1
|
Hervin V, Roy V, Agrofoglio LA. Antibiotics and Antibiotic Resistance-Mur Ligases as an Antibacterial Target. Molecules 2023; 28:8076. [PMID: 38138566 PMCID: PMC10745416 DOI: 10.3390/molecules28248076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of Multidrug Resistance (MDR) strains of bacteria has accelerated the search for new antibacterials. The specific bacterial peptidoglycan biosynthetic pathway represents opportunities for the development of novel antibacterial agents. Among the enzymes involved, Mur ligases, described herein, and especially the amide ligases MurC-F are key targets for the discovery of multi-inhibitors, as they share common active sites and structural features.
Collapse
Affiliation(s)
| | - Vincent Roy
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| | - Luigi A. Agrofoglio
- ICOA UMR CNRS 7311, Université d’Orléans et CNRS, Rue de Chartres, 45067 Orléans, France;
| |
Collapse
|
2
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Azam MA, Jupudi S. MurD inhibitors as antibacterial agents: a review. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Shan L, Wenling Q, Mauro P, Stefano B. Antibacterial Agents Targeting the Bacterial Cell Wall. Curr Med Chem 2020; 27:2902-2926. [PMID: 32003656 DOI: 10.2174/0929867327666200128103653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 11/22/2022]
Abstract
The introduction of antibiotics to treat bacterial infections either by killing or blocking their growth has been accompanied by the studies of mechanism that allows the drugs to kill the bacteria or to stop their proliferation. In such a scenario, the emergence of antibacterial agents active on the bacterial cell wall has been of fundamental importance in the fight against bacterial agents responsible for severe diseases. As a matter of fact, the cell wall, which plays many roles during the lifecycle, is an essential constituent of most bacteria. This overview focuses on the intracellular steps of peptidoglycan biosynthesis and the research of new antibacterial agents based on the enzymes involved in these early steps of the formation of cell membrane components.
Collapse
Affiliation(s)
- Li Shan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Qin Wenling
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, China
| | - Panunzio Mauro
- Isof-CNR Chemistry Department, Via Selmi, 2, 40126 Bologna, Italy
| | - Biondi Stefano
- BioVersys AG, C/o Technologiepark Basel, Hochbergerstrasse 60c, CH- 4057 Basel, Switzerland
| |
Collapse
|
5
|
't Hart P, Wood TM, Tehrani KHME, van Harten RM, Śleszyńska M, Rentero Rebollo I, Hendrickx APA, Willems RJL, Breukink E, Martin NI. De novo identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria. Chem Sci 2017; 8:7991-7997. [PMID: 29568446 PMCID: PMC5853558 DOI: 10.1039/c7sc03413j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid II binding lipopeptides discovered via bicyclic peptide phage display exhibit promising antibacterial activity.
Creative strategies for identifying new antibiotics are essential to addressing the looming threat of a post-antibiotic era. We here report the use of a targeted peptide phage display screen as a means of generating novel antimicrobial lipopeptides. Specifically, a library of phage displayed bicyclic peptides was screened against a biomolecular target based on the bacterial cell wall precursor lipid II. In doing so we identified unique lipid II binding peptides that upon lipidation were found to be active against a range of Gram-positive bacteria including clinically relevant strains of vancomycin resistant bacteria. Optimization of the peptide sequence led to variants with enhanced antibacterial activity and reduced hemolytic activity. Biochemical experiments further confirm a lipid II mediated mode of action for these new-to-nature antibacterial lipopeptides.
Collapse
Affiliation(s)
- Peter 't Hart
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Thomas M Wood
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Kamaleddin Haj Mohammad Ebrahim Tehrani
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Roel M van Harten
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Małgorzata Śleszyńska
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| | - Inmaculada Rentero Rebollo
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Antoni P A Hendrickx
- Department of Medical Microbiology , University Medical Center , Utrecht , The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology , University Medical Center , Utrecht , The Netherlands
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics Group , Department of Chemistry , Utrecht University , The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , Universiteitsweg 99 , 3584 CG Utrecht , The Netherlands .
