1
|
Marcial-Quino J, Fernández FJ, Fierro F, Montiel-González AM, Tomasini A. Purification and activity enhancement of extracellular tyrosinase from a protease-silenced zygomycete Amylomyces rouxii strain. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01264-6. [PMID: 40316814 DOI: 10.1007/s12223-025-01264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
The intra- and extra-cellular monophenolase and diphenolase activities of the tyrosinase produced by Amylomyces rouxii were determined in submerged culture using Melin-Norkrans medium supplemented with 12.5 mg/L pentachlorophenol (PCP) and 0.1 g/L tyrosine. Maximal intracellular monophenolase activity was 180 U/mL while maximal extracellular monophenolase activity was 80 U/mL, both using p-cresol as substrate. For diphenolase, the highest intracellular activity was 2233 U/mL using 4-tert-butylcatechol (TBC) as substrate and extracellular diphenolase activity was 975 U/mL with catechol as substrate. The peak tyrosinase activity (mono- and diphenolase) was observed at 48 h of culture. The transformant A412-3 exhibited the highest extracellular activities, with a 2.14-fold increase in monophenolase and a 3.02-fold increase in diphenolase activity compared to the parental strain of A. rouxii. Additionally, it was confirmed that the enzyme secreted was in its active form. Extracellular tyrosinase from the transformant A412-3 was partially purified, achieving a purification factor of 10.6. SDS-PAGE analysis of partially purified tyrosinase revealed three bands of 40, 53, and 130 kDa. These bands were sequenced by LC-MS/MS, revealing eight peptides that showed similarity to tyrosinases from different fungi. It was determined that purified tyrosinase exhibited higher diphenolase activity than monophenolase activity, in line with previous studies on fungal tyrosinases.
Collapse
Affiliation(s)
- Jaime Marcial-Quino
- Posgrado en Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09310, Mexico City, Mexico
| | - Francisco J Fernández
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Francisco Fierro
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09340, Mexico City, Mexico
| | - Alba M Montiel-González
- Laboratorio de Investigación en Microbiología, Facultad de Odontología, Universidad Autónoma de Tlaxcala, 90000, Av. Ribereña Sin Número, Col. CentroTlaxcala, Mexico
| | - Araceli Tomasini
- Depto. de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Apdo. Postal 55-535, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
2
|
Tian X, Lv Y, Zhao L, Wang Y, Liao X. Insight into the mechanism of high hydrostatic pressure effect on inhibitory efficiency of three natural inhibitors on polyphenol oxidase. Food Chem 2024; 457:140118. [PMID: 38905831 DOI: 10.1016/j.foodchem.2024.140118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
The development of natural inhibitors of polyphenol oxidase (PPO) is crucial in the prevention of enzymatic browning in fresh foods. However, few studies have focused on the effect of subsequent sterilization on their inhibition efficiency. This study investigated the influence and mechanism of high hydrostatic pressure (HHP) on the inhibition of PPO by epigallocatechin gallate (EGCG), cyanidin-3-O-glucoside (C3G), and ferulic acid. Results showed that under the conditions of 550 MPa/30 min, the activity of EGCG-PPO decreased to 55.92%, C3G-PPO decreased to 81.80%, whereas the activity of FA-PPO remained stable. Spectroscopic experiments displayed that HHP intensified the secondary structure transformation and fluorescence quenching of PPO. Molecular dynamics simulations revealed that at 550 MPa, the surface interaction between PPO with EGCG or C3G increased, potentially leading to a reduction in their activity. In contrast, FA-PPO demonstrated conformational stability. This study can provide a reference for the future industrial application of natural inhibitors.
