1
|
Ma L, Luo Y, Ma YH, Lu X. Interaction between Antimicrobial Peptide CM15 and a Model Cell Membrane Affected by CM15 Terminal Amidation and the Membrane Phase State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1613-1621. [PMID: 33464910 DOI: 10.1021/acs.langmuir.0c03498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antimicrobial peptides (AMPs) have been proposed as an effective class of antimicrobial agents against microorganisms. In this work, the interaction between an antimicrobial peptide, CM15, and a negatively charged phospholipid bilayer, DPPG, was studied via sum frequency generation (SFG) vibrational spectroscopy. Two structurally correlated characteristic variables were introduced to reveal the interaction mechanism/efficiency, i.e. C-terminal amidation and temperature variation (∼20 °C, room temperature, and ∼35 °C, close to human body temperature). Experimental results indicated that owing to the increased positive charge, C-terminal amidation resulted in rapid adsorption onto the bilayer surface and efficient disruption of the outer layer, exhibiting less ordered insertion orientation. The elevated temperature (from ∼20 °C to ∼35 °C) promoted the penetration of both the outer and inner leaflets by the peptides and finally led to the disruption of the whole bilayer owing to the enhanced fluidity of the bilayer. From the perspective of the interaction mechanism, this experimental study provides two practical cues to understand the disruption process of the negatively charged model biomembranes, which can lay the structural foundation for designing and developing high-efficiency antimicrobial peptides.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yongsheng Luo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Yong-Hao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| | - Xiaolin Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu Province, P. R. China
| |
Collapse
|
2
|
Improved Stability and Activity of a Marine Peptide-N6NH2 against Edwardsiella tarda and Its Preliminary Application in Fish. Mar Drugs 2020; 18:md18120650. [PMID: 33348729 PMCID: PMC7766155 DOI: 10.3390/md18120650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Edwardsiella tarda can cause fatal gastro-/extraintestinal diseases in fish and humans. Overuse of antibiotics has led to antibiotic resistance and contamination in the environment, which highlights the need to find new antimicrobial agents. In this study, the marine peptide-N6 was amidated at its C-terminus to generate N6NH2. The antibacterial activity of N6 and N6NH2 against E. tarda was evaluated in vitro and in vivo; their stability, toxicity and mode of action were also determined. Minimal inhibitory concentrations (MICs) of N6 and N6NH2 against E. tarda were 1.29–3.2 μM. Both N6 and N6NH2 killed bacteria by destroying the cell membrane of E. tarda and binding to lipopolysaccharide (LPS) and genomic DNA. In contrast with N6, N6NH2 improved the stability toward trypsin, reduced hemolysis (by 0.19% at a concentration of 256 μg/mL) and enhanced the ability to penetrate the bacterial outer and inner membrane. In the model of fish peritonitis caused by E. tarda, superior to norfloxacin, N6NH2 improved the survival rate of fish, reduced the bacterial load on the organs, alleviated the organ injury and regulated the immunity of the liver and kidney. These data suggest that the marine peptide N6NH2 may be a candidate for novel antimicrobial agents against E. tarda infections.
Collapse
|
3
|
OctoPartenopin: Identification and Preliminary Characterization of a Novel Antimicrobial Peptide from the Suckers of Octopus vulgaris. Mar Drugs 2020; 18:md18080380. [PMID: 32717885 PMCID: PMC7460285 DOI: 10.3390/md18080380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganism resistance to conventional antibiotics represents one of the major global health concerns. This paper focuses on a peptide (OctoPartenopin) extracted from suckers of Octopus vulgaris; bioassay-guided chromatographic fractionation was used to identify this sequence, which holds significant antibacterial activity against Gram-positive and Gram-negative bacteria. OctoPartenopin is encrypted within the calponin sequence and was associated with the high levels of proteolytic activity already reported in octopus arm suckers. We synthesized the parent peptide and four analogues; all peptide were tested for their antibacterial and antibiofilm activities. Preliminary antibiofilm experiments showed that that one of the analogues had the best activity in both inhibition and eradication of biofilm of all three microorganisms tested. The occurrence of OctoPartenopin in arm suckers provided novel speculative information on animal behavior, as concerns maternal care of fertilized eggs. Our results highlight that suckers are a rich source of multifaceted peptides to develop alternative antimicrobial agents and food preservatives.
