1
|
Nigro E, D’Arco D, Moscatelli F, Pisani A, Amicone M, Riccio E, Capuano I, Argentino F, Monda M, Messina G, Daniele A, Polito R. Increased Expression of Orexin-A in Patients Affected by Polycystic Kidney Disease. Int J Mol Sci 2024; 25:6243. [PMID: 38892431 PMCID: PMC11172798 DOI: 10.3390/ijms25116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy;
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Daniela D’Arco
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Fiorenzo Moscatelli
- Department of Human Sciences, Telematic University Pegaso, 80100 Naples, Italy;
| | - Antonio Pisani
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Maria Amicone
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Eleonora Riccio
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Ivana Capuano
- Unità di Nefrologia, Dipartimento di Sanità Pubblica, Università di Napoli “Federico II”, Via Pansini 5, 80131 Napoli, Italy; (A.P.); (M.A.); (E.R.); (I.C.)
| | - Francesca Argentino
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
| | - Marcellino Monda
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (G.M.)
| | - Giovanni Messina
- Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Dipartimento di Medicina Sperimentale, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.); (G.M.)
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate Scarl “Franco Salvatore”, Via G. Salvatore 486, 80145 Napoli, Italy; (D.D.); (F.A.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi “Federico II”, Via Pansini 5, 80131 Napoli, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
2
|
Braun A, Manavis J, Yamanaka A, Ootsuka Y, Blumbergs P, Bobrovskaya L. The role of orexin in Parkinson's disease. J Neurosci Res 2024; 102:e25322. [PMID: 38520160 DOI: 10.1002/jnr.25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Emerging evidence has implicated the orexin system in non-motor pathogenesis of Parkinson's disease. It has also been suggested the orexin system is involved in the modulation of motor control, further implicating the orexin system in Parkinson's disease. Parkinson's disease is the second most common neurodegenerative disease with millions of people suffering worldwide with motor and non-motor symptoms, significantly affecting their quality of life. Treatments are based solely on symptomatic management and no cure currently exists. The orexin system has the potential to be a treatment target in Parkinson's disease, particularly in the non-motor stage. In this review, the most current evidence on the orexin system in Parkinson's disease and its potential role in motor and non-motor symptoms of the disease is summarized. This review begins with a brief overview of Parkinson's disease, animal models of the disease, and the orexin system. This leads into discussion of the possible roles of orexin neurons in Parkinson's disease and levels of orexin in the cerebral spinal fluid and plasma in Parkinson's disease and animal models of the disease. The role of orexin is then discussed in relation to symptoms of the disease including motor control, sleep, cognitive impairment, psychological behaviors, and the gastrointestinal system. The neuroprotective effects of orexin are also summarized in preclinical models of the disease.
Collapse
Affiliation(s)
- Alisha Braun
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jim Manavis
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Youichirou Ootsuka
- College of Medicine and Public Health, Flinders Medical and Health Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Vraka K, Mytilinaios D, Katsenos AP, Serbis A, Baloyiannis S, Bellos S, Simos YV, Tzavellas NP, Konitsiotis S, Vezyraki P, Peschos D, Tsamis KI. Cellular Localization of Orexin 1 Receptor in Human Hypothalamus and Morphological Analysis of Neurons Expressing the Receptor. Biomolecules 2023; 13:592. [PMID: 37189339 PMCID: PMC10135972 DOI: 10.3390/biom13040592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The orexin system is related to food behavior, energy balance, wakefulness and the reward system. It consists of the neuropeptides orexin A and B, and their receptors, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R). OX1R has selective affinity for orexin A, and is implicated in multiple functions, such as reward, emotions, and autonomic regulation. This study provides information about the OX1R distribution in human hypothalamus. The human hypothalamus, despite its small size, demonstrates a remarkable complexity in terms of cell populations and cellular morphology. Numerous studies have focused on various neurotransmitters and neuropeptides in the hypothalamus, both in animals and humans, however, there is limited experimental data on the morphological characteristics of neurons. The immunohistochemical analysis of the human hypothalamus revealed that OX1R is mainly found in the lateral hypothalamic area, the lateral preoptic nucleus, the supraoptic nucleus, the dorsomedial nucleus, the ventromedial nucleus, and the paraventricular nucleus. The rest of the hypothalamic nuclei do not express the receptor, except for a very low number of neurons in the mammillary bodies. After identifying the nuclei and neuronal groups that were immunopositive for OX1R, a morphological and morphometric analysis of those neurons was conducted using the Golgi method. The analysis revealed that the neurons in the lateral hypothalamic area were uniform in terms of their morphological characteristics, often forming small groups of three to four neurons. A high proportion of neurons in this area (over 80%) expressed the OX1R, with particularly high expression in the lateral tuberal nucleus (over 95% of neurons). These results were analyzed, and shown to represent, at the cellular level, the distribution of OX1R, and we discuss the regulatory role of orexin A in the intra-hypothalamic areas, such as its special role in the plasticity of neurons, as well as in neuronal networks of the human hypothalamus.