Collapse
Affiliation(s)
- Xuezhi Tian
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yunhao Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, China; National Engineering Research Centre for Fruit and Vegetable Processing, China; Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, China; Beijing Key Laboratory for Food Nonthermal Processing, Beijing 100083, China
| |
Collapse
|
3
|
Aguilera-Rodriguez D, Ortega-Alarcon D, Vazquez-Calvo A, Ricci V, Abian O, Velazquez-Campoy A, Alcami A, Palomo JM. Inhibition of SARS-CoV-2 3CLpro by chemically modified tyrosinase from Agaricus bisporus. RSC Med Chem 2024:d4md00289j. [PMID: 39371431 PMCID: PMC11451904 DOI: 10.1039/d4md00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Antiviral compounds are crucial to controlling the SARS-CoV-2 pandemic. Approved drugs have been tested for their efficacy against COVID-19, and new pharmaceuticals are being developed as a complementary tool to vaccines. In this work, a cheap and fast purification method for natural tyrosinase from Agaricus bisporus (AbTyr) fresh mushrooms was developed to evaluate the potential of this enzyme as a therapeutic protein via the inhibition of SARS-CoV-2 3CLpro protease activity in vitro. AbTyr showed a mild inhibition of 3CLpro. Thus, different variants of this protein were synthesized through chemical modifications, covalently binding different tailor-made glycans and peptides to the amino terminal groups of the protein. These new tyrosinase conjugates were purified and characterized through circular dichroism and fluorescence spectroscopy analyses, and their stability was evaluated under different conditions. Subsequently, all these tyrosinase conjugates were tested for 3CLpro protease inhibition. From them, the conjugate between tyrosinase and a dextran-aspartic acid (6 kDa) polymer showed the highest inhibition, with an IC50 of 2.5 μg ml-1 and IC90 of 5 μg ml-1, with no cytotoxicity activity by polymer insertion. Finally, SARS-CoV-2 virus infection was studied. It was found that this new AbTyr-Dext6000 protein showed an 80% decrease in viral load. These results show the capacity of these tyrosinase bioconjugates as potential therapeutic proteins, opening the possibility of extension and applicability against other different viruses.
Collapse
Affiliation(s)
| | - David Ortega-Alarcon
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
| | - Angela Vazquez-Calvo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Veronica Ricci
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| | - Olga Abian
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Adrian Velazquez-Campoy
- Instituto de Investigación Sanitaria Aragón (IIS Aragón) 50009 Zaragoza Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd) 28029 Madrid Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza Spain
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza Spain
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC C/Marie Curie 2 28049 Madrid Spain
| |
Collapse
|
4
|
Garcia-Sanz C, Andreu A, Pawlyta M, Vukoičić A, Milivojević A, de las Rivas B, Bezbradica D, Palomo JM. Artificial Manganese Metalloenzymes with Laccase-like Activity: Design, Synthesis, and Characterization. ACS APPLIED BIO MATERIALS 2024; 7:4760-4771. [PMID: 38916249 PMCID: PMC11253090 DOI: 10.1021/acsabm.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Laccase is an oxidase of great industrial interest due to its ability to catalyze oxidation processes of phenols and persistent organic pollutants. However, it is susceptible to denaturation at high temperatures, sensitive to pH, and unstable in the presence of high concentrations of solvents, which is a issue for industrial use. To solve this problem, this work develops the synthesis in an aqueous medium of a new Mn metalloenzyme with laccase oxidase mimetic catalytic activity. Geobacillus thermocatenulatus lipase (GTL) was used as a scaffold enzyme, mixed with a manganese salt at 50 °C in an aqueous medium. This leads to the in situ formation of manganese(IV) oxide nanowires that interact with the enzyme, yielding a GTL-Mn bionanohybrid. On the other hand, its oxidative activity was evaluated using the ABTS assay, obtaining a catalytic efficiency 300 times higher than that of Trametes versicolor laccase. This new Mn metalloenzyme was 2 times more stable at 40 °C, 3 times more stable in the presence of 10% acetonitrile, and 10 times more stable in 20% acetonitrile than Novozym 51003 laccase. Furthermore, the site-selective immobilized GTL-Mn showed a much higher stability than the soluble form. The oxidase-like activity of this Mn metalloenzyme was successfully demonstrated against other substrates, such as l-DOPA or phloridzin, in oligomerization reactions.
