1
|
Guida S, Guida G, Goding CR. MC1R Functions, Expression, and Implications for Targeted Therapy. J Invest Dermatol 2021; 142:293-302.e1. [PMID: 34362555 DOI: 10.1016/j.jid.2021.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022]
Abstract
The G protein-coupled MC1R is expressed in melanocytes and has a pivotal role in human skin pigmentation, with reduced function in human genetic variants exhibiting a red hair phenotype and increased melanoma predisposition. Beyond its role in pigmentation, MC1R is increasingly recognized as promoting UV-induced DNA damage repair. Consequently, there is mounting interest in targeting MC1R for therapeutic benefit. However, whether MC1R expression is restricted to melanocytes or is more widely expressed remains a matter of debate. In this paper, we review MC1R function and highlight that unbiased analysis suggests that its expression is restricted to melanocytes, granulocytes, and the brain.
Collapse
Affiliation(s)
- Stefania Guida
- Dermatology Unit, Surgical, Medical and Dental Department of Morphological Sciences Related to Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Gabriella Guida
- Molecular Biology Section, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Colin Ronald Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Tala SR, Singh A, Lensing CJ, Schnell SM, Freeman KT, Rocca JR, Haskell-Luevano C. 1,2,3-Triazole Rings as a Disulfide Bond Mimetic in Chimeric AGRP-Melanocortin Peptides: Design, Synthesis, and Functional Characterization. ACS Chem Neurosci 2018; 9:1001-1013. [PMID: 29257879 DOI: 10.1021/acschemneuro.7b00422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The melanocortin system is involved in the regulation of complex physiological functions, including energy and weight homeostasis, feeding behavior, inflammation, sexual function, pigmentation, and exocrine gland function. The five melanocortin receptors that belong to the superfamily of G protein-coupled receptors (GPCRs) are regulated by endogenously expressed agonists and antagonists. The aim of this study was to explore the potential of replacing the disulfide bridge in chimeric AGRP-melanocortin peptide Tyr-c[Cys-His-d-Phe-Arg-Trp-Asn-Ala-Phe-Cys]-Tyr-NH2 (1) with 1,2,3-triazole moieties. A series of 1,2,3-triazole-bridged peptidomimetics were designed, synthesized, and pharmacologically evaluated at the mouse melanocortin receptors. The ligands possessed nanomolar to micromolar agonist cAMP signaling potency. A key finding was that the disulfide bond in peptide 1 can be replaced with the monotriazole ring with minimal effect on the functional activity at the melanocortin receptors. The 1,5-disubstituted triazole-bridged peptide 6 showed equipotent functional activity at the mMC3R and modest 5-fold decreased agonist potency at the mMC4R compared to those of 1. Interestingly, the 1,4- and 1,5-disubstituted isomers of the triazole ring resulted in different selectivities at the receptor subtypes, indicating subtle structural features that may be exploited in the generation of selective melanocortin ligands. Introducing cyclic and acyclic bis-triazole moieties into chimeric AGRP template 1 generally decreased agonist activity. These results will be useful for the further design of neuronal chemical probes for the melanocortin receptors as well as in other receptor systems.
