1
|
Sheppard PAS, Chandramohan D, Lumsden A, Vellone D, Denley MCS, Srivastava DP, Choleris E. Social memory in female mice is rapidly modulated by 17β-estradiol through ERK and Akt modulation of synapse formation. Proc Natl Acad Sci U S A 2023; 120:e2300191120. [PMID: 37490537 PMCID: PMC10400940 DOI: 10.1073/pnas.2300191120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/25/2023] [Indexed: 07/27/2023] Open
Abstract
Social memory is essential to the functioning of a social animal within a group. Estrogens can affect social memory too quickly for classical genomic mechanisms. Previously, 17β-estradiol (E2) rapidly facilitated short-term social memory and increased nascent synapse formation, these synapses being potentiated following neuronal activity. However, what mechanisms underlie and coordinate the rapid facilitation of social memory and synaptogenesis are unclear. Here, the necessity of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K) signaling for rapid facilitation of short-term social memory and synaptogenesis was tested. Mice performed a short-term social memory task or were used as task-naïve controls. ERK and PI3K pathway inhibitors were infused intradorsal hippocampally 5 min before E2 infusion. Forty minutes following intrahippocampal E2 or vehicle administration, tissues were collected for quantification of glutamatergic synapse number in the CA1. Dorsal hippocampal E2 rapid facilitation of short-term social memory depended upon ERK and PI3K pathways. E2 increased glutamatergic synapse number (bassoon puncta positive for GluA1) in task-performing mice but decreased synapse number in task-naïve mice. Critically, ERK signaling was required for synapse formation/elimination in task-performing and task-naïve mice, whereas PI3K inhibition blocked synapse formation only in task-performing mice. While ERK and PI3K are both required for E2 facilitation of short-term social memory and synapse formation, only ERK is required for synapse elimination. This demonstrates previously unknown, bidirectional, rapid actions of E2 on brain and behavior and underscores the importance of estrogen signaling in the brain to social behavior.
Collapse
Affiliation(s)
- Paul A. S. Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Deepthi Chandramohan
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, LondonWC2R 2LS, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Alanna Lumsden
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Daniella Vellone
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, LondonWC2R 2LS, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, LondonWC2R 2LS, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
2
|
Li J, Li Y, Duan W, Zhao Z, Yang L, Wei W, Li J, Li Y, Yu Y, Dai B, Guo R. Shugan granule contributes to the improvement of depression-like behaviors in chronic restraint stress-stimulated rats by altering gut microbiota. CNS Neurosci Ther 2022; 28:1409-1424. [PMID: 35713215 PMCID: PMC9344086 DOI: 10.1111/cns.13881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Aim The investigation aims to evaluate the potential effect of Shugan Granule (SGKL) on the gut, brain, and behaviors in rats exposed to chronic restraint stress (CRS). Methods The fecal microbiota and metabolite changes were studied in rats exposed to CRS and treated with SGKL (0.1 mg/kg/day). Depressive behaviors of these rats were determined through an open‐field experiment, forced swimming test, sucrose preference, and weighing. Moreover, LPS‐stimulated microglia and CRS‐stimulated rats were treated with SGKL to investigate the regulation between SGKL and the PI3K/Akt/pathway, which is inhibited by LY294002, a PI3K inhibitor. Results (i) SGKL improved the altered behaviors in CRS‐stimulated rats; (ii) SGKL ameliorated the CRS‐induced neuronal degeneration and tangled nerve fiber and also contributed to the recovery of intestinal barrier injury in these rats; (iii) SGKL inhibited the hippocampus elevations of TNF‐α, IL‐1β, and IL‐6 in response to CRS modeling; (iv) based on the principal coordinates analysis (PCoA), SGKL altered α‐diversity indices and shifted β‐diversity in CRS‐stimulated rats; (v) at the genus level, SGKL decreased the CRS‐enhanced abundance of Bacteroides; (vi) Butyricimonas and Candidatus Arthromitus were enriched in SGKL‐treated rats; (vii) altered gut microbiota and metabolites were correlated with behaviors, inflammation, and PI3K/Akt/mTOR pathway; (viii) SGKL increased the LPS‐decreased phosphorylation of the PI3K/Akt/mTOR pathway in microglia and inhibited the LPS‐induced microglial activation; (ix) PI3K/Akt/mTOR pathway inactivation reversed the SGKL effects in CRS rats. Conclusion SGKL targets the PI3K/Akt/mTOR pathway by altering gut microbiota and metabolites, which ameliorates altered behavior and inflammation in the hippocampus.