| |
Collapse
|
6
|
Pham VH, Maaroufi H, Levesque RC, Lapointe J. Cyclic peptides identified by phage display are competitive inhibitors of the tRNA-dependent amidotransferase of Helicobacter pylori. Peptides 2016; 79:8-15. [PMID: 26976271 DOI: 10.1016/j.peptides.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
In Helicobacter pylori, the heterotrimeric tRNA-dependent amidotransferase (GatCAB) is essential for protein biosynthesis because it catalyzes the conversion of misacylated Glu-tRNA(Gln) and Asp-tRNA(Asn) into Gln-tRNA(Gln) and Asn-tRNA(Asn), respectively. In this study, we used a phage library to identify peptide inhibitors of GatCAB. A library displaying loop-constrained heptapeptides was used to screen for phages binding to the purified GatCAB. To optimize the probability of obtaining competitive inhibitors of GatCAB with respect to its substrate Glu-tRNA(Gln), we used that purified substrate in the biopanning process of the phage-display technique to elute phages bound to GatCAB at the third round of the biopanning process. Among the eluted phages, we identified several that encode cyclic peptides rich in Trp and Pro that inhibit H. pylori GatCAB in vitro. Peptides P10 and P9 were shown to be competitive inhibitors of GatCAB with respect to its substrate Glu-tRNA(Gln), with Ki values of 126 and 392μM, respectively. The docking models revealed that the Trp residues of these peptides form π-π stacking interactions with Tyr81 of the synthetase active site, as does the 3'-terminal A76 of tRNA, supporting their competitive behavior with respect to Glu-tRNA(Gln) in the transamidation reaction. These peptides can be used as scaffolds in the search for novel antibiotics against the pathogenic bacteria that require GatCAB for Gln-tRNA(Gln) and/or Asn-tRNA(Asn) formation.
Collapse
Affiliation(s)
- Van Hau Pham
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada; The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec G1V 0A6, Canada.
| | - Halim Maaroufi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Roger C Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada; Département de Biologie Médicale, Faculté de Médicine, Université Laval, Québec G1V 0A6, Canada
| | - Jacques Lapointe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec G1V 0A6, Canada; Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada; The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec G1V 0A6, Canada.
| |
Collapse
|
7
|
Tomašić T, Kovač A, Simčič M, Blanot D, Grdadolnik SG, Gobec S, Kikelj D, Peterlin Mašič L. Novel 2-thioxothiazolidin-4-one inhibitors of bacterial MurD ligase targeting d-Glu- and diphosphate-binding sites. Eur J Med Chem 2011; 46:3964-75. [DOI: 10.1016/j.ejmech.2011.05.070] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/11/2011] [Accepted: 05/28/2011] [Indexed: 12/27/2022]
|
8
|
Tomašić T, Zidar N, Šink R, Kovač A, Blanot D, Contreras-Martel C, Dessen A, Müller-Premru M, Zega A, Gobec S, Kikelj D, Peterlin Mašič L. Structure-Based Design of a New Series of d-Glutamic Acid Based Inhibitors of Bacterial UDP-N-acetylmuramoyl-l-alanine:d-glutamate Ligase (MurD). J Med Chem 2011; 54:4600-10. [DOI: 10.1021/jm2002525] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tihomir Tomašić
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Roman Šink
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Kovač
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Didier Blanot
- Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Université Paris-Sud, 91405 Orsay, France
| | | | | | - Manica Müller-Premru
- Medical Faculty, Institute of Microbiology and Immunology, University of Ljubljana, 1105 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
9
|
Second-generation sulfonamide inhibitors of D-glutamic acid-adding enzyme: activity optimisation with conformationally rigid analogues of D-glutamic acid. Eur J Med Chem 2011; 46:2880-94. [PMID: 21524830 DOI: 10.1016/j.ejmech.2011.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/24/2011] [Accepted: 04/03/2011] [Indexed: 01/06/2023]
Abstract
D-Glutamic acid-adding enzyme (MurD) catalyses the essential addition of d-glutamic acid to the cytoplasmic peptidoglycan precursor UDP-N-acetylmuramoyl-l-alanine, and as such it represents an important antibacterial drug-discovery target enzyme. Based on a series of naphthalene-N-sulfonyl-d-Glu derivatives synthesised recently, we synthesised two series of new, optimised sulfonamide inhibitors of MurD that incorporate rigidified mimetics of d-Glu. The compounds that contained either constrained d-Glu or related rigid d-Glu mimetics showed significantly better inhibitory activities than the parent compounds, thereby confirming the advantage of molecular rigidisation in the design of MurD inhibitors. The binding modes of the best inhibitors were examined with high-resolution NMR spectroscopy and X-ray crystallography. We have solved a new crystal structure of the complex of MurD with an inhibitor bearing a 4-aminocyclohexane-1,3-dicarboxyl moiety. These data provide an additional step towards the development of sulfonamide inhibitors with potential antibacterial activities.