Collapse
Affiliation(s)
- Carla Garcia-Sanz
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Alicia Andreu
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Mirosława Pawlyta
- Faculty
of Mechanical Technology, Silesian Technical
University, Stanisława
Konarskiego 18A, 44-100 Gliwice, Poland
| | - Ana Vukoičić
- Innovation
Center of Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Ana Milivojević
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Blanca de las Rivas
- Department
of Microbial Biotechnology, Institute of
Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040 Madrid, Spain
| | - Dejan Bezbradica
- Faculty
of Technology and Metallurgy, University
of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Jose M. Palomo
- Instituto
de Catálisis y Petroleoquímica (ICP), CSIC, c/Marie Curie 2, Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Yin Q, Batbatan CG, Li Y, Zhang Y, Yang Q, Xiao A. Preparation and Characterization of Carrageenase Immobilized onto Polyethyleneimine-Modified Pomelo Peel. J Microbiol Biotechnol 2024; 34:132-140. [PMID: 37957113 PMCID: PMC10840462 DOI: 10.4014/jmb.2304.04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 11/15/2023]
Abstract
In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60°C and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.
Collapse
Affiliation(s)
- Qin Yin
- College of Biological and Food Engineering, Suzhou University, Suzhou, Anhui, 234000, P.R. China
- Department of Biology, Central Mindanao University, Maramag, Bukidnon, 8710, Philippines
| | | | - Yongxing Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Yonghui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Qiuming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| | - Anfeng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, 361021, P.R. China
| |
Collapse
|
6
|
Fernández-Lodeiro A, Lodeiro JF, Losada-Garcia N, Nuti S, Capelo-Martinez JL, Palomo JM, Lodeiro C. Copper(i) as a reducing agent for the synthesis of bimetallic PtCu catalytic nanoparticles. NANOSCALE ADVANCES 2023; 5:4415-4423. [PMID: 37638153 PMCID: PMC10448313 DOI: 10.1039/d3na00158j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023]
Abstract
This work investigates the potential utilization of Cu(i) as a reducing agent for the transformation of the platinum salt K2PtCl4, resulting in the production of stable nanoparticles. The synthesized nanoparticles exhibit a bimetallic composition, incorporating copper within their final structure. This approach offers a convenient and accessible methodology for the production of bimetallic nanostructures. The catalytic properties of these novel nanomaterials have been explored in various applications, including their use as artificial metalloenzymes and in the degradation of dyes. The findings underscore the significant potential of Cu(i)-mediated reduction in the development of functional nanomaterials with diverse catalytic applications.
Collapse
Affiliation(s)
- Adrián Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - Javier Fernández Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - Noelia Losada-Garcia
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC Marie Curie 2 Madrid 28049 Spain
| | - Silvia Nuti
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - José Luis Capelo-Martinez
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| | - Jose M Palomo
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC Marie Curie 2 Madrid 28049 Spain
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, NOVA University Lisbon Caparica Campus Caparica 2829-516 Portugal
- PROTEOMASS Scientific Society, BIOSCOPE GROUP Laboratories Departmental Building, Ground Floor, FCT-UNL Caparica Campus 2829-516 Caparica Portugal
| |
Collapse
|
7
|
Bounegru AV, Apetrei C. Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:760. [PMID: 36839128 PMCID: PMC9962745 DOI: 10.3390/nano13040760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The development of enzyme biosensors has successfully overcome various challenges such as enzyme instability, loss of enzyme activity or long response time. In the electroanalytical field, tyrosinase is used to develop biosensors that exploit its ability to catalyze the oxidation of numerous types of phenolic compounds with antioxidant and neurotransmitter roles. This review critically examines the main tyrosinase immobilization techniques for the development of sensitive electrochemical biosensors. Immobilization strategies are mainly classified according to the degree of reversibility/irreversibility of enzyme binding to the support material. Each tyrosinase immobilization method has advantages and limitations, and its selection depends mainly on the type of support electrode, electrode-modifying nanomaterials, cross-linking agent or surfactants used. Tyrosinase immobilization by cross-linking is characterized by very frequent use with outstanding performance of the developed biosensors. Additionally, research in recent years has focused on new immobilization strategies involving cross-linking, such as cross-linked enzyme aggregates (CLEAs) and magnetic cross-linked enzyme aggregates (mCLEAs). Therefore, it can be considered that cross-linking immobilization is the most feasible and economical approach, also providing the possibility of selecting the reagents used and the order of the immobilization steps, which favor the enhancement of biosensor performance characteristics.