Collapse
Affiliation(s)
- Srinivasa R. Tala
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anamika Singh
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cody J. Lensing
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James R. Rocca
- Advanced Magnetic Resonance Imaging and Spectroscopy, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Dueñas S, Aguila SA, Pimienta G. A workflow for in silico design of hIL-10 and ebvIL-10 inhibitors using well-known miniprotein scaffolds. J Mol Model 2017; 23:118. [PMID: 28293795 DOI: 10.1007/s00894-017-3276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 02/06/2017] [Indexed: 11/29/2022]
Abstract
The over-expression of immune-suppressors such as IL-10 is a crucial landmark in both tumor progression, and latent viral and parasite infection. IL-10 is a multifunctional protein. Besides its immune-cell suppressive function, it also promotes B-cell tumorigenesis of lymphomas and melanoma. Human pathogens like unicellular parasites and viruses that remain latent inside B cells promote the over-expression of hIL-10 upon infection, which inhibits cell-mediated immune surveillance, and at the same time mediates B cell proliferation. The B-cell specific oncogenic latent virus Epstein-Barr virus (EBV) encodes a viral homologue of hIL-10 (ebvIL-10), expressed during lytic viral proliferation. Once expressed, ebvIL-10 inhibits cell-mediated immune surveillance, assuring EBV re-infection. During long-term latency, EBV-infected B cells over-express hIL-10 to assure B-cell proliferation, occasionally inducing EBV-mediated lymphomas. The amino acid sequences of hIL-10 and ebvIL-10 are more than 80% identical and thus have a very similar tridimensional structure. Based on their published crystallographic structures bound to their human receptor IL10R1, we report a structure-based design of hIL-10 and ebvIL-10 inhibitors based on 3 loops from IL10R1 that establish specific hydrogen bonds with the two IL10s. We have grafted these loops onto a permissible loop in three well-known miniprotein scaffolds-the Conus snail toxin MVIIA, the plant-derived trypsin inhibitor EETI, and the human appetite modulator AgRP. Our computational workflow described in detail below was invigorated by the negative and positive controls implemented, and therefore paves the way for future in vitro and in vivo validation assays of the IL-10 inhibitors engineered.
Collapse
Affiliation(s)
- Salvador Dueñas
- Departamento de Innovación Biomédica, División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Baja California, C.P. 22860, Mexico
| | - Sergio A Aguila
- Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Km. 107 carretera Tijuana-Ensenada, Ensenada, Baja California, C.P. 22860, Mexico.
| | - Genaro Pimienta
- Departamento de Innovación Biomédica, División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada, Carretera Ensenada-Tijuana 3918, Zona Playitas, Ensenada, Baja California, C.P. 22860, Mexico. .,Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
4
|
Ericson MD, Freeman KT, Schnell SM, Haskell-Luevano C. A Macrocyclic Agouti-Related Protein/[Nle 4,DPhe 7]α-Melanocyte Stimulating Hormone Chimeric Scaffold Produces Subnanomolar Melanocortin Receptor Ligands. J Med Chem 2017; 60:805-813. [PMID: 28045525 DOI: 10.1021/acs.jmedchem.6b01707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The melanocortin system consists of five receptor subtypes, endogenous agonists, and naturally occurring antagonists. These receptors and ligands have been implicated in numerous biological pathways including processes linked to obesity and food intake. Herein, a truncation structure-activity relationship study of chimeric agouti-related protein (AGRP)/[Nle4,DPhe7]α-melanocyte stimulating hormone (NDP-MSH) ligands is reported. The tetrapeptide His-DPhe-Arg-Trp or tripeptide DPhe-Arg-Trp replaced the Arg-Phe-Phe sequence in the AGRP active loop derivative c[Pro-Arg-Phe-Phe-Xxx-Ala-Phe-DPro], where Xxx was the native Asn of AGRP or a diaminopropionic (Dap) acid residue previously shown to increase antagonist potency at the mMC4R. The Phe, Ala, and Dap/Asn residues were successively removed to generate a 14-member library that was assayed for agonist activity at the mouse MC1R, MC3R, MC4R, and MC5R. Two compounds possessed nanomolar agonist potency at the mMC4R, c[Pro-His-DPhe-Arg-Trp-Asn-Ala-Phe-DPro] and c[Pro-His-DPhe-Arg-Trp-Dap-Ala-DPro], and may be further developed to generate novel melanocortin probes and ligands for understanding and treating obesity.
