1
|
Morishita F, Horiguchi T, Akuta H, Ueki T, Imamura T. Concomitant downregulation of neuropeptide genes in a marine snail with consecutive sexual maturation after a nuclear disaster in Japan. Front Endocrinol (Lausanne) 2023; 14:1129666. [PMID: 36967776 PMCID: PMC10036341 DOI: 10.3389/fendo.2023.1129666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/07/2023] [Indexed: 03/12/2023] Open
Abstract
Consecutive sexual maturation (CSM), an abnormal reproductive phenomenon of a marine snail, Reishia clavigera, has occurred since 2017 in the vicinity of the Fukushima Daiichi Nuclear Power Plant after the nuclear disaster there. We hypothesized that alterations in animal physiology mediated through genetic/epigenetic changes could sensitively reflect environmental pollution. Understanding the mechanism of this rapid biological response should enable us to quantitatively evaluate long-lasting effects of the nuclear disaster. To determine the molecular basis for CSM, we conducted transcriptome profiling in the ganglia of normal and CSM snails. We assembled the short-read cDNA sequences obtained by Illumina sequencing, and succeeded in characterizing more than 60,000 gene models that include 88 kinds of neuropeptide precursors by BLAST search and experimental curation. GO-enrichment analysis of the differentially expressed genes demonstrated that severe downregulation of neuropeptide-related genes occurred concomitantly with CSM. In particular, significant decreases of the transcripts of 37 genes among 88 neuropeptide precursor genes, including those for myomodulin, PentaFVamide, maturation-associated peptide-5A and conopressin, were commonly observed in female and male CSM snails. By contrast, microseminoprotein precursor was the only exceptional case where the expression was increased in CSM snails. These results indicate that down-regulation of neuropeptide precursors is a remarkable feature of CSM. We also found that factors involved in epigenetic modification rather than transcription factors showed altered patterns of expression upon CSM. Comprehensive expression panels of snail neuropeptide precursors made in this study will be useful tools for environmental assessment as well as for studying marine reproductive biology.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- *Correspondence: Fumihiro Morishita, ; Takuya Imamura,
| | - Toshihiro Horiguchi
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Hiroto Akuta
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Tatsuya Ueki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuya Imamura
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- *Correspondence: Fumihiro Morishita, ; Takuya Imamura,
| |
Collapse
|
2
|
Thiel D, Bauknecht P, Jékely G, Hejnol A. A nemertean excitatory peptide/CCHamide regulates ciliary swimming in the larvae of Lineus longissimus. Front Zool 2019; 16:28. [PMID: 31333754 PMCID: PMC6617912 DOI: 10.1186/s12983-019-0326-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background The trochozoan excitatory peptide (EP) and its ortholog, the arthropod CCHamide, are neuropeptides that are only investigated in very few animal species. Previous studies on different trochozoan species focused on their physiological effect in adult specimens, demonstrating a myo-excitatory effect, often on tissues of the digestive system. The function of EP in the planktonic larvae of trochozoans has not yet been studied. Results We surveyed transcriptomes from species of various spiralian (Orthonectida, Nemertea, Brachiopoda, Entoprocta, Rotifera) and ecdysozoan taxa (Tardigrada, Onychophora, Priapulida, Loricifera, Nematomorpha) to investigate the evolution of EPs/CCHamides in protostomes. We found that the EPs of several pilidiophoran nemerteans show a characteristic difference in their C-terminus. Deorphanization of a pilidiophoran EP receptor showed, that the two splice variants of the nemertean Lineus longissimus EP activate a single receptor. We investigated the expression of EP in L. longissimus larvae and juveniles with customized antibodies and found that EP positive nerves in larvae project from the apical organ to the ciliary band and that EP is expressed more broadly in juveniles in the neuropil and the prominent longitudinal nerve cords. While exposing juvenile L. longissimus specimens to synthetic excitatory peptides did not show any obvious effect, exposure of larvae to either of the two EPs increased the beat frequency of their locomotory cilia and shifted their vertical swimming distribution in a water column upwards. Conclusion Our results show that EP/CCHamide peptides are broadly conserved in protostomes. We show that the EP increases the ciliary beat frequency of L. longissimus larvae, which shifts their vertical distribution in a water column upwards. Endogenous EP may be released at the ciliary band from the projections of apical organ EP positive neurons to regulate ciliary beating. This locomotory function of EP in L. longissimus larvae stands in contrast to the repeated association of EP/CCHamides with its myo-excitatory effect in adult trochozoans and the general association with the digestive system in many protostomes. Electronic supplementary material The online version of this article (10.1186/s12983-019-0326-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Thiel