Collapse
|
8
|
Elucidating the Role of Santalol as a Potent Inhibitor of Tyrosinase: In Vitro and In Silico Approaches. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248915. [PMID: 36558055 PMCID: PMC9786741 DOI: 10.3390/molecules27248915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
This research work focuses on the potential application of an organic compound, santalol, obtained from santalum album, in the inhibition of the enzyme tyrosinase, which is actively involved in the biosynthesis of melanin pigment. Over-production of melanin causes undesirable pigmentation in humans as well as other organisms and significantly downgrades their aesthetic value. The study is designed to explain the purification of tyrosinase from the mushroom Agaricus bisporus, followed by activity assays and enzyme kinetics to give insight into the santalol-modulated tyrosinase inhibition in a dose-dependent manner. The multi-spectroscopic techniques such as UV-vis, fluorescence, and isothermal calorimetry are employed to deduce the efficiency of santalol as a potential candidate against tyrosinase enzyme activity. Experimental results are further verified by molecular docking. Santalol, derived from the essential oils of santalum album, has been widely used as a remedy for skin disorders and a potion for a fair complexion since ancient times. Based on enzyme kinetics and biophysical characterization, this is the first scientific evidence where santalol inhibits tyrosinase, and santalol may be employed in the agriculture, food, and cosmetic industries to prevent excess melanin formation or browning.
Collapse
|
9
|
In Vitro Antiviral Activity of Tyrosinase from Mushroom Agaricus bisporus against Hepatitis C Virus. Pharmaceuticals (Basel) 2021; 14:ph14080759. [PMID: 34451856 PMCID: PMC8399381 DOI: 10.3390/ph14080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Tyrosinases from a commercial Agaricus bisporus protein extract and directly isolated from white mushrooms were purified in order to obtaining the well-known tyrosinase from A. bisporus (TyrAB) of 45 kDa and a newly discovered 50 kDa tyrosinase isoform (Tyr50 kDa), and tested showing high antiviral activity against the hepatitis C virus for the first time. Cell toxicity and antiviral activity of tyrosinases were determined in cultured Huh 5-2 liver tumor cells transfected with a replicon system (a plasmid that includes all non-structural hepatitis C virus proteins and replicates autonomously). TyrAB was able to inhibit the replication of the hepatitis C virus without inducing toxicity in liver cells. In addition, the post-translational isoform Tyr50 kDa showed higher antiviral capacity than the former (up to 10 times greater), also exhibiting 10 times higher activity than the commercial drug Ribavirin®. This antiviral activity was directly proportional to the enzymatic activity of tyrosinases, as no antiviral capacity was observed in the inactive form of the enzymes. The tyrosinases approach could represent a new antiviral inhibition mechanism, through a plausible catalytic mechanism of selective hydroxylation of the key role of tyrosine residues in viral proteases.