Collapse
Affiliation(s)
- Konstantina Vraka
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | | | - Andreas P. Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasios Serbis
- Department of Pediatrics, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Stavros Baloyiannis
- Faculty of Medicine, School of Health Sciences, Aristotle University, 54124 Thessaloniki, Greece
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V. Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos P. Tzavellas
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, 45500 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos I. Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
4
|
Han D, Shi Y, Han F. The effects of orexin-A and orexin receptors on anxiety- and depression-related behaviors in a male rat model of post-traumatic stress disorder. J Comp Neurol 2021; 530:592-606. [PMID: 34387361 DOI: 10.1002/cne.25231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
Orexin neurons play an important role in stress-related mental disorders including post-traumatic stress disorder (PTSD). Anxiety- and depression-related symptoms commonly occur in combination with PTSD. However, the role of the orexin system in mediating alterations in these affective symptoms remains unclear. The medial prefrontal cortex (mPFC) is implicated in both cognitive and emotional processing. In the present study, we investigated anxiety- and depression-related behavioral changes using the elevated plus maze, the sucrose preference test, and the open field test in male rats with single prolonged stress (SPS) induced-PTSD. The expression of orexin-A in the hypothalamus and orexin receptors (OX1R and OX2R) in the mPFC was detected and quantified by immunohistochemistry, western blotting, and real-time polymerase chain reaction. We found that the SPS rats exhibited enhanced levels of anxiety, reduced exploratory activities, and anhedonia. Furthermore, SPS resulted in reductions in the expression of orexin-A in the hypothalamus and the increased the expression of OX1R in the mPFC. The intracerebroventricular administration of orexin-A alleviated behavioral changes in SPS rats and partly restored the increased levels of OX1R in the mPFC. These results suggest that the orexin system plays a role in the anxiety- and depression-related symptoms observed in PTSD.
Collapse
Affiliation(s)
- Dan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China.,Department of Neonatology, The First Hospital of China Medical University, Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Adeghate E, Lotfy M, D'Souza C, Alseiari SM, Alsaadi AA, Qahtan SA. Hypocretin/orexin modulates body weight and the metabolism of glucose and insulin. Diabetes Metab Res Rev 2020; 36:e3229. [PMID: 31655012 DOI: 10.1002/dmrr.3229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/16/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022]
Abstract
The hypocretin/orexin (Hcrt/orexin) unit affects the functions of the nervous, cardiovascular, gastrointestinal, and reproductive systems. Hcrt/orexin ligands and receptors have been localized to different parts of the central and peripheral nervous systems, cerebrospinal fluid and blood, exocrine (pancreas, salivary, lacrimal) as well as endocrine (pancreatic islets, pituitary, adrenal) glands. Several factors including stress, glucagon-like peptide-1 agonists, glutamate, nicotine, glucose, and hypoglycaemia stimulate the expression of Hcrt/orexin system, but it is inhibited by ageing, bone morphogenetic protein, hypoxia/hypercapnia, melanocortin receptor accessory protein 2, and glucagon. Literature reports show that Hcrt/orexin can significantly increase insulin secretion from normal and diabetic rat pancreata. Hcrt/orexin decreases blood glucose concentration and reduces insulin resistance partly via increased tissue expression of glucose transporter type 4. It reduces obesity by increasing browning of fat cells and energy expenditure. Taken together, Hcrt/orexin modulates obesity and the metabolism of glucose and insulin. The Hcrt/orexin system may thus be a target in the development of new therapies for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Lotfy
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Crystal D'Souza
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saleh Meqbel Alseiari
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulla Ali Alsaadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saif Abdo Qahtan
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
6
|
