1
|
Coelho-Junior HJ, Calvani R, Tosato M, Russo A, Landi F, Picca A, Marzetti E. Associations between hypertension and cognitive, mood, and behavioral parameters in very old adults: results from the IlSIRENTE study. Front Public Health 2024; 11:1268983. [PMID: 38533244 PMCID: PMC10964923 DOI: 10.3389/fpubh.2023.1268983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/11/2023] [Indexed: 03/28/2024] Open
Abstract
Introduction Studies on the associations between hypertension-related parameters and cognitive function, mood, and behavioral symptoms in older adults have produced mixed findings. A possible explanation for these divergent results is that investigations have not adequately adjusted their analyses according to the use of angiotensin-converting enzyme inhibitors (ACEIs). Therefore, the present study examined the cross-sectional associations between hypertension-related parameters, ACEI use, and cognitive function, mood, and behavioral symptoms in very old adults. Methods This study was conducted by analyzing the IlSIRENTE database, a prospective cohort study that collected data on all individuals aged 80 years and older residing in the Sirente geographic area (n = 364). Blood pressure (BP) was assessed after 20 to 40 min of rest, while participants sat in an upright position. Drugs were coded according to the Anatomical Therapeutic and Chemical codes. Cognitive function, mood, and behavioral symptoms were recorded using the Minimum Data Set Home Care instrument. Blood inflammatory markers were measured. Results Hypertension-related parameters were significantly associated with many cognitive, mood, and behavioral parameters after adjustment for covariates. However, only the inverse association between hypertension and lesser problems with short-term memory remained significant. Participants with hypertension had lower blood concentrations of inflammatory markers in comparison to their normotensive peers. Conclusion Findings from the present study indicate that high BP values are associated with fewer complaints about memory problems in very old adults. Furthermore, a lower concentration of inflammatory markers was found in hypertensive participants. ACEI use might affect this scenario.
Collapse
Affiliation(s)
- Helio José Coelho-Junior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Andrea Russo
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
2
|
Gong S, Deng F. Renin-angiotensin system: The underlying mechanisms and promising therapeutical target for depression and anxiety. Front Immunol 2023; 13:1053136. [PMID: 36761172 PMCID: PMC9902382 DOI: 10.3389/fimmu.2022.1053136] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 01/26/2023] Open
Abstract
Emotional disorders, including depression and anxiety, contribute considerably to morbidity across the world. Depression is a serious condition and is projected to be the top contributor to the global burden of disease by 2030. The role of the renin-angiotensin system (RAS) in hypertension and emotional disorders is well established. Evidence points to an association between elevated RAS activity and depression and anxiety, partly through the induction of neuroinflammation, stress, and oxidative stress. Therefore, blocking the RAS provides a theoretical basis for future treatment of anxiety and depression. The evidence for the positive effects of RAS blockers on depression and anxiety is reviewed, aiming to provide a promising target for novel anxiolytic and antidepressant medications and/or for improving the efficacy of currently available medications used for the treatment of anxiety and depression, which independent of blood pressure management.