Collapse
|
4
|
Zhai Y, Wang Y, Rao N, Li J, Li X, Fang T, Zhao Y, Ge L. Activation and Biological Properties of Human β Defensin 4 in Stem Cells Derived From Human Exfoliated Deciduous Teeth. Front Physiol 2019; 10:1304. [PMID: 31695620 PMCID: PMC6817489 DOI: 10.3389/fphys.2019.01304] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Pulpitis in primary teeth, a condition caused by presence of bacteria, is highly prevalent worldwide. The use of biocompatibility materials with anti-inflammatory, anti-bacterial, and regenerative properties is critical for prognosis of this endodontic disease. This study aimed to identify expression of human β defensin 4 (HBD4) in stem cells derived from human exfoliated deciduous teeth (SHED) and characterize the effects of HBD4 on SHED. Quantitative polymerase chain reaction (qPCR) was used to detect HBD4 expression in SHED and the effect of HBD4 on inflammatory factors in lipopolysaccharide (LPS)-stimulated SHED. Affinity measurement was made by the Fortebio Octet System to explore the potential interaction between LPS and HBD4. Western blot analysis was used to explore the effect of HBD4 on mitogen-activated protein kinase (MAPK) pathway. Colony-forming unit methods and scanning electron microscopy were applied to study antimicrobial effect of HBD4 on Fusobacterium nucleatum and Porphyromonas gingivalis. Alkaline phosphatase staining, alizarin red staining, qPCR and western blot were taken to detect effects of HBD4 on osteoblast/odontoblast differentiation of SHED. RT2 Profiler PCR Array was used to explore the potential signaling pathways involved in the osteogenic/odontogenic differentiation. HBD4 was highly expressed in SHED stimulated by TNF-α and IL-1α. HBD4 could bind to LPS directly and down-regulate IL-1α, IL-1β, IL-6, TNF-α in LPS-stimulated SHED, thus the activation of MAPK pathway decreased. HBD4 was sensitive to P. gingivalis and enhanced osteoblast/odontoblast differentiation potential of SHED by modulating Notch pathway. HBD4 was highly expressed in SHED stimulated by proinflammatory cytokines, and possessed anti-inflammatory, anti-bacterial activity. HBD4 promoted osteogenic/odontogenic differentiation of SHED. HBD4 may thus represent a suitable agent for vital pulp therapy in future clinic application.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Nanquan Rao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jingzhi Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoxia Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Tengjiaozi Fang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lihong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
5
|
Valere K, Lu W, Chang TL. Key Determinants of Human α-Defensin 5 and 6 for Enhancement of HIV Infectivity. Viruses 2017; 9:E244. [PMID: 28850095 PMCID: PMC5618010 DOI: 10.3390/v9090244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/13/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Defensins are antimicrobial peptides important for mucosal innate immunity. They exhibit a broad spectrum of activity against bacteria, viruses, and fungi. Levels of α-defensins are elevated at the genital mucosa of individuals with sexually transmitted infections (STIs). Somewhat paradoxically, human α-defensin 5 and 6 (HD5 and HD6) promote human immunodeficiency virus (HIV) infectivity, and contribute to STI-mediated enhancement of HIV infection in vitro. Specific amino acid residues of HD5 and HD6 that are crucial for antimicrobial activities have been characterized previously; however, the key determinants of defensins responsible for enhancement of HIV infectivity are not known. Here, we have identified residues of HD5 and HD6 that are required for enhancement of HIV attachment and infection. Most of these residues are involved in hydrophobicity and self-association of defensins. Specifically, we found that mutant defensins L16A-HD5, E21me-HD5, L26A-HD5, Y27A-HD5, F2A-HD6, H27W-HD6, and F29A-HD6 significantly lost their ability to promote HIV attachment and infection. L29A mutation also reduced HIV infection-enhancing activity of HD5. Additionally, a number of mutations in charged residues variably affected the profile of HIV attachment and infectivity. One HD5 charged mutation, R28A, notably resulted in a 34-48% loss of enhanced HIV infectivity and attachment. These results indicate that defensin determinants that maintain high-ordered amphipathic structure are crucial for HIV enhancing activity. In a comparative analysis of the mutant defensins, we found that for some defensin mutants enhancement of HIV infectivity was associated with the reverse transcription step, suggesting a novel, HIV attachment-independent, mechanism of defensin-mediated HIV enhancement.