Collapse
|
10
|
Gautam A, Vyas R, Tewari R. Peptidoglycan biosynthesis machinery: a rich source of drug targets. Crit Rev Biotechnol 2010; 31:295-336. [PMID: 21091161 DOI: 10.3109/07388551.2010.525498] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.
Collapse
Affiliation(s)
- Ankur Gautam
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
11
|
Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv 2010; 28:849-58. [PMID: 20659548 DOI: 10.1016/j.biotechadv.2010.07.004] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Revised: 06/27/2010] [Accepted: 07/08/2010] [Indexed: 12/17/2022]
Abstract
Phage display is the technology that allows expression of exogenous (poly)peptides on the surface of phage particles. The concept is simple in principle: a library of phage particles expressing a wide diversity of peptides is used to select those that bind the desired target. The filamentous phage M13 is the most commonly used vector to create random peptide display libraries. Several methods including recombinant techniques have been developed to increase the diversity of the library. On the other extreme, libraries with various biases can be created for specific purposes. For instance, when the sequence of the peptide that binds the target is known, its affinity and selectivity can be increased by screening libraries created with limited mutagenesis of the peptide. Phage libraries are screened for binding to synthetic or native targets. The initial screening of library by basic biopanning has been extended to column chromatography including negative screening and competition between selected phage clones to identify high affinity ligands with greater target specificity. The rapid isolation of specific ligands by phage display is advantageous in many applications including selection of inhibitors for the active and allosteric sites of the enzymes, receptor agonists and antagonists, and G-protein binding modulatory peptides. Phage display has been used in epitope mapping and analysis of protein-protein interactions. The specific ligands isolated from phage libraries can be used in therapeutic target validation, drug design and vaccine development. Phage display can also be used in conjunction with other methods. The past innovations and those to come promise a bright future for this field.
Collapse
Affiliation(s)
- Jyoti Pande
- Department of Medicine, HSC 4N41 McMaster Univ, Hamilton, ON, Canada
| | | | | |
Collapse
|
12
|
Hoffmann S, Funke SA, Wiesehan K, Moedder S, Glück JM, Feuerstein S, Gerdts M, Mötter J, Willbold D. Competitively selected protein ligands pay their increase in specificity by a decrease in affinity. MOLECULAR BIOSYSTEMS 2009; 6:126-33. [PMID: 20024074 DOI: 10.1039/b910945e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein-ligand interactions characterise and govern the current state and fate of a living cell. The specificity of proteins is mainly determined by the relative affinities to each potential ligand. To investigate the consequences and potentials of ligands with increased specificity in comparison with ligands optimised solely for affinity, it was necessary to identify ligands that are optimised towards specificity instead of a barely optimised affinity to a given target. In the presented example, a modified phage display screening procedure yielded specific ligands for the LckSH3 domain. We found that increased specificity of one of the hereby obtained ligands for LckSH3 is achieved at the cost of a slightly reduced affinity to LckSH3 and a drastically reduced affinity to other SH3 domains. A surface plasmon resonance experiment simulating in vivo-like realistic competitive binding conditions exerted enhanced binding behaviour of the specific ligand under these binding conditions. The experimental data, together with a mathematical model describing the complex experimental situation, and theoretical considerations lead to the conclusion that increased specificity is achieved at the cost of reduced affinity, but after all, it pays if the ligand is applied under realistic, i.e. competitive, conditions.
