1
|
Sułkowska-Ziaja K, Trepa M, Olechowska-Jarząb A, Nowak P, Ziaja M, Kała K, Muszyńska B. Natural Compounds of Fungal Origin with Antimicrobial Activity-Potential Cosmetics Applications. Pharmaceuticals (Basel) 2023; 16:1200. [PMID: 37765008 PMCID: PMC10535449 DOI: 10.3390/ph16091200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
The phenomenon of drug resistance in micro-organisms necessitates the search for new compounds capable of combating them. Fungi emerge as a promising source of such compounds as they produce a wide range of secondary metabolites with bacteriostatic or fungistatic activity. These compounds can serve as alternatives for commonly used antibiotics. Furthermore, fungi also accumulate compounds with antiviral activity. This review focuses on filamentous fungi and macrofungi as sources of antimicrobial compounds. The article describes both individual isolated compounds and extracts that exhibit antibacterial, antifungal, and antiviral activity. These compounds are produced by the fruiting bodies and mycelium, as well as the biomass of mycelial cultures. Additionally, this review characterizes the chemical compounds extracted from mushrooms used in the realm of cosmetology; specifically, their antimicrobial activity.
Collapse
Affiliation(s)
- Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Trepa
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Aldona Olechowska-Jarząb
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
- Department of Microbiology, University Hospital, ul. Jakubowskiego 2, 30-688 Kraków, Poland
| | - Paweł Nowak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Marek Ziaja
- Department of Histology, Faculty of Medicine, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
2
|
Ghosh S, Acharya K. Milky mushroom: A healthy nutritious diet. Food Res Int 2022; 156:111113. [DOI: 10.1016/j.foodres.2022.111113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/25/2022]
|
3
|
El-Maradny YA, El-Fakharany EM, Abu-Serie MM, Hashish MH, Selim HS. Lectins purified from medicinal and edible mushrooms: Insights into their antiviral activity against pathogenic viruses. Int J Biol Macromol 2021; 179:239-258. [PMID: 33676978 DOI: 10.1016/j.ijbiomac.2021.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
For thousands of years, fungi have been a valuable and promising source of therapeutic agents for treatment of various diseases. Mushroom is a macrofungus which has been cultivated worldwide for its nutritional value and medicinal applications. Several bioactive molecules were extracted from mushroom such as polysaccharides, lectins and terpenoids. Lectins are carbohydrate-binding proteins with non-immunologic origin. Lectins were classified according to their structure, origin and sugar specificity. This protein has different binding specificity with surface glycan moiety which determines its activity and therapeutic applications. A wide range of medicinal activities such as antitumor, antiviral, antimicrobial, immunomodulatory and antidiabetic were reported from sugar-binding proteins. However, glycan-binding protein from mushroom is not well explored as antiviral agent. The discovery of novel antiviral agents is a public health emergency to overcome the current pandemic and be ready for the upcoming viral pandemics. The mechanism of action of lectin against viruses targets numerous steps in viral life cycle such as viral attachment, entry and replication. This review described the history, classification, purification techniques, structure-function relationship and different therapeutic applications of mushroom lectin. In addition, we focus on the antiviral activity, purification and physicochemical characteristics of some mushroom lectins.
Collapse
Affiliation(s)
- Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt; Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Department of Medical Biotechnology, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab, Alexandria, Egypt
| | - Mona H Hashish
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Heba S Selim
- Microbiology Department, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Díaz-Godínez G, Díaz R. Fungal Productions of Biological Active Proteins. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Wong JH, Ng TB, Wang H, Cheung RCF, Ng CCW, Ye X, Yang J, Liu F, Ling C, Chan K, Ye X, Chan WY. Antifungal Proteins with Antiproliferative Activity on Cancer Cells and HIV-1 Enzyme Inhibitory Activity from Medicinal Plants and Medicinal Fungi. Curr Protein Pept Sci 2019; 20:265-276. [PMID: 29895244 DOI: 10.2174/1389203719666180613085704] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
A variety of fungi, plants, and their different tissues are used in Traditional Chinese Medicine to improve health, and some of them are recommended for dietary therapy. Many of these plants and fungi contain antifungal proteins and peptides which suppress spore germination and hyphal growth in phytopathogenic fungi. The aim of this article is to review antifungal proteins produced by medicinal plants and fungi used in Chinese medicine which also possess anticancer and human immunodeficiency virus-1 (HIV-1) enzyme inhibitory activities.
Collapse
Affiliation(s)
- Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Charlene Cheuk Wing Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiuyun Ye
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jie Yang
- National Engineering Laboratory for High-Efficiency Enzyme Expression and College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fang Liu
- Department of Microbiology, Nankai University, Tianjin, China
| | - Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida College of Medicine, Gainesville, Florida 32611, FL, United States
| | - Ki Chan
- Biomedical and Tissue Engineering Research Group, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, China
| | - Xiujuan Ye
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, and Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Zhou R, Liu ZK, Zhang YN, Wong JH, Ng TB, Liu F. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms. Curr Protein Pept Sci 2019; 20:196-219. [DOI: 10.2174/1389203719666180613090710] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/25/2018] [Indexed: 01/04/2023]
Abstract
For centuries, mushrooms have been widely used as traditional Chinese medicine in Asia.