Collapse
Affiliation(s)
- Kimyata Valere
- Department of Microbiology and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21250, USA.
| | - Theresa L Chang
- Department of Microbiology and Molecular Genetics, Rutgers University, New Jersey Medical School, Newark, NJ 07103, USA.
- Public Health Research Institute, Rutgers University, New Jersey Medical School, 225 Warren Street, Newark, NJ 07103, USA.
| |
Collapse
|
6
|
Ericksen B. Quantification of polysaccharides fixed to Gram stained slides using lactophenol cotton blue and digital image processing. F1000Res 2015; 4:1. [PMID: 29333228 PMCID: PMC5754746 DOI: 10.12688/f1000research.5779.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 01/10/2023] Open
Abstract
Dark blue rings and circles emerged when the non-specific polysaccharide stain lactophenol cotton blue was added to Gram stained slides. The dark blue staining is attributable to the presence of capsular polysaccharides and bacterial slime associated with clumps of Gram-negative bacteria. Since all bacterial cells are glycosylated and concentrate polysaccharides from the media, the majority of cells stain light blue. The contrast between dark and light staining is sufficient to enable a digital image processing thresholding technique to be quantitative with little background noise. Prior to the addition of lactophenol cotton blue, the Gram-stained slides appeared unremarkable, lacking ubiquitous clumps or stained polysaccharides. Adding lactophenol cotton blue to Gram stained slides is a quick and inexpensive way to screen cell cultures for bacterial slime, clumps and biofilms that are invisible using the Gram stain alone.
Collapse
Affiliation(s)
- Bryan Ericksen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
7
|
Ericksen B. Quantification of polysaccharides fixed to Gram stained slides using lactophenol cotton blue and digital image processing. F1000Res 2015; 4:1. [PMID: 29333228 PMCID: PMC5754746 DOI: 10.12688/f1000research.5779.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 01/27/2025] Open
Abstract
Dark blue rings and circles emerged when the non-specific polysaccharide stain lactophenol cotton blue was added to Gram stained slides. The dark blue staining is attributable to the presence of capsular polysaccharides and bacterial slime associated with clumps of Gram-negative bacteria. Since all bacterial cells are glycosylated and concentrate polysaccharides from the media, the majority of cells stain light blue. The contrast between dark and light staining is sufficient to enable a digital image processing thresholding technique to be quantitative with little background noise. Prior to the addition of lactophenol cotton blue, the Gram-stained slides appeared unremarkable, lacking ubiquitous clumps or stained polysaccharides. Adding lactophenol cotton blue to Gram stained slides is a quick and inexpensive way to screen cell cultures for bacterial slime, clumps and biofilms that are invisible using the Gram stain alone.
Collapse
Affiliation(s)
- Bryan Ericksen
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
8
|
Abstract
Defensins are small, multifunctional cationic peptides. They typically contain six conserved cysteines whose three intramolecular disulfides stabilize a largely β-sheet structure. This review of human α-defensins begins by describing their evolution, including their likely relationship to the Big Defensins of invertebrates, and their kinship to the β-defensin peptides of many if not all vertebrates, and the θ-defensins found in certain non-human primates. We provide a short history of the search for leukocyte-derived microbicidal molecules, emphasizing the roles played by luck (good), preconceived notions (mostly bad), and proper timing (essential). The antimicrobial, antiviral, antitoxic, and binding properties of human α-defensins are summarized. The structural features of α-defensins are described extensively and their functional contributions are assessed. The properties of HD6, an enigmatic Paneth cell α-defensin, are contrasted with those of the four myeloid α-defensins (HNP1-4) and of HD5, the other α-defensin of human Paneth cells. The review ends with a decalogue that may assist researchers or students interested in α-defensins and related aspects of neutrophil function.