Collapse
Affiliation(s)
| | - Fang Deng
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Huang ZS, Xie DQ, Xu LJ, Huang CS, Zheng M, Chen YJ, Cao Y. Tetramethylpyrazine Ameliorates Lipopolysaccharide-Induced Sepsis in Rats via Protecting Blood-Brain Barrier, Impairing Inflammation and Nitrous Oxide Systems. Front Pharmacol 2020; 11:562084. [PMID: 33123008 PMCID: PMC7566283 DOI: 10.3389/fphar.2020.562084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to assess the underlying impact of Tetramethylpyrazine (TMP), which is the main activity compound of Ligusticum chuanxiong Hort, on the blood–brain barrier, inflammatory and nitrous oxide systems in a rat model of lipopolysaccharide (LPS)-induced sepsis. The SD rats were divided into control group, LPS treatment group, and LPS + TMP treatment group. TMP administered by tail vein injection. The mortality of experimental rats was recorded during the experiment. Rats were sacrificed after 14 days. Peripheral blood was collected and the expression levels of inflammatory factors TNF-α, IL-1β, and IL-6 were detected by ELISA. The integrity of blood-brain barrier was detected by sodium fluorescein staining. Lung and brain tissues were taken to detect the infiltration of immune cells. Immunohistochemistry was performed to detect the expression of tight junctions related proteins and oxidative stress-related proteins. The results showed that TMP treatment for 14 days significantly decreased the weight loss and increased the survival rate of the septic rats significantly. TMP decreased the infiltration of inflammatory cells and alleviated the sepsis-induced damage in both the lung and brain tissues. The inflammatory cytokines TNF-α, IL-1β, and IL-6, were significantly decreased post-TMP treatment. Histopathological analysis with sodium fluorescein staining density showed that TMP had a protective effect on the basal lamina and cerebral cortex. Also, TMP significantly increased expression of the tight junction-related proteins claudin-5 and occludin in the brain tissue and increased the expression of the ZO-1, Occludin, and Claudin-5 genes, indicating alleviated the degree of blood–brain barrier destruction. Furthermore, immunohistochemistry (IHC) and immunoblotting confirmed that TMP could inhibit the indicators of the nitrous oxide system, iNOS and eNOS; in addition, TMP significantly decreased the levels of MDA and NO. The findings showed that TMP treatment during sepsis was associated with the protection of the blood–brain barrier and the suppression of inflammatory reactions and the nitrous oxide system. This study reveals a promising protective role of TMP in septic encephalopathy and may suggest a therapeutic approach for fighting the deadly disease of sepsis in the clinic.
Collapse
Affiliation(s)
- Zi-Sheng Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Da-Qi Xie
- Department of Cardiology, Ningbo Ninth Hospital, Ningbo, China
| | - Li-Jun Xu
- Ophthalmology Operating Room, Ningbo First Hospital, Ningbo, China
| | - Chang-Shun Huang
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Min Zheng
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yi-Jun Chen
- Department of Anesthesiology, Ningbo First Hospital, Ningbo, China
| | - Yin Cao
- Department of Anesthesiology, Ningbo Ninth Hospital, Ningbo, China
| |
Collapse
|
4
|
Klein P, Friedman A, Hameed MQ, Kaminski RM, Bar-Klein G, Klitgaard H, Koepp M, Jozwiak S, Prince DA, Rotenberg A, Twyman R, Vezzani A, Wong M, Löscher W. Repurposed molecules for antiepileptogenesis: Missing an opportunity to prevent epilepsy? Epilepsia 2020; 61:359-386. [PMID: 32196665 PMCID: PMC8317585 DOI: 10.1111/epi.16450] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Prevention of epilepsy is a great unmet need. Acute central nervous system (CNS) insults such as traumatic brain injury (TBI), cerebrovascular accidents (CVA), and CNS infections account for 15%-20% of all epilepsy. Following TBI and CVA, there is a latency of days to years before epilepsy develops. This allows treatment to prevent or modify postinjury epilepsy. No such treatment exists. In animal models of acquired epilepsy, a number of medications in clinical use for diverse indications have been shown to have antiepileptogenic or disease-modifying effects, including medications with excellent side effect profiles. These include atorvastatin, ceftriaxone, losartan, isoflurane, N-acetylcysteine, and the antiseizure medications levetiracetam, brivaracetam, topiramate, gabapentin, pregabalin, vigabatrin, and eslicarbazepine acetate. In addition, there are preclinical antiepileptogenic data for anakinra, rapamycin, fingolimod, and erythropoietin, although these medications have potential for more serious side effects. However, except for vigabatrin, there have been almost no translation studies to prevent or modify epilepsy using these potentially "repurposable" medications. We may be