals from the secreted GLase-Reelin of primary cultured neurons were visualized by bioluminescence microscopy. Reelin secretory events were observed at neurites and cell bodies. Bioluminescence imaging was also performed before and after KCl depolarization to compare the secretory events of Reelin and brain-derived neurotrophic factor (BDNF). The secretion of BDNF increased markedly shortly after depolarization. In contrast, the frequency of Reelin secretion did not change significantly by depolarization. Thus, Reelin secretion from neurites might not be regulated in a neuronal activity-dependent manner.
Collapse
Affiliation(s)
- Yousuke Nakao
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Satoru Yokawa
- Department of Analytical Chemistry and Biophysics, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takahiro Suzuki
- Department of Biochemistry, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi 464-8650, Japan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
3
|
β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Cell Death Dis 2019; 10:100. [PMID: 30718498 PMCID: PMC6361911 DOI: 10.1038/s41419-019-1375-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 01/07/2019] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
Abstract
Thrombin aggravates ischemic stroke and activated protein C (APC) has a neuroprotective effect. Both proteases interact with protease-activated receptor 1, which exhibits functional selectivity and leads to G-protein- and β-arrestin-mediated-biased signal transduction. We focused on the effect of β-arrestin in PAR-1-biased signaling on endothelial function after stroke or high-fat diet (HFD). Thrombin had a rapid disruptive effect on endothelial function, but APC had a slow protective effect. Paralleled by prolonged MAPK 42/44 signaling activation by APC via β-arrestin-2, a lower cleavage rate of PAR-1 for APC than thrombin was quantitatively visualized by bioluminescence video imaging. HFD-fed mice showed lower β-arrestin-2 levels and more severe ischemic injury. The expression of β-arrestin-2 in capillaries and PDGF-β secretion in HFD-fed mice were reduced in penumbra lesions. These results suggested that β-arrestin-2-MAPK-PDGF-β signaling enhanced protection of endothelial function and barrier integrity after stroke.
Collapse
|
4
|
Yokawa S, Suzuki T, Hayashi A, Inouye S, Inoh Y, Furuno T. Video-Rate Bioluminescence Imaging of Degranulation of Mast Cells Attached to the Extracellular Matrix. Front Cell Dev Biol 2018; 6:74. [PMID: 30042943 PMCID: PMC6048188 DOI: 10.3389/fcell.2018.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
Degranulation refers to the secretion of inflammatory mediators, such as histamine, serotonin, and proteases, that are stored within the granules of mast cells and that trigger allergic reactions. The amount of these released mediators has been measured biochemically using cell mass. To investigate degranulation in living single cells, fluorescence microscopy has traditionally been used to observe the disappearance of granules and the appearance of these discharged granules within the plasma membrane by membrane fusion and the movement of granules inside the cells. Here, we developed a method of video-rate bioluminescence imaging to directly detect degranulation from a single mast cell by measuring luminescence activity derived from the enzymatic reaction between Gaussia luciferase (GLase) and its substrate coelenterazine. The neuropeptide Y (NPY), which was reported to colocalize with serotonin in the secretory granules, fused to GLase (NPY-GLase) was efficiently expressed in rat basophilic leukemia (RBL-2H3) cells, a mast-cell line, using a preferred human codon-optimized gene. Bioluminescence imaging analysis of RBL-2H3 cells expressing NPY-GLase and adhered on a glass-bottomed dish showed that the luminescence signals from the resting cells were negligible, while the luminescence signals of the secreted NPY-GLase were repeatedly detected after the addition of an antigen. In addition, this imaging method was applicable for observing degranulation in RBL-2H3 cells that adhered to the extracellular matrix (ECM). These results indicated that video-rate bioluminescence imaging using GLase will be a useful tool for detecting degranulation in single mast cells adhered to a variety of ECM proteins.
Collapse
Affiliation(s)
- Satoru Yokawa
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | | | - Ayumi Hayashi
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Satoshi Inouye
- Yokohama Research Center, JNC Corporation, Yokohama, Japan
| | - Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | | |
Collapse
|
5
|
Inouye S. Single-step purification of recombinant Gaussia luciferase from serum-containing culture medium of mammalian cells. Protein Expr Purif 2018; 141:32-38. [DOI: 10.1016/j.pep.2017.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022]
|
6
|
Yokawa S, Suzuki T, Inouye S, Inoh Y, Suzuki R, Kanamori T, Furuno T, Hirashima N. Visualization of glucagon secretion from pancreatic α cells by bioluminescence video microscopy: Identification of secretion sites in the intercellular contact regions. Biochem Biophys Res Commun 2017; 485:725-730. [PMID: 28238783 DOI: 10.1016/j.bbrc.2017.02.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 02/22/2017] [Indexed: 11/30/2022]
Abstract
We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase from the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion.
Collapse
Affiliation(s)
- Satoru Yokawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Takahiro Suzuki
- School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Satoshi Inouye
- Yokohama Research Center, JNC Corporation, Yokohama 236-8605, Japan
| | - Yoshikazu Inoh
- School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Ryo Suzuki
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takao Kanamori
- School of Dentistry, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Tadahide Furuno
- School of Pharmacy, Aichi Gakuin University, Nagoya 464-8650, Japan
| | - Naohide Hirashima
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|