Collapse
Affiliation(s)
- Robert I Lehrer
- Department of Medicine and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1688, USA.
| | | |
Collapse
|
9
|
Zhao L, Ericksen B, Wu X, Zhan C, Yuan W, Li X, Pazgier M, Lu W. Invariant gly residue is important for α-defensin folding, dimerization, and function: a case study of the human neutrophil α-defensin HNP1. J Biol Chem 2012; 287:18900-12. [PMID: 22496447 DOI: 10.1074/jbc.m112.355255] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human α-defensins (HNP) are synthesized in vivo as inactive prodefensins, and contain a conserved glycine, Gly(17), which is part of a β-bulge structure. It had previously been shown that the glycine main chain torsion angles are in a D-configuration, and that d-amino acids but not L-alanine could be substituted at that position to yield correctly folded peptides without the help of a prodomain. In this study, the glycine to L-alanine mutant defensin was synthesized in the form of a prodefensin using native chemical ligation. The ligation product folded correctly and yielded an active peptide upon CNBr cleavage. The L-Ala(17)-HNP1 crystal structure depicted a β-bulge identical to wild-type HNP1. However, dimerization was perturbed, causing one monomer to tilt with respect to the other in a dimerization model. Inhibitory activity against the anthrax lethal factor showed a 2-fold reduction relative to wild-type HNP1 as measured by the inhibitory concentration IC(50). Self-association was slightly reduced, as detected by surface plasmon resonance measurements. According to the results of the virtual colony count assay, the antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus cereus exhibited a less than 2-fold reduction in virtual lethal dose values. Prodefensins with two other L-amino acid substitutions, Arg and Phe, at the same position did not fold, indicating that only small side chains are tolerable. These results further elucidate the factors governing the region of the β-bulge structure that includes Gly(17), illuminating why glycine is conserved in all mammalian α-defensins.
Collapse
Affiliation(s)
- Le Zhao
- The 1st Affiliated Hospital, Xi'an Jiaotong University School of Medicine, China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Lu W, Hong M. The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. Biochemistry 2010; 49:9770-82. [PMID: 20961099 PMCID: PMC2992833 DOI: 10.1021/bi101512j] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Defensins are cationic and disulfide-bonded host defense proteins of many animals that target microbial cell membranes. Elucidating the three-dimensional structure, dynamics, and topology of these proteins in phospholipid bilayers is important for understanding their mechanisms of action. Using solid-state nuclear magnetic resonance spectroscopy, we have now determined the conformation, dynamics, oligomeric state, and topology of a human α-defensin, HNP-1, in DMPC/DMPG bilayers. Two-dimensional correlation spectra show that membrane-bound HNP-1 exhibits a conformation similar to that of the water-soluble state, except for the turn connecting strands β2 and β3, whose side chains exhibit immobilization and conformational perturbation upon membrane binding. At high protein/lipid ratios, rapid (1)H spin diffusion from the lipid chains to the protein was observed, indicating that HNP-1 was well inserted into the hydrocarbon core of the bilayer. Arg Cζ-lipid (31)P distances indicate that only one of the four Arg residues forms tight hydrogen-bonded guanidinium-phosphate complexes. The protein is predominantly dimerized at high protein/lipid molar ratios, as shown by (19)F spin diffusion experiments. The presence of a small fraction of monomers and the shallower insertion at lower protein concentrations suggest that HNP-1 adopts concentration-dependent oligomerization and membrane-bound structure. These data strongly support a "dimer pore" topology of HNP-1 in which the polar top of the dimer lines an aqueous pore while the hydrophobic bottom faces the lipid chains. In this structure, R25 lies closest to the membrane surface among the four Arg residues. The pore does not have a high degree of lipid disorder, in contrast to the toroidal pores formed by protegrin-1, a two-stranded β-hairpin antimicrobial peptide. These results provide the first glimpse into the membrane-bound structure and mechanism of action of human α-defensins.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Chemistry, Iowa State University, Ames, IA, 50011