Collapse
Affiliation(s)
- Mark D Ericson
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Ericson MD, Wilczynski A, Sorensen NB, Xiang Z, Haskell-Luevano C. Discovery of a β-Hairpin Octapeptide, c[Pro-Arg-Phe-Phe-Dap-Ala-Phe-DPro], Mimetic of Agouti-Related Protein(87-132) [AGRP(87-132)] with Equipotent Mouse Melanocortin-4 Receptor (mMC4R) Antagonist Pharmacology. J Med Chem 2015; 58:4638-47. [PMID: 25898270 DOI: 10.1021/acs.jmedchem.5b00184] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Agouti-related protein (AGRP) is a potent orexigenic peptide that antagonizes the melanocortin-3 and -4 receptors (MC3R and MC4R). While the C-terminal domain of AGRP, AGRP(87-132), is equipotent to the full-length peptide, further truncation decreases potency at the MC3R and MC4R. Herein, we report AGRP-derived peptides designed to mimic the active β-hairpin secondary structure that contains the hypothesized Arg-Phe-Phe pharmacophore. The most potent scaffold, c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-DPro], comprised the hexa-peptide β-hairpin loop from AGRP cyclized through a DPro-Pro motif. A 20 compound library was synthesized from this scaffold for further structure-activity relationship studies. The most potent peptide from this library was an asparagine to diaminopropionic acid substitution that possessed sub-nanomolar antagonist activity at the mMC4R and was greater than 160-fold selective for the mMC4R versus the mMC3R. The reported ligands may serve as probes to characterize the melanocortin receptors in vivo and leads in the development of novel therapeutics.
Collapse
Affiliation(s)
- Mark D Ericson
- †Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andrzej Wilczynski
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Nicholas B Sorensen
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Zhimin Xiang
- ‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| | - Carrie Haskell-Luevano
- †Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,‡Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
6
|
Agouti signalling protein is an inverse agonist to the wildtype and agonist to the melanic variant of the melanocortin-1 receptor in the grey squirrel (Sciurus carolinensis). FEBS Lett 2014; 588:2335-43. [PMID: 24879893 DOI: 10.1016/j.febslet.2014.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/17/2014] [Accepted: 05/15/2014] [Indexed: 01/26/2023]
Abstract
The melanocortin-1 receptor (MC1R) is a key regulator of mammalian pigmentation. Melanism in the grey squirrel is associated with an eight amino acid deletion in the mutant melanocortin-1 receptor with 24 base pair deletion (MC1RΔ24) variant. We demonstrate that the MC1RΔ24 exhibits a higher basal activity than the wildtype MC1R (MC1R-wt). We demonstrate that agouti signalling protein (ASIP) is an inverse agonist to the MC1R-wt but is an agonist to the MC1RΔ24. We conclude that the deletion in the MC1RΔ24 leads to a receptor with a high basal activity which is further activated by ASIP. This is the first report of ASIP acting as an agonist to MC1R.
Collapse
|
7
|
Melanocortin system in cancer-related cachexia. Open Med (Wars) 2011. [DOI: 10.2478/s11536-011-0057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe melanocortin system plays a pivotal role in the regulation of appetite and energy balance. It was recognized to play an important role in the development of cancer-related cachexia, a debilitating condition characterized by progressive body wasting associated with anorexia, increased resting energy expediture and loss of fat as well as lean body mass that cannot be simply prevented or treated by adequate nutritional support.The recent advances in understanding of mechanisms underlying cancer-related cachexia led to consequent recognition of the melanocortin system as an important potential therapeutic target. Several molecules have been made available for animal experiments, including those with oral bioavailability, that act at various checkpoints of the melanocortin system and that might confer singificant benefits for the patients suffering from cancer-related cachexia. The application of melanocortin 4 receptor antagonists/agouti-related peptide agonists has been however restricted to animal models and more pharmacological data will be necessary to progress to clinical trials on humans. Still, pharmacological targeting of the melanocortin system seem to represent an elegant and promising way of treatment of cancer-related cachexia.