Nakashima H, Umegaki H, Yanagawa M, Komiya H, Watanabe K, Kuzuya M. Plasma orexin-A-like immunoreactivity levels and renal function in patients in a geriatric ward. Peptides 2019; 118:170092. [PMID: 31163198 DOI: 10.1016/j.peptides.2019.170092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Orexin-A is a neuropeptide mainly produced by hypothalamic neurons with functions in the central nervous system such as regulation of the sleep-wake cycle. Recent studies suggest that orexin-A also plays major roles in peripheral tissues. Although a few studies have reported a role for the kidney in the dynamics of orexin-A, little is known about the association between plasma orexin-A-like immunoreactivity (orexin-A-LI) levels and renal function. We evaluated this association, and also explored other clinical characteristics associated with plasma orexin-A-LI levels. In this cross-sectional study, we included 70 consecutive patients aged ≥65 years admitted to the geriatric ward of Nagoya University Hospital from December 2017 to January 2018. Patients taking suvorexant (an orexin receptor antagonist) were excluded. On hospital days 2-4, fasting blood was collected in the morning. We evaluated associations between plasma orexin-A-LI levels and renal function and other clinical characteristics. Renal function was evaluated in two ways: the estimated glomerular filtration rate (eGFR) using serum creatinine, and estimated creatinine clearance (eCrCl) using the Cockroft-Gault formula. Pearson's correlation coefficient revealed that plasma orexin-A-LI levels were negatively correlated with the eGFR (r = -0.351, p = 0.003) and eCrCl (r = -0.342, p = 0.004). There were no significant associations between plasma orexin-A-LI levels and the primary diagnosis, body mass index, duration of fasting, or other clinical characteristics. In conclusion, plasma orexin-A-LI levels were negatively correlated with renal function in patients in a geriatric ward. Renal function may affect the study design and data interpretation in studies of plasma orexin-A-LI.
Collapse
Affiliation(s)
- Hirotaka Nakashima
- Department of Geriatrics, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan; Centre for Community Liaison and Patient Consultations, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Madoka Yanagawa
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Hitoshi Komiya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Kazuhisa Watanabe
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Masafumi Kuzuya
- Centre for Community Liaison and Patient Consultations, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan; Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan; Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
7
|
Takahashi K, Ohba K, Kaneko K. Ubiquitous expression and multiple functions of biologically active peptides. Peptides 2015; 72:184-91. [PMID: 25868673 DOI: 10.1016/j.peptides.2015.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
Biologically active peptides are widely expressed throughout in human bodies. For example, endothelin-1 and adrenomedullin are expressed in almost all types of cells, including neurons, glial cells, fibroblasts, macrophages, cardiomyocytes, vascular endothelial cells, epithelial cells and cancer cells of various origins. Expression of both these peptides is induced by stimuli, such as hypoxia and inflammatory cytokines. They have a variety of biological functions, such as effects on brain function, hormone secretion, the cardiovascular system and cell proliferation. By contrast, orexins (hypocretins) and melanin-concentrating hormone (MCH) are specifically expressed in the hypothalamus, particularly in the lateral hypothalamus, although very low concentrations of these peptides are found in the peripheral tissues. Orexins and MCH play coordinated, but distinct physiological roles in the regulation of sleep-wake cycle, appetite, emotion and other brain functions. The cardiovascular system is regulated by cardiovascular peptides, such as natriuretic peptides, endothelins and angiotensin II. The renin-angiotensin system (RAS) is one of the most classical regulatory systems on blood pressure, electrolytes and kidney. (Pro)renin receptor is a novel member of the RAS and may be related to the pathophysiology of microvascular complications of hypertension and diabetes mellitus. Moreover, (pro)renin receptor forms a functional complex with vacuolar-type H(+)-ATPase, which plays an important physiological role in maintaining the acidic environment of intracellular compartments including secretory vesicles. Perhaps, the complex of (pro)renin receptor and vacuolar-type H(+)-ATPase may be important for the post-translational processing and secretion of many biologically active peptides.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan.