Collapse
Affiliation(s)
- Silke Hoffmann
- ISB-3, Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Paradis-Bleau C, Lloyd A, Sanschagrin F, Maaroufi H, Clarke T, Blewett A, Dowson C, Roper DI, Bugg TDH, Levesque RC. Pseudomonas aeruginosa MurE amide ligase: enzyme kinetics and peptide inhibitor. Biochem J 2009; 421:263-72. [PMID: 19400768 DOI: 10.1042/bj20081395] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The enzyme kinetics of the amide ligase MurE, a cell wall biosynthesis enzyme, from Pseudomonas aeruginosa were determined using the synthesized nucleotide substrate UDP-MurNAc-Ala-Glu (uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamate). When coupled to a competitive bio-panning technique using a M13 phage display library encoding approximately 2.7 x 10(9) random peptide permutations and the specific substrates meso-A2pm (meso-diaminopimelic acid) and ATP, a peptide inhibitor of MurE was identified. The MurEp1 dodecamer selected and synthesized inhibited MurE ATPase activity with an IC(50) value of 500 microM. The inhibition was shown to be time-dependent and was reversed by the addition of meso-A2pm or UDP-MurNAc-Ala-Glu during the pre-incubation step. Kinetic analysis defined MurEp1 as a mixed inhibitor against both substrates with K(i) values of 160 and 80 microM respectively. MurEp1 was found to interfere in meso-A2pm and UDP-MurNAc-Ala-Glu binding necessary for amide bond formation. Modelling of Ps. aeruginosa MurE and docking of MurEp1 on the Ps. aeruginosa MurE surface indicated that MurEp1 binds at the juxtaposition of both meso-A2pm- and UDP-MurNAc-Ala-Glu-binding sites in the closed conformational state of the enzyme. Identification of the MurEp1 residues involved in MurE binding and inhibition will allow the development of a novel class of inhibitors having a novel mode of action against MurE.
Collapse
Affiliation(s)
- Catherine Paradis-Bleau
- Institut de Biologie Intégrative et des Systèmes (IBIS) et Centre de Recherche FQRNT PROTEO, Département de Biologie Médicale, Université Laval, Sainte-Foy, Québec G1K7P4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Paradis-Bleau C, Lloyd A, Sanschagrin F, Clarke T, Blewett A, Bugg TDH, Levesque RC. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF. BMC BIOCHEMISTRY 2008; 9:33. [PMID: 19099588 PMCID: PMC2626591 DOI: 10.1186/1471-2091-9-33] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/19/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND To develop antibacterial agents having novel modes of action against bacterial cell wall biosynthesis, we targeted the essential MurF enzyme of the antibiotic resistant pathogen Pseudomonas aeruginosa. MurF catalyzes the formation of a peptide bond between D-Alanyl-D-Alanine (D-Ala-D-Ala) and the cell wall precursor uridine 5'-diphosphoryl N-acetylmuramoyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid (UDP-MurNAc-Ala-Glu-meso-A2pm) with the concomitant hydrolysis of ATP to ADP and inorganic phosphate, yielding UDP-N-acetylmuramyl-pentapeptide. As MurF acts on a dipeptide, we exploited a phage display approach to identify peptide ligands having high binding affinities for the enzyme. RESULTS Screening of a phage display 12-mer library using purified P. aeruginosa MurF yielded to the identification of the MurFp1 peptide. The MurF substrate UDP-MurNAc-Ala-Glumeso-A2pm was synthesized and used to develop a sensitive spectrophotometric assay to quantify MurF kinetics and inhibition. MurFp1 acted as a weak, time-dependent inhibitor of MurF activity but was a potent inhibitor when MurF was pre-incubated with UDP-MurNAc-Ala-Glu-meso-A2pm or ATP. In contrast, adding the substrate D-Ala-D-Ala during the pre-incubation nullified the inhibition. The IC50 value of MurFp1 was evaluated at 250 microM, and the Ki was established at 420 microM with respect to the mixed type of inhibition against D-Ala-D-Ala. CONCLUSION MurFp1 exerts its inhibitory action by interfering with the utilization of D-Ala-D-Ala by the MurF amide ligase enzyme. We propose that MurFp1 exploits UDP-MurNAc-Ala-Glu-meso-A2pm-induced structural changes for better interaction with the enzyme. We present the first peptide inhibitor of MurF, an enzyme that should be exploited as a target for antimicrobial drug development.