Collapse
|
8
|
Mayorov AV, Cai M, Palmer ES, Tanaka DK, Cain JP, Dedek MM, Tan B, Trivedi D, Hruby VJ. Cyclic lactam hybrid α-MSH/Agouti-related protein (AGRP) analogues with nanomolar range binding affinities at the human melanocortin receptors. Bioorg Med Chem Lett 2011; 21:3099-102. [PMID: 21486697 PMCID: PMC3216836 DOI: 10.1016/j.bmcl.2011.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
Abstract
A novel hybrid melanocortin pharmacophore was designed based on the topographical similarities between the pharmacophores of Agouti related protein (AGRP) an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. When employed in two different 23-membered macrocyclic lactam peptide templates, the designed hybrid AGRP/MSH pharmacophore yielded non-competitive ligands with nanomolar range binding affinities. The topography-based pharmacophore hybridization strategy will prove useful in development of unique non-competitive melanocortin receptor modulators.
Collapse
Affiliation(s)
| | - Minying Cai
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Erin S. Palmer
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Dustin K. Tanaka
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - James P. Cain
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Matthew M. Dedek
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Bahar Tan
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Dev Trivedi
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Victor J. Hruby
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
9
|
Singh A, Wilczynski A, Holder JR, Witek RM, Dirain ML, Xiang Z, Edison AS, Haskell-Luevano C. Incorporation of a bioactive reverse-turn heterocycle into a peptide template using solid-phase synthesis to probe melanocortin receptor selectivity and ligand conformations by 2D 1H NMR. J Med Chem 2011; 54:1379-90. [PMID: 21306168 PMCID: PMC3076140 DOI: 10.1021/jm101425m] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By use of a solid-phase synthetic approach, a bioactive reverse turn heterocycle was incorporated into a cyclic peptide template to probe melanocortin receptor potency and ligand structural conformations. The five melanocortin receptor isoforms (MC1R-MC5R) are G-protein-coupled receptors (GPCRs) that are regulated by endogenous agonists and antagonists. This pathway is involved in pigmentation, weight, and energy homeostasis. Herein, we report novel analogues of the chimeric AGRP-melanocortin peptide template integrated with a small molecule moiety to probe the structural and functional consequences of the core His-Phe-Arg-Trp peptide domain using a reverse-turn heterocycle. A series of six compounds are reported that result in inactive to full agonists with nanomolar potency. Biophysical structural analysis [2D (1)H NMR and computer-assisted molecular modeling (CAMM)] were performed on selected analogues, resulting in the identification that these peptide-small molecule hybrids possessed increased flexibility and fewer discrete conformational families compared to the reference peptide and result in a novel template for further structure-function studies.
Collapse
MESH Headings
- Agouti-Related Protein/chemistry
- Amino Acid Sequence
- Animals
- HEK293 Cells
- Heterocyclic Compounds, 1-Ring/chemical synthesis
- Heterocyclic Compounds, 1-Ring/chemistry
- Heterocyclic Compounds, 1-Ring/pharmacology
- Humans
- Ligands
- Magnetic Resonance Spectroscopy
- Melanocortins/chemistry
- Mice
- Models, Molecular
- Molecular Conformation
- Molecular Sequence Data
- Oligopeptides/chemical synthesis
- Oligopeptides/chemistry
- Oligopeptides/pharmacology
- Peptide Fragments/chemical synthesis
- Peptide Fragments/chemistry
- Peptide Fragments/pharmacology
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Peptidomimetics/chemical synthesis
- Peptidomimetics/chemistry
- Peptidomimetics/pharmacology
- Protein Structure, Secondary
- Receptors, Melanocortin/agonists
- Receptors, Melanocortin/chemistry
- Stereoisomerism
- Structure-Activity Relationship
- Sulfides/chemical synthesis
- Sulfides/chemistry
- Sulfides/pharmacology
Collapse
Affiliation(s)
- Anamika Singh
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610
| | - Andrzej Wilczynski
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610
| | - Jerry R. Holder
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610
| | - Rachel M. Witek
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610
| | - Marvin L. Dirain
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610
| | - Zhimin Xiang
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida 32610
| | - Arthur S. Edison
- Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | | |
Collapse
|
10
|