| | - Koji Ohba
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Kiriko Kaneko
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan; Department of Molecular Medical Chemistry, Iwate Medical University School of Medicine, Morioka, Iwate 020-8505, Japan
| |
Collapse
|
8
|
Li J, Hu Z, de Lecea L. The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 2014; 171:332-50. [PMID: 24102345 DOI: 10.1111/bph.12415] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 07/16/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions.
Collapse
Affiliation(s)
- Jingcheng Li
- Department of Physiology, Third Military Medical University, Chongqing, China
| | | | | |
Collapse
|
9
|
Gatta C, Russo F, Russolillo MG, Varricchio E, Paolucci M, Castaldo L, Lucini C, de Girolamo P, Cozzi B, Maruccio L. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus). PLoS One 2014; 9:e105009. [PMID: 25144456 PMCID: PMC4140726 DOI: 10.1371/journal.pone.0105009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022] Open
Abstract
This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine) of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.
Collapse
Affiliation(s)
- Claudia Gatta
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Finizia Russo
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
- * E-mail:
| | | | - Ettore Varricchio
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento (BN), Italy
| | - Luciana Castaldo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Carla Lucini
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro (PD), Italy
| | - Lucianna Maruccio
- Department of Veterinary Medicine and Animal Productions, University of Napoli “Federico II”, Napoli (NA), Italy
| |
Collapse
|
10
|
Russo F, Maruccio L, Calamo A, de Girolamo P, Varricchio E. Orexin 1 receptor in the seminiferous tubules of boar testis: an immunohistochemical study. Acta Histochem 2014; 116:286-8. [PMID: 23746541 DOI: 10.1016/j.acthis.2013.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/26/2022]
Abstract
Orexin receptor 1 (OX₁R) and orexin receptor 2 (OX₂R) are two G-protein-coupled receptors that bind their ligands, orexin A (OXA) and B (OXB), with different affinities. The male genital system represents an important target for OXA, which appears to play a role in the control of steroidogenesis and germ cell development in the testis. It is known that among domestic breeding animals, in the boar the number of Leydig cells is very high and OXA appears to have stimulatory activity on testosterone production. In this study, we aimed to evaluate the presence of OX₁R in the boar testis in order to extend our knowledge concerning the distribution and a potential functional role of the orexinergic system in the male reproductive tract of farm animals. The presence of OX₁R immunopositive cells in seminiferous tubules of the boar testis enables us to hypothesize a possible role of OXA on male germ cells cycle in pig. Further investigations, involving functional and ultrastructural analysis, may contribute to our understanding of the role of orexins in the boar genital system.
Collapse
|
11
|
Wang C, Moseley CK, Carlin SM, Wilson CM, Neelamegam R, Hooker JM. Radiosynthesis and evaluation of [11C]EMPA as a potential PET tracer for orexin 2 receptors. Bioorg Med Chem Lett 2013; 23:3389-92. [PMID: 23601709 DOI: 10.1016/j.bmcl.2013.03.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/15/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
EMPA is a selective antagonist of orexin 2 (OX2) receptors. Previous literature with [(3)H]-EMPA suggest that it may be used as an imaging agent for OX2 receptors; however, brain penetration is known to be modest. To evaluate the potential of EMPA as a PET radiotracer in non-human primate (as a step to imaging in man), we radiolabeled EMPA with carbon-11. Radiosynthesis of [(11)C]N-ethyl-2-(N-(6-methoxypyridin-3-yl)-2-methylphenylsulfonamido)-N-(pyridin-3-ylmethyl)acetamide ([(11)C]EMPA), and evaluation as a potential PET tracer for OX2 receptors is described. Synthesis of an appropriate non-radioactive O-desmethyl precursor was achieved from EMPA with sodium iodide and chlorotrimethylsilane. Selective O-methylation using [(11)C]CH3I in the presence of cesium carbonate in DMSO at room temp afforded [(11)C]EMPA in 1.5-2.5% yield (non-decay corrected relative to trapped [(11)C]CH3I at EOS) with ≥95% chemical and radiochemical purities. The total synthesis time was 34-36min from EOB. Studies in rodent suggested that uptake in tissue was dominated by nonspecific binding. However, [(11)C]EMPA also showed poor uptake in both rats and baboon as measured with PET imaging.