Collapse
|
15
|
Humljan J, Kotnik M, Contreras-Martel C, Blanot D, Urleb U, Dessen A, Šolmajer T, Gobec S. Novel Naphthalene-N-sulfonyl-d-glutamic Acid Derivatives as Inhibitors of MurD, a Key Peptidoglycan Biosynthesis Enzyme,. J Med Chem 2008; 51:7486-94. [DOI: 10.1021/jm800762u] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Humljan
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Miha Kotnik
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Carlos Contreras-Martel
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Didier Blanot
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Uroš Urleb
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Andréa Dessen
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tom Šolmajer
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Drug Discovery, Lek Pharmaceuticals d.d., Verovškova 57, 1526 Ljubljana, Slovenia, Laboratoire des Protéines Membranaires, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS, UJF, UMR5075, 41 Rue Jules Horowitz, F-38027 Grenoble, France, Enveloppes Bactériennes et Antibiotiques, IBBMC, UMR 8619 CNRS, Univ Paris-Sud, 91405 Orsay, France, and Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
16
|
Bratkovič T, Lunder M, Urleb U, Štrukelj B. Peptide inhibitors of MurD and MurE, essential enzymes of bacterial cell wall biosynthesis. J Basic Microbiol 2008; 48:202-6. [DOI: 10.1002/jobm.200700133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:168-207. [PMID: 18266853 DOI: 10.1111/j.1574-6976.2008.00104.x] [Citation(s) in RCA: 503] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The biosynthesis of bacterial cell wall peptidoglycan is a complex process that involves enzyme reactions that take place in the cytoplasm (synthesis of the nucleotide precursors) and on the inner side (synthesis of lipid-linked intermediates) and outer side (polymerization reactions) of the cytoplasmic membrane. This review deals with the cytoplasmic steps of peptidoglycan biosynthesis, which can be divided into four sets of reactions that lead to the syntheses of (1) UDP-N-acetylglucosamine from fructose 6-phosphate, (2) UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine, (3) UDP-N-acetylmuramyl-pentapeptide from UDP-N-acetylmuramic acid and (4) D-glutamic acid and dipeptide D-alanyl-D-alanine. Recent data concerning the different enzymes involved are presented. Moreover, special attention is given to (1) the chemical and enzymatic synthesis of the nucleotide precursor substrates that are not commercially available and (2) the search for specific inhibitors that could act as antibacterial compounds.
Collapse
Affiliation(s)
- Hélène Barreteau
- Laboratoire des Enveloppes Bactériennes et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Univ Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
18
|
Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54. [PMID: 17123658 PMCID: PMC1847402 DOI: 10.1016/j.addr.2006.09.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 01/17/2023]
Abstract
Recognition of molecular diversity of cell surface proteomes in disease is essential for the development of targeted therapies. Progress in targeted therapeutics requires establishing effective approaches for high-throughput identification of agents specific for clinically relevant cell surface markers. Over the past decade, a number of platform strategies have been developed to screen polypeptide libraries for ligands targeting receptors selectively expressed in the context of various cell surface proteomes. Streamlined procedures for identification of ligand-receptor pairs that could serve as targets in disease diagnosis, profiling, imaging and therapy have relied on the display technologies, in which polypeptides with desired binding profiles can be serially selected, in a process called biopanning, based on their physical linkage with the encoding nucleic acid. These technologies include virus/phage display, cell display, ribosomal display, mRNA display and covalent DNA display (CDT), with phage display being by far the most utilized. The scope of this review is the recent advancements in the display technologies with a particular emphasis on molecular mapping of cell surface proteomes with peptide phage display. Prospective applications of targeted compounds derived from display libraries in the discovery of targeted drugs and gene therapy vectors are discussed.
Collapse
Affiliation(s)
- Anna Sergeeva
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Mikhail G. Kolonin
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Jeffrey J. Molldrem
- Department of Blood and Marrow Transplantation, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Renata Pasqualini
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Wadih Arap
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77030, USA
| |
Collapse
|
19
|
Molina-López J, Sanschagrin F, Levesque RC. A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: the first committed step in peptidoglycan biosynthesis. Peptides 2006; 27:3115-21. [PMID: 17030076 DOI: 10.1016/j.peptides.2006.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 10/24/2022]
Abstract
The MurA enzyme from Pseudomonas aeruginosa was purified to homogeneity and found to be biologically active as a UDP-N-acetylglucosamine (UNAG) enolpyruvyl transferase in a coupled enzyme assay where ATPase activity was measured by the release of inorganic phosphate. A microtiter plate assay coupled to competitive biopanning using the UDP-N-acetylglucosamine was used to screen 10(9) C-7-C and 12-mers peptides from phage display libraries. From 60 phage-encoded peptides identified after the fourth round of biopanning, deduced amino acid sequences were aligned and two peptides were synthesized and tested for inhibition of the MurA-catalyzed reaction. The PEP 1354 peptide inhibited the ATPase activity of MurA with an IC(50) value of 200muM and was found to be a competitive inhibitor of UNAG. The pre-incubation of MurA with inhibitor indicated a time-independent inhibition. This time-dependent inhibition is the first report of peptide inhibitors of MurA, which represent the scaffold for the synthesis of inhibitory peptidomimetic molecules.
Collapse
Affiliation(s)
- José Molina-López
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| | | | | |
Collapse
|