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Philipp Bauknecht
- 2Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany
| | - Gáspár Jékely
- 2Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076 Tübingen, Germany.,3Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Andreas Hejnol
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
3
|
Ahn SJ, Martin R, Rao S, Choi MY. Neuropeptides predicted from the transcriptome analysis of the gray garden slug Deroceras reticulatum. Peptides 2017; 93:51-65. [PMID: 28502716 DOI: 10.1016/j.peptides.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 12/28/2022]
Abstract
The gray garden slug, Deroceras reticulatum (Gastropoda: Pulmonata), is one of the most common terrestrial molluscs. Research for this slug has focused mainly on its ecology, biology, and management due to the severe damage it causes on a wide range of vegetables and field crops. However, little is known about neuropeptides and hormonal signalings. This study, therefore, aimed to establish the transcriptome of D. reticulatum and to identify a comprehensive repertoire of neuropeptides in this slug. Illumina high-throughput sequencing of the whole body transcriptome of D. reticulatum generated a total of 5.9 billion raw paired-end reads. De novo assembly by Trinity resulted in 143,575 transcripts and further filtration selected 120,553 unigenes. Gene Ontology (GO) terms were assigned to 30,588 unigenes, composed of biological processes (36.9%), cellular components (30.2%) and molecular functions (32.9%). Functional annotation by BLASTx revealed 39,987 unigenes with hits, which were further categorized into important functional groups based on sequence abundance. Neuropeptides, ion channels, ribosomal proteins, G protein-coupled receptors, detoxification, immunity and cytoskeleton-related sequences were dominant among the transcripts. BLAST searches and PCR amplification were used to identify 65 putative neuropeptide precursor genes from the D. reticulatum transcriptome, which include achatin, AKH, allatostatin A, B and C, allatotropin, APGWamide, CCAP, cerebrin, conopressin, cysteine-knot protein hormones (bursicon alpha/beta and GPA2/GPB5), elevenin, FCAP, FFamide, FVamide (enterin, fulicin, MIP and PRQFVamide), GGNG, GnRH, insulin, NdWFamide, NKY, PKYMDT, PRXamide (myomodulin, pleurin and sCAP), RFamide (CCK/SK, FMRFamide, FxRIamide, LFRFamide, luqin and NPF), and tachykinin. Over 330 putative peptides were encoded by these precursors. Comparative analysis among different molluscan species clearly revealed that, while D. reticulatum neuropeptide sequences are conserved in Mollusca, there are also some unique features distinct from other members of this species. This is the first transcriptome-wide report of neuropeptides in terrestrial slugs. Our results provide comprehensive transcriptome data of the gray garden slug, with a more detailed focus on the rich repertoire of putative neuropeptide sequences, laying the foundation for molecular studies in this terrestrial slug pest.
Collapse
Affiliation(s)
- Seung-Joon Ahn
- USDA-ARS Horticultural Crops Research Unit,3420 NW Orchard Avenue, Corvallis, OR, 97330, USA; Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Ruth Martin
- USDA-ARS Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR, 97331, USA
| | - Sujaya Rao
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Man-Yeon Choi
- USDA-ARS Horticultural Crops Research Unit,3420 NW Orchard Avenue, Corvallis, OR, 97330, USA.
| |
Collapse
|
4
|
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, Bernay B, Garderes J, Kraut A, Couté Y, Henry J. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res 2015; 15:48-67. [PMID: 26632866 DOI: 10.1021/acs.jproteome.5b00463] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Valérie Cornet
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Bruno Zanuttini
- Normandy University , GREYC, UMR CNRS 6072, F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | | - Benoît Bernay
- Normandy University , F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| | - Johan Garderes
- Center for Marine Research, "Ruder Boskovic" Institute , HR-52210 Rovinj, Croatia
| | - Alexandra Kraut
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Yohan Couté
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Joël Henry
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| |
Collapse
|
5
|
Morishita F, Furukawa Y, Kodani Y, Minakata H, Horiguchi T, Matsushima O. Molecular cloning of precursors for TEP-1 and TEP-2: The GGNG peptide-related peptides of a prosobranch gastropod, Thais clavigera. Peptides 2015; 68:72-82. [PMID: 25451871 DOI: 10.1016/j.peptides.2014.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/17/2014] [Accepted: 10/17/2014] [Indexed: 11/15/2022]
Abstract