| | - Wuyuan Lu
- Institute of Human Virology & Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201
| | - Mei Hong
- Department of Chemistry, Iowa State University, Ames, IA, 50011
| |
Collapse
|
11
|
Sharadadevi A, Nagaraj R. A Molecular Dynamics Study of Human Defensins HBD-1 and HNP-3 in Water. J Biomol Struct Dyn 2010; 27:541-50. [DOI: 10.1080/07391102.2010.10507337] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
The effect of C-terminal amidation on the efficacy and selectivity of antimicrobial and anticancer peptides. Mol Cell Biochem 2009; 332:43-50. [PMID: 19513817 DOI: 10.1007/s11010-009-0172-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/21/2009] [Indexed: 12/26/2022]
Abstract
Cationic defence peptides show high therapeutic potential as antimicrobial and anticancer agents. Some of these peptides carry a C-terminal amide moiety which has been shown to be required for antimicrobial activity. However, whether this is a general requirement or whether C-terminal amidation is required for the anticancer activity of defence peptides is unclear. In response, this study analyses the toxicity of a series of C-terminally amidated defence peptides and their non-amidated isoforms to normal fibroblast cells, a variety of tumour cells and bacterial cells. The toxicities of these peptides to microbial and cancer cells were generally <200 microM. Peptides were either unaffected by C-terminal amidation or showed up to 10-fold decreases or increases in efficacy. However, these peptides all showed toxicity to normal fibroblast cells with levels (generally <150 microM) that were comparable to those of their antimicrobial and anticancer activities. In contrast to previous claims which have been based on analysis of single amidation events, the results of this study clearly show that the C-terminal amidation of defence peptides has a variable effect on their antimicrobial and anticancer efficacy and no clear effect on their selectivity for these cell types.
Collapse
|
13
|
Zou G, de Leeuw E, Li C, Pazgier M, Li C, Zeng P, Lu WY, Lubkowski J, Lu W. Toward Understanding the Cationicity of Defensins. J Biol Chem 2007; 282:19653-65. [PMID: 17452329 DOI: 10.1074/jbc.m611003200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human defensins are a family of small antimicrobial proteins found predominantly in leukocytes and epithelial cells that play important roles in the innate and adaptive immune defense against microbial infection. The most distinct molecular feature of defensins is cationicity, manifested by abundant Arg and/or Lys residues in their sequences. Sequence analysis indicates that Arg is strongly selected over Lys in alpha-defensins but not in beta-defensins. To understand this Arg/Lys disparity in defensins, we chemically synthesized human alpha-defensin 1 (HNP1) and several HNP1 analogs where three Arg residues were replaced by each of the following six alpha-amino acids: Lys, ornithine (Orn), diaminobutyric acid (Dab), diaminopropionic acid (Dap), N,N-dimethyl-Lys ((diMe)Lys), and homo-Arg ((homo)Arg). In addition, we prepared human beta-defensin 1 (hBD1) and (Lys-->Arg)hBD1 in which all four Lys residues were substituted for Arg. Bactericidal activity assays revealed the following. 1) Arg-containing HNP1 and (Lys-->Arg)hBD1 are functionally better than Lys-HNP1 and hBD1, respectively; the difference between Arg and Lys is more evident in the alpha-defensin than in the beta-defensin and is more evident at low salt concentrations than at high salt concentrations. 2) For HNP1, the Arg/Lys disparity is much more pronounced with Staphylococcus aureus than with Escherichia coli, and the Arg-rich HNP1 kills bacteria faster than its Lys-rich analog. 3) Arg and Lys appear to have optimal chain lengths for bacterial killing as shortening Lys or lengthening Arg in HNP1 invariably becomes functionally deleterious. Our findings provide insights into the Arg/Lys disparity in defensins, and shed light on the cationicity of defensins with respect to their antimicrobial activity and specificity.