Collapse
Affiliation(s)
- Junnan Li
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yannan Li
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhe Duan
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Zhonghui Zhao
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Lixuan Yang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wei
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Jingchun Li
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yao Yu
- Beijing Changping Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Baoan Dai
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Rongjuan Guo
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Fabbrin SB, Girardi BA, de Lorena Wendel A, Coelho Ilha Valin C, Pillat MM, Viero FT, Mello CF, Rubin MA. Spermidine-induced improvement of memory consolidation involves PI3K/Akt signaling pathway. Brain Res Bull 2020; 164:208-213. [PMID: 32858125 DOI: 10.1016/j.brainresbull.2020.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 01/23/2023]
Abstract
Spermidine (SPD) is an endogenous polyamine that plays a facilitatory role in memory acquisition and consolidation. Memory consolidation occurs immediately after learning and again around 3-6 hours later. Current evidence indicates that the polyamine binding site at the NMDA receptor (NMDAr) mediates the effects of SPD on memory. While NMDAr activation increases brain-derived neurotrophic factor (BDNF) release, no study has investigated whether BDNF-activated signaling pathways, such as the phosphatidylinositol 3-kinase (PI3K)/Akt pathway play a role in SPD-induced improvement of memory consolidation. Therefore, the aim of the current study was to evaluate whether the TrkB receptor and the PI3K/Akt pathway are involved in the facilitatory effect of SPD on memory consolidation. Male Wistar rats were trained in the contextual conditioned fear task. SPD, ANA-12 (TrkB antagonist), and LY294002 (PI3K inhibitor) were administered immediately after training. The animals were tested 24 h after training. We found that SPD improved fear memory consolidation and that both ANA-12 and LY294002 prevented the facilitatory effect of SPD on memory. These results suggest that SPD-induced improvement of memory consolidation involves the activation of the TrkB receptor and PI3K/Akt pathway.
Collapse
Affiliation(s)
- Shaiana Beck Fabbrin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Bruna Amanda Girardi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Arithane de Lorena Wendel
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carolina Coelho Ilha Valin
- School of Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Micheli Mainardi Pillat
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Maribel Antonello Rubin
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil; Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
4
|
Ghanbari A, Moradi Kor N, Rashidy-Pour A. Bombesin-induced enhancement of memory consolidation in male and female rat pups: Role of glutamatergic and dopaminergic systems. Neuropeptides 2018; 70:101-106. [PMID: 29880391 DOI: 10.1016/j.npep.2018.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/18/2018] [Accepted: 05/30/2018] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that the neuropeptide bombesin (BBS) enhances consolidation of specifically for inhibitory avoidance memory in adult rats. However, its effect on memory consolidation during premature period is not clear as well. Thus, this study evaluated the effect of BBS and its interaction with glutamatergic and dopaminergic systems on memory consolidation in rat pups. Male and female rat pups (30 days old) were trained in an inhibitory avoidance (IA) task (0.5 mA, 3 s footshock). Memory retention was tested 24 h later during which the latency to re-enter to the shock compartment was recorded. First, the effects of different doses (0.001, 0.0025, 0.005, 0.01 and 0.02 mg/kg) of BBS injected immediately following training were tested. Then, the effect of the most effective dose of BBS obtained in the previous experiment was examined in the presence of the glutamate NMDA receptor antagonist MK-801 (0.05 mg/kg), the dopamine D1 receptor antagonist SCH-23390 (0.05 mg/kg) and the dopamine D2 receptor antagonist sulpiride (20 mg/kg). Findings indicate that BBS significantly enhances memory consolidation at all tested doses in male pups and at a dose of 0.01 mg/kg in female pups. MK-801, SCH-23390 and sulpiride administration before BBS injection in individual groups significantly blocked BBS-induced memory enhancement. Our findings indicate that similar to adult rats, BBS enhances memory consolidation in developing rat. This enhancing effect is mediated, at least in part, via an interaction with glutamatergic and dopaminergic systems.