Patel MP, Fabersunne CSC, Yang YK, Kaelin CB, Barsh GS, Millhauser GL. Loop-swapped chimeras of the agouti-related protein and the agouti signaling protein identify contacts required for melanocortin 1 receptor selectivity and antagonism. J Mol Biol 2010; 404:45-55. [PMID: 20831872 PMCID: PMC2972358 DOI: 10.1016/j.jmb.2010.08.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/12/2010] [Accepted: 08/30/2010] [Indexed: 11/29/2022]
Abstract
Agouti-related protein (AgRP) and agouti signaling protein (ASIP) are homologs that play critical roles in energy balance and pigmentation, respectively, by functioning as antagonistic ligands at their cognate melanocortin receptors. Signaling specificity is mediated in part through receptor binding selectivity brought about by alterations in the cysteine-rich carboxy-terminal domains of the ligands. AgRP binds with high affinity to the melanocortin 3 receptor and the melanocortin 4 receptor, but not to the melanocortin 1 receptor (MC1R), whereas ASIP binds with high affinity to all three receptors. This work explores the structural basis for receptor selectivity by studying chimeric proteins developed by interchanging loops between the cysteine-rich domain of ASIP and the cysteine-rich domain of AgRP. Binding data demonstrate that melanocortin 4 receptor responds to all chimeras and is therefore highly tolerant of gross loop changes. By contrast, MC1R responds primarily to those chimeras with a sequence close to that of wild-type ASIP. Further analysis of binding and functional data suggests that the ASIP C-terminal loop (a six-amino-acid segment closed by the final disulfide bond) is essential for high-affinity MC1R binding and inverse agonism. Comparison with previously published molecular models suggests that this loop makes contact with the first extracellular loop of MC1R through a series of key hydrophobic interactions.
Collapse
Affiliation(s)
- Mira P. Patel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | | | - Ying-kui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205
| | | | | | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| |
Collapse
|
11
|
Mayorov AV, Cai M, Palmer ES, Liu Z, Cain JP, Vagner J, Trivedi D, Hruby VJ. Solid-phase peptide head-to-side chain cyclodimerization: discovery of C(2)-symmetric cyclic lactam hybrid α-melanocyte-stimulating hormone (MSH)/agouti-signaling protein (ASIP) analogues with potent activities at the human melanocortin receptors. Peptides 2010; 31:1894-905. [PMID: 20688117 PMCID: PMC3041174 DOI: 10.1016/j.peptides.2010.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 02/05/2023]
Abstract
A novel hybrid melanocortin pharmacophore was designed based on the pharmacophores of the agouti-signaling protein (ASIP), an endogenous melanocortin antagonist, and α-melanocyte-stimulating hormone (α-MSH), an endogenous melanocortin agonist. The designed hybrid ASIP/MSH pharmacophore was explored in monomeric cyclic, and cyclodimeric templates. The monomeric cyclic disulfide series yielded peptides with hMC3R-selective non-competitive binding affinities. The direct on-resin peptide lactam cyclodimerization yielded nanomolar range (25-120 nM) hMC1R-selective full and partial agonists in the cyclodimeric lactam series which demonstrates an improvement over the previous attempts at hybridization of MSH and agouti protein sequences. The secondary structure-oriented pharmacophore hybridization strategy will prove useful in development of unique allosteric and orthosteric melanocortin receptor modulators. This report also illustrates the utility of peptide cyclodimerization for the development of novel GPCR peptide ligands.
Collapse
Affiliation(s)
| | - Minying Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Erin S. Palmer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Zhihua Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - James P. Cain
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Josef Vagner
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Dev Trivedi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| | - Victor J. Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
12
|
Structure-Activity Relationships (SAR) of Melanocortin and Agouti-Related (AGRP) Peptides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:1-18. [DOI: 10.1007/978-1-4419-6354-3_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
|
13
|
Haskell-Luevano C, Xiang Z, Wilczynski AM, Haskell KR, Andreasen AM, Litherland SA, Millard WJ, Pogozheva ID, Mosberg HI, Sorenson NB. Discovery of a Ligand that Compensates for Decreased Endogenous Agonist Potency of Melanocortin-4 Receptor Polymorphisms Identified in Obese Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:509-10. [DOI: 10.1007/978-0-387-73657-0_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|