TEP (Thais excitatory peptide)-1 and TEP-2 are molluscan counterparts of annelidan GGNG-peptides, identified in a neogastropod, Thais clavigera (Morishita et al., 2006). We have cloned two cDNAs encoding TEP-1 and TEP-2 precursor protein, respectively, by the standard molecular cloning techniques. Predicted TEP-1 precursor protein consists of 161 amino acids, while predicted TEP-2 precursor protein has 118 amino acids. Only a single copy of TEP was found on the respective precursor. The semi-quantitative RT-PCR showed that expression of TEP-1 was high in sub-esophageal, pleural, pedal and visceral ganglia, while it was low in supra-esophageal ganglion. By contrast, expression level of TEP-2 was high in pedal and visceral ganglia. In situ hybridization visualized different subsets of TEP-1 and TEP-2 expressing neurons in Thais ganglia. For example, supra-esophageal ganglion contained many TEP-2 expressing neuron, but not TEP-1 expressing ones. These results suggest that expression of TEP-1 and TEP-2 is differently regulated in the Thais ganglia.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| | - Yasuo Furukawa
- Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yu Kodani
- Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Hiroyuki Minakata
- Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Osaka 618-8503, Japan
| | - Toshihiro Horiguchi
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 Japan
| | - Osamu Matsushima
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
| |
Collapse
|
6
|
Morishita F, Furukawa Y, Matsushima O, Minakata H. Regulatory actions of neuropeptides and peptide hormones on the reproduction of molluscsThe present review is one of a series of occasional review articles that have been invited by the Editors and will feature the broad range of disciplines and expertise represented in our Editorial Advisory Board. CAN J ZOOL 2010. [DOI: 10.1139/z10-041] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive success of individual animals is essential for the survival of any species. Molluscs have adapted to a wide variety of environments (freshwater, brackish water, seawater, and terrestrial habits) and have evolved unique tactics for reproduction. Both of these features attract the academic interests of scientists. Because neuropeptides and peptide hormones play critical roles in neural and neurohormonal regulation of physiological functions and behaviors in this animal group, the regulatory actions of these messengers in reproduction have been extensively investigated. In this review, we will briefly summarize how peptidergic messengers are involved in various aspects of reproduction, using some peptides such as egg-laying hormone, caudo-dorsal cell hormone, APGWamide, and gonadotropin-releasing hormone as typical examples.
Collapse
Affiliation(s)
- Fumihiro Morishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Yasuo Furukawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Osamu Matsushima
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Hiroyuki Minakata
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Laboratory of Neurobiology, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
- Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193, Japan
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| |
Collapse
|
7
|
Veenstra JA. Neurohormones and neuropeptides encoded by the genome of Lottia gigantea, with reference to other mollusks and insects. Gen Comp Endocrinol 2010; 167:86-103. [PMID: 20171220 DOI: 10.1016/j.ygcen.2010.02.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 12/23/2022]
Abstract
The Lottia gigantea genome was prospected for the presence of genes coding neuropeptides and neurohormones. Four genes code insulin-related peptides: two genes code molluscan insulin-like growth hormones, one gene an insulin very similar to vertebrate insulin, and the fourth a peptide related to drosophila insulin-like peptide 7. Four other genes encode the cysteine-knot proteins GPA2/GPB5 and bursicon/parabursicon. Another 37 genes code for precursors of the following neuropeptides: achatin, APGWamide, allatostatin C, allatotropin, buccalin (perhaps an allatostatin A homolog), cerebrin, CCAP, conopressin, elevenin (the predicted neuropeptide made by abdominal neuron 11 in Aplysia), egg laying hormone (two genes), enterin, feeding circuit activating neuropeptide (FCAP), FFamide, FMRFamide, GGNG, a GnRH-like peptide, the newly discovered LASGLVamide, LFRFamide, LFRYamide, LRNFVamide, luqin, lymnokinin, myomodulin (two genes), the newly discovered NKY, NPY, pedal peptide (three genes), PKYMDT, pleurin, PXFVamide, small cardioactive peptides, tachykinins (two genes) and WWamide (an allatostatin B homolog). One gene was found to encode FWISamide, while about 20 closely related genes were found to encode WWFamide. These small neuropeptides appear homologous to the NdWFamide, which contains d-Trp; these genes are similar to the Aplysia gene encoding NWFamide. Some of these peptides had not been previously identified from mollusks, such as the predicted hormones similar to Drosophila and vertebrate insulins, bursicon, the putative proctolin homolog PKYMDT and allatostatin C. Together with neuropeptides which are likely homologs of other insect neuropeptides, such as cerebrin and WWamide, this shows that despite significant differences the molluscan and arthropod neuropeptidomes are more similar than generally recognized.
Collapse
Affiliation(s)
- Jan A Veenstra
- Université de Bordeaux, CNRS, CNIC UMR 5228, 33400 Talence, France.
| |
Collapse
|
8
|
Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2008; 25:35-94. [PMID: 18250897 DOI: 10.1039/b701534h] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|