Collapse
Affiliation(s)
- Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Nasroallah Moradi Kor
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee and Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Research Center of Physiology, Department of Physiology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
5
|
Hashimoto M, Hossain S, Katakura M, Mamun AA, Shido O. Docosahexaenoic Acid Helps to Lessen Extinction Memory in Rats. Molecules 2018; 23:molecules23020451. [PMID: 29463009 PMCID: PMC6017742 DOI: 10.3390/molecules23020451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 11/16/2022] Open
Abstract
Abstract: Memory extinction is referred to as a learning process in which a conditioned response (CR) progressively reduces over time as an animal learns to uncouple a response from a stimulus. Extinction occurs when the rat is placed into a context without shock after training. Docosahexaenoic acid (DHA, C22:6, n-3) is implicated in memory formation in mammalian brains. In a two-way active shuttle-avoidance apparatus, we examined whether DHA affects the extinction memory and the expression of brain cognition-related proteins, including gastrin-releasing peptide receptor (GRPR), brain-derived neurotrophic factor receptor (BDNFR) tyrosine kinase receptor B (TrKB), and N-methyl-d-aspartate receptor (NMDAR) subunits NR2A and NR2B. Also, the protein levels of GRP, BDNF, postsynaptic density protein-95 (PSD-95), and vesicular acetylcholine transporter (VAChT), and the antioxidative potentials, in terms of lipid peroxide (LPO) and reactive oxygen species (ROS), were examined in the hippocampus. During the acquisition phase, the rats received a conditioned stimulus (CS-tone) paired with an unconditioned stimulus (UCS foot shock) for three consecutive days (Sessions S1, S2, and S3, each consisting of 30-trials) after 12 weeks of oral administration of DHA. After a three-day interval, the rats were re-subjected to two extinction sessions (S4, S5), each comprising 30 trials of CS alone. During the acquisition training in S1, the shock-related avoidance frequency (acquisition memory) was significantly higher in the DHA-administered rats compared with the control rats. The avoidance frequency, however, decreased with successive acquisition trainings in sessions S2 and S3. When the rats were subjected to the extinction sessions after a break for consolidation, the conditioned response (CR) was also significantly higher in the DHA-administered rats. Interestingly, the freezing responses (frequency and time) also significantly decreased in the DHA-administered rats, thus suggesting that a higher coping capacity was present during fear stress in the DHA-administered rats. DHA treatments increased the mRNA levels of GRPR, BDNF receptor TrKB, and NMDAR subunit NR2B. DHA also increased the protein levels of GRP, BDNF, PSD-95, and VAChT, and the antioxidative potentials in the hippocampus. These results suggest the usefulness of DHA for treating stress disorders.
Collapse
Affiliation(s)
- Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Shahdat Hossain
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
- Department of Biochemistry & Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh.
| | - Masanori Katakura
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Abdullah Al Mamun
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| | - Osamu Shido
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
6
|
Petry FS, Dornelles AS, Lichtenfels M, Valiati FE, de Farias CB, Schwartsmann G, Parent MB, Roesler R. Histone deacetylase inhibition prevents the impairing effects of hippocampal gastrin-releasing peptide receptor antagonism on memory consolidation and extinction. Behav Brain Res 2016; 307:46-53. [PMID: 27025446 DOI: 10.1016/j.bbr.2016.03.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 12/12/2022]
Abstract
Hippocampal gastrin-releasing peptide receptors (GRPR) regulate memory formation and extinction, and disturbances in GRPR signaling may contribute to cognitive impairment associated with neurodevelopmental disorders. Histone acetylation is an important epigenetic mechanism that regulates gene expression involved in memory formation, and histone deacetylase inhibitors (HDACis) rescue memory deficits in several models. The present study determined whether inhibiting histone deacetylation would prevent memory impairments produced by GRPR blockade in the hippocampus. Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or the HDACi sodium butyrate (NaB) shortly before inhibitory avoidance (IA) training, followed by an infusion of either SAL or the selective GRPR antagonist RC-3095 immediately after training. In a second experiment, the infusions were administered before and after a retention test trial that served as extinction training. As expected, RC-3095 significantly impaired consolidation and extinction of IA memory. More importantly, pretraining administration of NaB, at a dose that had no effect when given alone, prevented the effects of RC-3095. In addition, the combination of NaB and RC-3095 increased hippocampal levels of the brain-derived neurotrophic factor (BDNF). These findings indicate that HDAC inhibition can protect against memory impairment caused by GRPR blockade.