Collapse
Affiliation(s)
- Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street, Suite 2301, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
12
|
Adeghate E. Orexins: tissue localization, functions, and its relation to insulin secretion and diabetes mellitus. VITAMINS AND HORMONES 2012; 89:111-33. [PMID: 22640611 DOI: 10.1016/b978-0-12-394623-2.00007-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Orexins play a role in many biological functions include sleep, feeding, and energy balance. They also regulate circadian rhythms and the way that we feel pain. Orexins have been identified in a variety of tissues including the cerebrospinal fluid, blood, hypothalamus, spinal cord, sensory ganglion, enteric nervous system, pituitary, adrenal, salivary and lacrimal glands, testis, vestibular gland, and skin. Orexins play a role in a variety of biological functions including arousal, sleeping, food and fluid intake, pain, memory, perception of odor, and sexual activity. Orexins have also been implicated in the regulation of glucose metabolism. The expression of orexin is induced by hypoglycemia, low food, pregnancy, and hemodialysis. In contrast, factors that inhibit the expression of orexins include obstructive sleep apnea, aging, depression, obesity, traumatic brain injury, and inflammatory molecules such as liposaccharide. In conclusion, orexins are widely distributed and involved in a large variety of biological activities.
Collapse
Affiliation(s)
- Ernest Adeghate
- Department of Anatomy, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
13
|
Abstract
OBJECTIVES To examine the pattern of distribution and effect of orexin B in the islets of normal and diabetic rats. METHODS Pancreatic tissue fragments collected from normal and diabetic (4 weeks after the onset of diabetes) rats were either processed for immunohistochemistry or treated with different concentrations (10 to 10 mol/L) of orexin B. RESULTS Orexin B-positive nerves were observed in the wall of blood vessels of both normal and diabetic rat pancreas. Orexin B is abundant in the islets of normal rats and colocalized with insulin in β cells. The number of orexin B-positive cells decreased after the onset of diabetes. Orexin B evoked significant (P<0.05) increases in insulin release from the pancreas of normal and diabetic rats. Propranolol, a β-adrenergic receptor antagonist, significantly (P<0.04) reduced the stimulatory effect of orexin B on insulin secretion. Orexin B also induced significant (P<0.05) increases in glucagon release from the pancreas of normal rats but failed to stimulate glucagon secretion from the pancreas of diabetic rats. CONCLUSIONS Orexin B stimulated insulin secretion in normal and diabetic rat pancreas through the β-adrenergic pathway. Orexin B may have an important role in the regulation of islet function.