missing an opportunity to develop preventive treatment for epilepsy by not evaluating these medications clinically. One reason for the lack of translation studies is that the preclinical data for most of these medications are disparate in terms of types of injury, models within different injury type, dosing, injury-treatment initiation latencies, treatment duration, and epilepsy outcome evaluation mode and duration. This makes it difficult to compare the relative strength of antiepileptogenic evidence across the molecules, and difficult to determine which drug(s) would be the best to evaluate clinically. Furthermore, most preclinical antiepileptogenic studies lack information needed for translation, such as dose-blood level relationship, brain target engagement, and dose-response, and many use treatment parameters that cannot be applied clinically, for example, treatment initiation before or at the time of injury and dosing higher than tolerated human equivalent dosing. Here, we review animal and human antiepileptogenic evidence for these medications. We highlight the gaps in our knowledge for each molecule that need to be filled in order to consider clinical translation, and we suggest a platform of preclinical antiepileptogenesis evaluation of potentially repurposable molecules or their combinations going forward.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, Maryland
| | - Alon Friedman
- Departments of Physiology and Cell Biology, and Brain and Cognitive Science, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Departments of Medical Neuroscience and Brain Repair Center, Dalhousie University, Halifax, Canada
| | - Mustafa Q. Hameed
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafal M. Kaminski
- Neurosymptomatic Domains Section, Roche Pharma Research & Early Development, Roche Innovation Center, Basel, Switzerland
| | - Guy Bar-Klein
- McKusick-Nathans Institute of Genetic Medicine, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Henrik Klitgaard
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l’Alleud, Belgium
| | - Mathias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Sergiusz Jozwiak
- Department of Pediatric Neurology, Warsaw Medical University, Warsaw, Poland
| | - David A. Prince
- Neurology and the Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Scientific Institute for Research and Health Care, Milan, Italy
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
5
|
Abareshi A, Anaeigoudari A, Norouzi F, Marefati N, Beheshti F, Saeedjalali M, Hosseini M. The effects of captopril on lipopolysaccharide-induced sickness behaviors in rats. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:199-205. [PMID: 31737228 PMCID: PMC6828174 DOI: 10.30466/vrf.2018.90760.2198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/20/2018] [Indexed: 11/24/2022]
Abstract
Neuro-immune mediators play an important role in the development of sickness behaviors. In the present study, the effect of captopril on sickness behaviors caused by lipopolysaccharide (LPS) was studied in the rats. The animals were randomized into the following groups: control, sham, 10 mg kg-1 captopril - LPS (Capto 10-LPS), 50 mg kg-1 captopril - LPS (Capto 50-LPS), and 100 mg kg-1 captopril - LPS (Capto 100-LPS). Behavioral tests including open-field (OF), elevated plus maze (EPM) and forced swimming (FS) test were performed, and the serum level of interleukin-6 (IL-6) was assessed. In OF, the number of crossings in the central zone in Capto 10-LPS, Capto 50-LPS, and Capto 100-LPS groups was higher than that of the sham group. In EPM, the open arm entry numbers in the sham group were lower compared to the control group. Furthermore, pretreatment by captopril increased the entries to the open arms. In FS test, the immobility time of the sham group was longer than that of the control group. In Capto 10-LPS, Capto 50-LPS, and Capto 100-LPS groups, immobility was shorter compared to the sham group. In addition, the IL-6 level was higher in the sham group compared to the control group, and treatment with 50 and 100 mg kg-1 of captopril restored the IL-6 level in comparison with the sham group. Results confirmed that pretreatment with captopril ameliorated LPS-caused sickness behaviors and attenuated IL-6 as an inflammatory marker in the rats.
Collapse
Affiliation(s)
- Azam Abareshi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Akbar Anaeigoudari
- Department of Physiology,School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran;
| | - Fatemeh Norouzi
- Department of Physiology, Esfarayen Faculty of Medical Sciences, Esfarayen, Iran;
| | - Narges Marefati
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran;
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran;
| | - Mohsen Saeedjalali
- Department of Electrical Engineering, Faculty of Montazeri, Khorasan Branch, Technical and Vocational University (TVU), Mashhad, Iran.