Apart from polysaccharides and some small-molecule components, such as flavones, polyphenols and
terpenes, mushrooms produce a large number of pharmaceutically active proteins, which have become
popular sources of natural antitumor, antimicrobial, immunoenhancing agents. These bioactive proteins
include lectins, laccases, Ribosome Inactivating Proteins (RIPs), nucleases, and Fungal Immunomodulatory
Proteins (FIPs). The review is to summarize the characterstics of structure and bioactivities involved
in antitumor, antiviral, antifungal, antibacterial and immunoenhancing activities of proteins from
edible mushrooms, to better understand their mechanisms, and to direct research.
Collapse
Affiliation(s)
- Rong Zhou
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Zhao Kun Liu
- Department of History, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Ye Ni Zhang
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Fang Liu
- Department of Microbiology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Zhang JJ, Li Y, Zhou T, Xu DP, Zhang P, Li S, Li HB. Bioactivities and Health Benefits of Mushrooms Mainly from China. Molecules 2016; 21:E938. [PMID: 27447602 PMCID: PMC6274515 DOI: 10.3390/molecules21070938] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 02/07/2023] Open
Abstract
Many mushrooms have been used as foods and medicines for a long time. Mushrooms contain polyphenols, polysaccharides, vitamins and minerals. Studies show that mushrooms possess various bioactivities, such as antioxidant, anti-inflammatory, anticancer, immunomodulatory, antimicrobial, hepatoprotective, and antidiabetic properties, therefore, mushrooms have attracted increasing attention in recent years, and could be developed into functional food or medicines for prevention and treatment of several chronic diseases, such as cancer, cardiovascular diseases, diabetes mellitus and neurodegenerative diseases. The present review summarizes the bioactivities and health benefits of mushrooms, and could be useful for full utilization of mushrooms.
Collapse
Affiliation(s)
- Jiao-Jiao Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dong-Ping Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Pei Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Ng TB, Cheung RCF, Wong JH, Chan YS, Dan X, Pan W, Wang H, Guan S, Chan K, Ye X, Liu F, Xia L, Chan WY. Fungal proteinaceous compounds with multiple biological activities. Appl Microbiol Biotechnol 2016; 100:6601-6617. [PMID: 27338574 DOI: 10.1007/s00253-016-7671-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
Fungi comprise organisms like molds, yeasts and mushrooms. They have been used as food or medicine for a long time. A large number of fungal proteins or peptides with diverse biological activities are considered as antibacterial, antifungal, antiviral and anticancer agents. They encompass proteases, ribosome inactivating proteins, defensins, hemolysins, lectins, laccases, ribonucleases, immunomodulatory proteins, and polysaccharopeptides. The target of the present review is to update the status of the various bioactivities of these fungal proteins and peptides and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yau Sang Chan
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, People's Republic of China
| | - Xiuli Dan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenliang Pan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hexiang Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, 100193, China
| | - Suzhen Guan
- Department of Social Medicine, College of Public Health, Xinjiang Medical University, Urumqi, 830011, China
| | - Ki Chan
- Biomedical and Tissue Engineering Research Group, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong, China
| | - Xiuyun Ye
- College of Biological Sciences and Technology, Fuzhou University, Fuzhou, Fujian, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou, Fujian, China
| | - Fang Liu
- Department of Microbiology, Nankai University, Tianjin, China
| | - Lixin Xia
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Nanhai Ave 3688, 518060, Shenzhen, Guangdong, People's Republic of China
| | - Wai Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Erjavec J, Ravnikar M, Brzin J, Grebenc T, Blejec A, Gosak MŽ, Sabotič J, Kos J, Dreo T. Antibacterial Activity of Wild Mushroom Extracts on Bacterial Wilt Pathogen Ralstonia solanacearum. PLANT DISEASE 2016; 100:453-464. [PMID: 30694152 DOI: 10.1094/pdis-08-14-0812-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In total, 150 protein extracts from 94 different basidiomycete and ascomycete wild mushroom species were tested for antibacterial activity against the quarantine plant-pathogen bacterium Ralstonia solanacearum. In in vitro microtiter plate assays, 15 extracts with moderate to high antibacterial activities were identified: 11 completely inhibited bacterial growth and 4 showed partial inhibition. Of these 15 extracts, 5 were further tested and 3 extracts slowed disease progression and reduced disease severity in artificially inoculated tomato and potato plants. However, the in vitro activities of the extracts did not always correlate with their in vivo activities, which emphasizes the importance of performing early screening tests also in vivo. Testing of selected extracts against 12 R. solanacearum strains identified 6 with potential for broader applicability. Further analysis of extracts from Amanita phalloides and Clitocybe geotropa showed that the active substances are proteins with an approximate size of 180 kDa. To our knowledge, this is the first in vitro and in vivo study that demonstrates that mushroom protein extracts can be promising for treatment of bacterial wilt caused by R. solanacearum.