Collapse
|
14
|
Shoji I, Hirose T, Mori N, Hiraishi K, Kato I, Shibasaki A, Yamamoto H, Ohba K, Kaneko K, Morimoto R, Satoh F, Kohzuki M, Totsune K, Takahashi K. Expression of kisspeptins and kisspeptin receptor in the kidney of chronic renal failure rats. Peptides 2010; 31:1920-5. [PMID: 20621140 DOI: 10.1016/j.peptides.2010.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 07/04/2010] [Accepted: 07/04/2010] [Indexed: 02/07/2023]
Abstract
Kisspeptins are biologically active cleavage peptides of the KiSS-1 gene products with important roles in the suppression of tumor metastasis and in the reproduction. The aim of the present study is to clarify changes of the expression of kisspeptins and kisspeptin receptor in the kidney with and without chronic renal impairment. 5/6 nephrectomized rats were used as the rat model of chronic renal failure. Competitive quantitative RT-PCR showed that kisspeptin mRNA levels were decreased in the kidney of 5/6 nephrectomized rats at 56 days compared with sham-operated rats. In contrast, immunoreactive kisspeptin concentrations were increased in the kidney of 5/6 nephrectomized rats at 56 days. On the other hand, kisspeptin receptor mRNA levels were increased in the kidney of 5/6 nephrectomized rats at 14 and 56 days compared with sham-operated rats. Immunocytochemistry showed that kisspeptins and kisspeptin receptor were expressed in renal tubular cells, collecting duct cells, vascular smooth muscle cells in both rats. The intensity of kisspeptin receptor immunostaining was lower in 5/6 nephrectomized rats than in sham-operated rats. Western blot analysis confirmed that kisspeptin receptor protein levels were significantly decreased in the remnant kidney of 5/6 nephrectomized rats (about 23% of sham-operated rats), which is a good contrast to the kisspeptin receptor mRNA expression. The present study has shown that expression of kisspeptins and kisspeptin receptor are altered in the kidney tissues of chronic renal impairment, raising the possibility of their pathophysiological roles in chronic renal failure.
Collapse
Affiliation(s)
- Itaru Shoji
- Department of Endocrinology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Takahashi K, Hirose T, Mori N, Morimoto R, Kohzuki M, Imai Y, Totsune K. The renin-angiotensin system, adrenomedullins and urotensin II in the kidney: possible renoprotection via the kidney peptide systems. Peptides 2009; 30:1575-85. [PMID: 19477209 DOI: 10.1016/j.peptides.2009.05.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 05/18/2009] [Accepted: 05/18/2009] [Indexed: 01/29/2023]
Abstract
The incidence of chronic kidney disease, such as diabetic nephropathy, is increasing throughout the world. Many biologically active peptides play important roles in the kidney. The classical example is the renin-angiotensin system (RAS). Angiotensin II plays critical roles in the progression of chronic kidney disease through its vasoconstrictor action, stimulatory action on cell proliferation, and reactive oxygen-generating activity. A renin inhibitor, aliskiren, has recently been shown to be a clinically effective drug to reduce proteinuria in patients with diabetic nephropathy. (Pro)renin receptor, a specific receptor for renin and prorenin, was newly identified as a member of the RAS. When bound to prorenin, (pro)renin receptor activates the angiotensin I-generating activity of prorenin in the absence of cleavage of the prosegment, and directly stimulates the pathway of mitogen-activated protein kinase independently from the RAS. The kidney peptides that antagonize the intrarenal RAS may have renoprotective actions. Adrenomedullins, potent vasodilator peptides, have been shown to have renoprotective actions. On the other hand, urotensin II, a potent vasoconstrictor peptide, may promote the renal dysfunction in chronic kidney disease together with the renal RAS. Thus, in addition to the renin inhibitor and (pro)renin receptor, adrenomedullins and urotensin II may be novel targets to develop therapeutic strategies against chronic kidney disease.
Collapse
Affiliation(s)
- Kazuhiro Takahashi
- Department of Endocrinology and Applied Medical Science, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Orexin A (OXA) and orexin B were originally isolated as hypothalamic peptides regulating sleep, wakefulness and feeding. However, growing evidence suggests that orexins have major functions also in the peripheral tissues. Central orexigenic pathways originating from medulla activate the hypothalamus-pituitary axis and can influence the sympathetic tone. Orexins and their receptors are widely dispersed throughout the intestine, where orexin receptors are regulated by the nutritional status, affect insulin secretion and intestinal motility. Although the primary source of the peptide has not been elucidated, OXA is detected in plasma and its level varies in response to the metabolic state. In this review, we focus on the current knowledge on peripheral functions of orexins and discuss possible endocrine, paracrine and neurocrine roles.
Collapse
Affiliation(s)
- M V Heinonen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland
| | | | | | | |
Collapse
|