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| |
Collapse
|
6
|
Vasin MV. Comments on the mechanisms of action of radiation protective agents: basis components and their polyvalence. SPRINGERPLUS 2014; 3:414. [PMID: 25133093 PMCID: PMC4132458 DOI: 10.1186/2193-1801-3-414] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/31/2014] [Indexed: 12/18/2022]
Abstract
Purpose These comments suggest a division of radiation protective agents on the grounds of their mechanism of action that increase the radio resistance of an organism. Conclusion Given below is the division of radiation protective agents on the basis of their mechanism of action into 3 groups: 1) Radiation protective agents, with the implementation of radiation protective action taking place at the cellular level in the course of rapidly proceeding radiation-chemical reactions. At the same time, when the ionizing radiation energy is absorbed, these agents partially neutralize the “oxygen effect” as a radiobiological phenomenon, especially in the radiolysis of DNA; 2) Radiation protective agents that exert their effect at the system level by accelerating the post-radiation recovery of radiosensitive tissues through activation of a number of pro-inflammatory signaling pathways and an increase in the secretion of hematopoietic growth factors, including their use as mitigators in the early period after irradiation prior to the clinical development of acute radiation syndrome (ARS). 3) Radiomodulators including drugs and nutritional supplements that can elevate the resistance of the organism to adverse environmental factors, including exposure to ionization by means of modulating the gene expression through a hormetic effect of small doses of stressors and a “substrate” maintenance of adaptive changes, resulting in an increased antioxidant protection of the organism. Radiation protective agents having polyvalence in implementation of their action may simultaneously induce radioprotective effect by various routes with a prevalence of basis mechanisms of the action.
Collapse
Affiliation(s)
- Mikhail V Vasin
- Department of Medicine of Catastrophe, Russian Medical Academy of Post-Graduate Education, St. Polikarpova 10, 125284 Moscow, Russia
| |
Collapse
|
7
|
Benicky J, Sánchez-Lemus E, Honda M, Pang T, Orecna M, Wang J, Leng Y, Chuang DM, Saavedra JM. Angiotensin II AT1 receptor blockade ameliorates brain inflammation. Neuropsychopharmacology 2011; 36:857-70. [PMID: 21150913 PMCID: PMC3055735 DOI: 10.1038/npp.2010.225] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/28/2010] [Accepted: 11/12/2010] [Indexed: 11/09/2022]
Abstract
Brain inflammation has a critical role in the pathophysiology of brain diseases of high prevalence and economic impact, such as major depression, schizophrenia, post-traumatic stress disorder, Parkinson's and Alzheimer's disease, and traumatic brain injury. Our results demonstrate that systemic administration of the centrally acting angiotensin II AT(1) receptor blocker (ARB) candesartan to normotensive rats decreases the acute brain inflammatory response to administration of the bacterial endotoxin lipopolysaccharide (LPS), a model of brain inflammation. The broad anti-inflammatory effects of candesartan were seen across the entire inflammatory cascade, including decreased production and release to the circulation of centrally acting proinflammatory cytokines, repression of nuclear transcription factors activation in the brain, reduction of gene expression of brain proinflammatory cytokines, cytokine and prostanoid receptors, adhesion molecules, proinflammatory inducible enzymes, and reduced microglia activation. These effects are widespread, occurring not only in well-known brain target areas for circulating proinflammatory factors and LPS, that is, hypothalamic paraventricular nucleus and the subfornical organ, but also in the prefrontal cortex, hippocampus, and amygdala. Candesartan reduced the associated anorexic effects, and ameliorated associated body weight loss and anxiety. Direct anti-inflammatory effects of candesartan were also documented in cultured rat microglia, cerebellar granule cells, and cerebral microvascular endothelial cells. ARBs are widely used in the treatment of hypertension and stroke, and their anti-inflammatory effects contribute to reduce renal and cardiac failure. Our results indicate that these compounds may offer a novel and safe therapeutic approach for the treatment of brain disorders.