Collapse
Affiliation(s)
- Jana Erjavec
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Maja Ravnikar
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Jože Brzin
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Tine Grebenc
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Večna pot 2, SI-1000 Ljubljana, Slovenia
| | - Andrej Blejec
- Department of Entomology, National Institute of Biology
| | - Mateja Želko Gosak
- Department of Biotechnology and Systems Biology, National Institute of Biology
| | | | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Tanja Dreo
- Department of Biotechnology and Systems Biology, National Institute of Biology
| |
Collapse
|
10
|
Xu X, Yan H, Chen J, Zhang X. Bioactive proteins from mushrooms. Biotechnol Adv 2011; 29:667-74. [DOI: 10.1016/j.biotechadv.2011.05.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/20/2011] [Accepted: 05/08/2011] [Indexed: 12/23/2022]
|
11
|
Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F, Lu F, Liu Y. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 2007; 28:553-9. [PMID: 17129637 DOI: 10.1016/j.peptides.2006.10.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/13/2006] [Accepted: 10/13/2006] [Indexed: 11/18/2022]
Abstract
An antifungal protein, with a molecular mass of 41.9 kDa, and designated as bacisubin, was isolated from a culture of Bacillus subtilis strain B-916. The isolation procedure consisted of ion exchange chromatography on DEAE-Sepharose Fast Flow, and fast protein liquid chromatography on Phenyl Sepharose 6 Fast Flow and hydroxyapatite columns. The protein was adsorbed on all three chromatographic media. Bacisubin exhibited inhibitory activity on mycelial growth in Magnaporthe grisease, Sclerotinia sclerotiorum, Rhizoctonia solani, Alternaria oleracea, A. brassicae and Botrytis cinerea. The IC50 values of its antifungal activity toward the last four fungal species were 4.01 microM, 0.087 microM, 0.055 microM and 2.74 microM, respectively. Bacisubin demonstrated neither protease activity, nor protease inhibitory activity. However, it manifested ribonuclease and hemagglutinating activities.
Collapse
Affiliation(s)
- Yongfeng Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Wang HX, Ng TB. An antifungal peptide from red lentil seeds. Peptides 2007; 28:547-52. [PMID: 17123664 DOI: 10.1016/j.peptides.2006.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/13/2006] [Accepted: 10/13/2006] [Indexed: 11/22/2022]
Abstract
An antifungal peptide, with a molecular mass of 11 kDa, was isolated from dry seeds of the red lentil (Lens culinaris) using a procedure that involved four chromatographic steps. The antifungal peptide was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and S-Sepharose. The final chromatographic step involved gel filtration by fast protein liquid chromatography on Superdex 75. The antifungal peptide inhibited mycelial growth in Mycosphaerella arachidicola with an IC50 of 36 microM. It also exhibited antifungal activity against Fusarium oxysporum, but there was no inhibitory activity toward tumor cell lines and human immunodeficiency virus type 1 reverse transcriptase (RT).
Collapse
Affiliation(s)
- H X Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China.
| | | |
Collapse
|
13
|
Wang HX, Ng TB. Isolation and characterization of an antifungal peptide with antiproliferative activity from seeds of Phaseolus vulgaris cv. ‘Spotted Bean’. Appl Microbiol Biotechnol 2007; 74:125-30. [PMID: 17177050 DOI: 10.1007/s00253-006-0650-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/25/2022]
Abstract
A 7.3-kDa antifungal peptide with an N-terminal sequence exhibiting remarkable homology to defensins from other leguminous plants was isolated from Phaseolus vulgaris cv. 'Spotted Bean'. The isolation procedure involved ion exchange chromatography on O-diethylaminoethyl (DEAE) cellulose, affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose, and gel filtration by fast protein liquid chromatography on Superdex 75. The peptide was unadsorbed on DEAE-cellulose and adsorbed on Affi-gel blue gel and SP-Sepharose. It exerted an antifungal action on Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited mycelial growth in F. oxysporum with an IC(50) value of 1.8 microM. It suppressed [methyl-(3)H]-thymidine incorporation by leukemia L1210 cells and MBL2 cells with an IC(50) value of 4.0 and 9.0 microM, respectively. There was no effect on HIV-1 reverse transcriptase activity when the peptide was tested up to 0.1 mM.
Collapse
Affiliation(s)
- H X Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | | |
Collapse
|
14
|
Wang HX, Ng TB. An antifungal protein from the pea Pisum sativum var. arvense Poir. Peptides 2006; 27:1732-7. [PMID: 16574276 DOI: 10.1016/j.peptides.2006.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/27/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of 0.62 microM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50 of 4.7 microM.
Collapse
Affiliation(s)
- H X Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | | |
Collapse
|