Collapse
Affiliation(s)
- Guozhang Zou
- Institute of Human Virology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wu Z, Li X, Ericksen B, de Leeuw E, Zou G, Zeng P, Xie C, Li C, Lubkowski J, Lu WY, Lu W. Impact of pro segments on the folding and function of human neutrophil alpha-defensins. J Mol Biol 2007; 368:537-49. [PMID: 17355880 PMCID: PMC2754399 DOI: 10.1016/j.jmb.2007.02.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/26/2007] [Accepted: 02/11/2007] [Indexed: 01/15/2023]
Abstract
Human neutrophil alpha-defensins (HNPs) are synthesized in vivo as inactive precursor proteins, i.e. preproHNPs. A series of sequential proteolytic events excise the N-terminal inhibitory pro peptide, leading to defensin maturation and storage in azurophilic granules. The anionic pro peptide, required for correct sub-cellular trafficking and sorting of proHNPs, inhibits the antimicrobial activity of cationic defensins, either inter or intra-molecularly, presumably through charge neutralization. To better understand the role of the pro peptide in the folding and functioning of alpha-defensins and/or pro alpha-defensins, we chemically attached the proHNP1 pro peptide or (wt)pro peptide and the following artificial pro segments to the N terminus of HNP1: polyethylene glycol (PEG), Arg(10) (polyR), Ser(10) (polyS), and (cr)pro peptide, a charge-reversing mutant of the pro peptide where Arg/Lys residues were changed to Asp, and Asp/Glu residues to Lys. Comparative in vitro folding suggested that while all artificial pro segments chaperoned defensin folding, with PEG being the most efficient, the pro peptide catalyzed the folding of proHNPs likely through two independent mechanisms: solubilization of and interaction with the C-terminal defensin domain. Further, the N-terminal artificial pro segments dramatically altered the bactericidal activity of HNP1 against both Escherichia coli and Staphylococcus aureus. Surprisingly, (cr)pro peptide and (wt)pro peptide showed similar properties with respect to intra-molecular and inter-molecular catalysis of defensin folding as well as alpha-defensin binding, although their binding modes appeared different. Our findings identify a dual chaperone activity of the pro peptide and may shed light on the molecular mechanisms by which pro alpha-defensins fold in vivo.
Collapse
Affiliation(s)
- Zhibin Wu
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Xiangqun Li
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Bryan Ericksen
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Erik de Leeuw
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Guozhang Zou
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| | - Pengyun Zeng
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Cao Xie
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Cong Li
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Jacek Lubkowski
- Macromolecular Assembly Structure and Cell Signaling Section, NCI, National Institutes of Health, Frederick, MD 21702
| | - Wei-Yue Lu
- Fudan-PharmCo Drug Target Research Center, School of Pharmacy, Fudan University, Shanghai 200032, China
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201
| |
Collapse
|
15
|
Pazgier M, Prahl A, Hoover DM, Lubkowski J. Studies of the biological properties of human beta-defensin 1. J Biol Chem 2006; 282:1819-29. [PMID: 17071614 DOI: 10.1074/jbc.m607210200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Defensins are small (30-45 amino acid residues) cationic proteins with broad antimicrobial activity against many bacteria and fungi, some enveloped viruses, and other activities such as chemoattraction of a range of different cell types to the sites of inflammation. These proteins represent attractive targets for developing novel antimicrobial agents and modulators of immune responses with therapeutic applicability. In this report, we present the results of functional and structural studies of 26 single-site mutants of human beta-defensin 1 (hBD1). All mutants were assayed for antimicrobial activity against Escherichia coli (ATCC strain 25922) and for chemotactic activity with CCR6-transfected HEK293 cells. To analyze the structural implications of mutagenesis and to verify the correctness of the disulfide connectivity, we used x-ray crystallography to conduct complete structural studies for 10 mutants in which the topology of disulfides was the same as in the native hBD1. Mutations did not induce significant changes of the tertiary structure, suggesting that the observed alterations of biological properties of the mutants were solely associated with changes in the respective side chains. We found that cationic residues located near the C terminus (Arg(29), Lys(31), Lys(33), and Lys(36)) of hBD1 define most of the anti-E. coli in vitro activity of this protein. In turn, nearly all mutations altering the CCR6-mediated chemotaxis are located at one area of the protein, defined by the N-terminal alpha-helical region (Asp(1)... Ser(8)) and a few topologically adjacent residues (Lys(22), Arg(29), and Lys(33)). These experimental results allow for the first time drafting of the CCR6-epitope for a defensin molecule.
Collapse
Affiliation(s)
- Marzena Pazgier
- Macromolecular Crystallography Laboratory, NCI, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|