Collapse
Affiliation(s)
- Julius Benicky
- Section on Pharmacology, Division of Intramural Research Programs, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sánchez-Lemus E, Benicky J, Pavel J, Larrayoz IM, Zhou J, Baliova M, Nishioku T, Saavedra JM. Angiotensin II AT1 blockade reduces the lipopolysaccharide-induced innate immune response in rat spleen. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1376-84. [PMID: 19225144 DOI: 10.1152/ajpregu.90962.2008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ANG II AT(1) receptor blockade reduces inflammation in hypertension. To determine whether ANG II AT(1) receptor blockers (ARBs) influence the innate immune inflammatory response in normotensive rats, we studied rat plasma and spleen after a 3-day subcutaneous pretreatment with the ARB candesartan followed by a single dose of the bacterial endotoxin LPS (50 microg/kg ip). Peripheral administration of LPS to rodents produced a generalized inflammatory response with increased release of TNF-alpha, IL-1beta, and IL-6 into the circulation. Candesartan pretreatment reduced the LPS-induced release of TNF-alpha, IL-1beta, and IL-6 into the circulation. The red pulp of rat spleen expressed large numbers of AT(1) receptors and the LPS receptors Toll-like receptor 4 and CD14. Candesartan administration significantly blocked AT(1) receptors. The ARB reduced the LPS-induced upregulation of CD14 gene expression; expression of TNF-alpha and IL-6 mRNA and protein; expression of IL-1beta and IkappaB-alpha mRNA; COX-2 mRNA and protein expression and PGE(2) concentration; inducible nitric oxide synthase (iNOS) gene and protein expression and iNOS activity; and Nox2 gene expression and 8-isoprostane levels. In addition, candesartan reduced the CD14 protein expression in saline- and LPS-treated rats. Our results suggest that AT(1) receptors are essential for the development of the full innate immune response to bacterial endotoxin. The ARB decreased the general peripheral inflammatory reaction to LPS and partially decreased the inflammatory response in the spleen. An unrestricted innate immune response to the bacterial endotoxin may have deleterious effects for the organism and may lead to development of chronic inflammatory disease. We postulate that ARBs may have therapeutic effects on inflammatory conditions.
Collapse
Affiliation(s)
- Enrique Sánchez-Lemus
- Section on Pharmacology, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kolachala VL, Bajaj R, Wang L, Yan Y, Ritzenthaler JD, Gewirtz AT, Roman J, Merlin D, Sitaraman SV. Epithelial-derived fibronectin expression, signaling, and function in intestinal inflammation. J Biol Chem 2007; 282:32965-73. [PMID: 17855340 DOI: 10.1074/jbc.m704388200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibronectin (FN) is a multifunctional extracellular matrix protein that plays an important role in cell proliferation, adhesion, and migration. FN expression or its role in colitis is not known. The goal of this study is to characterize FN expression, regulation, and role during intestinal inflammation. Wild-type and transgenic mice expressing luciferase under the control of the human FN promoter, given water or 3% dextran sodium sulfate, were used as animal models of colitis. The Caco2-BBE model intestinal epithelial cell line was used for in vitro studies. FN protein is abundantly expressed by surface epithelial cells in the normal colon. Immunohistochemistry and luciferase assay in mice expressing the FN promoter linked to luciferase demonstrated that FN synthesis was up-regulated during colitis, during both the acute phase and the healing phase. In vitro experiments demonstrated that FN increased the expression of the FN integrin receptor alpha5beta1 in a dose- and time-dependent manner. FN also induced the expression and activation of NF-kappaB. Further, FN potentiated Caco2-BBE cell attachment and wound healing, which was inhibited by RGD peptide as well as NF-kappaB inhibitors MG-132 and 1-pyrrolidinecarbodithioic acid, ammonium salt. In conclusion, FN is abundantly expressed and synthesized by colonic epithelial cells. FN is transcriptionally up-regulated in epithelial cells during both the dextran sodium sulfate-induced colitic and the recovery phase. FN enhances cell attachment and wound healing, which is dependent on binding to the integrin receptor and the NF-kappaB signaling. Together our data show that epithelial-derived FN potentiates cell attachment and wound healing through epithelial-matrix interactions and that FN expression may have important implications for maintaining normal epithelial integrity as well as regulating epithelial response to injury during colitis.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Department of Medicine, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|