Collapse
|
10
|
Losada-Garcia N, Jimenez-Alesanco A, Velazquez-Campoy A, Abian O, Palomo JM. Enzyme/Nanocopper Hybrid Nanozymes: Modulating Enzyme-like Activity by the Protein Structure for Biosensing and Tumor Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5111-5124. [PMID: 33472360 PMCID: PMC8486171 DOI: 10.1021/acsami.0c20501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/12/2021] [Indexed: 05/30/2023]
Abstract
Artificial enzymes with modulated enzyme-mimicking activities of natural systems represent a challenge in catalytic applications. Here, we show the creation of artificial Cu metalloenzymes based on the generation of Cu nanoparticles in an enzyme matrix. Different enzymes were used, and the structural differences between the enzymes especially influenced the controlled the size of the nanoparticles and the environment that surrounds them. Herein, we demonstrated that the oxidase-like catalytic activity of these copper nanozymes was rationally modulated by enzyme used as a scaffold, with a special role in the nanoparticle size and their environment. In this sense, these nanocopper hybrids have confirmed the ability to mimic a unique enzymatic activity completely different from the natural activity of the enzyme used as a scaffold, such as tyrosinase-like activity or as Fenton catalyst, which has extremely higher stability than natural mushroom tyrosinase. More interestingly, the oxidoreductase-like activity of nanocopper hybrids was cooperatively modulated with the synergistic effect between the enzyme and the nanoparticles improving the catalase activity (no peroxidase activity). Additionally, a novel dual (metallic and enzymatic activity) of the nanozyme made the highly improved catechol-like activity interesting for the design of 3,4-dihydroxy-l-phenylalanine (l-DOPA) biosensor for detection of tyrosinase. These hybrids also showed cytotoxic activity against different tumor cells, interesting in biocatalytic tumor therapy.
Collapse
Affiliation(s)
- Noelia Losada-Garcia
- Department
of Biocatalysis, Institute of Catalysis
(CSIC), c/Marie curie 2, Cantoblanco Campus UAM, 28049 Madrid, Spain
| | - Ana Jimenez-Alesanco
- Instituto
de Biocomputación y Física de Sistemas Complejos, Joint
Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Fundación
ARAID, Gobierno de Aragón, 50018 Zaragoza, Spain
- Instituto
de Biocomputación y Física de Sistemas Complejos, Joint
Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundación
Instituto de Investigación Sanitaria de Aragón (IIS
Aragón), 50009 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Olga Abian
- Instituto
de Biocomputación y Física de Sistemas Complejos, Joint
Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Fundación
Instituto de Investigación Sanitaria de Aragón (IIS
Aragón), 50009 Zaragoza, Spain
- Centro
de Investigación Biomédica en Red en el Área
Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Departamento
de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto
Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
| | - Jose M. Palomo
- Department
of Biocatalysis, Institute of Catalysis
(CSIC), c/Marie curie 2, Cantoblanco Campus UAM, 28049 Madrid, Spain
| |
Collapse
|
11
|
Effectivity of tyrosinase purification by membrane techniques versus fractionation by salting out. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractThe main goal of this study was to select micro- and ultrafiltration membranes that can be used for the purification of mushroom tyrosinase, replacing salting-out dual-step processes followed by centrifugations. In experiments, a raw extract from white mushrooms was used with high level of ballast proteins and brownish impurities. Four microfiltration membranes for the removal of undesired high molecular weight compounds were screened and that made of nitrocellulose was selected due to high recovery of enzymatic activity. Then diafiltration and concentration on the membrane made of polyethersulphone (300 kDa) was selected to recover 8% of proteins and 58% of tyrosinase activity with five- to seven purification fold, 10% of proteases, and 8% of brown impurities. It was shown that tyrosinase can be pre-purified by selected membranes yielding the enzyme quality at least comparable to that after double salting-out method but in one device. In both cases, subsequent purification by ion-exchange chromatography slightly increased purification degree of the enzyme and brown impurity removal. The surplus of membrane pre-purification is substantially higher thermal stability of the enzyme, enlarged after the chromatographic step, due to very low content of proteolytic enzymes.
Collapse
|
12
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 569] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|