Collapse
Affiliation(s)
- Fernanda S Petry
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Arethuza S Dornelles
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Martina Lichtenfels
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda E Valiati
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Gilberto Schwartsmann
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Internal Medicine, Faculty of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marise B Parent
- Neuroscience Institute and Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Li E, Deng H, Wang B, Fu W, You Y, Tian S. Apelin-13 exerts antidepressant-like and recognition memory improving activities in stressed rats. Eur Neuropsychopharmacol 2016; 26:420-30. [PMID: 26853763 DOI: 10.1016/j.euroneuro.2016.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/23/2015] [Accepted: 01/23/2016] [Indexed: 01/23/2023]
Abstract
Apelin is the endogenous ligand for the G-protein-coupled receptor (APJ). The localization of APJ in limbic structures suggests a potential role for apelin in emotional processes. However, the role of apelin in the regulation of stress-induced responses such as depression and memory impairment is largely unknown. In the present study, we evaluated the role of apelin-13 in the regulation of stress-induced depression and memory impairment in rats. We report that repeated intracerebroventricular injections of apelin-13 reversed behavioral despair (immobility) in the forced swim (FS) test, a model widely used for the selection of new antidepressant agents. Apelin-13 also reversed behavioral deficits (escape failure) in the learned helplessness test. The magnitude of the antiimmobility and anti-escape failure effects of apelin-13 was comparable to that of imipramine, a classic antidepressant used as a positive control. Rats exposed to FS stress showed memory performance impairment in the novel object recognition test, and this impairment was improved by apelin-13 treatment. Apelin-13 did not affect recognition memory performance in non-stressed rats. Furthermore, the pretreatment of LY294002 (PI3K inhibitors) or PD98059 (ERK1/2 inhibitor) blocked apelin-13-mediated activities in FS-stressed rats. These findings suggest that apelin-13 exerts antidepressant-like and recognition memory improving activities through activating PI3K and ERK1/2 signaling pathways in stressed rats.
Collapse
Affiliation(s)
- E Li
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China
| | - Haifeng Deng
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China
| | - Bo Wang
- Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Department of Anesthesiology, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Wan Fu
- Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Department of Neurology, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yong You
- Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Department of Neurology, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Shaowen Tian
- Department of Physiology, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China; Institute of Neuroscience, College of Medicine, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
8
|
Roesler R, Reolon GK, Maurmann N, Schwartsmann G, Schröder N, Amaral OB, Valvassori S, Quevedo J. A phosphodiesterase 4-controlled switch between memory extinction and strengthening in the hippocampus. Front Behav Neurosci 2014; 8:91. [PMID: 24672454 PMCID: PMC3955942 DOI: 10.3389/fnbeh.2014.00091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/02/2014] [Indexed: 11/13/2022] Open
Abstract
Established fear-related memories can undergo phenomena such as extinction or reconsolidation when recalled. Extinction probably involves the creation of a new, competing memory trace that decreases fear expression, whereas reconsolidation can mediate memory maintenance, updating, or strengthening. The factors determining whether retrieval will initiate extinction, reconsolidation, or neither of these two processes include training intensity, duration of the retrieval session, and age of the memory. However, previous studies have not shown that the same behavioral protocol can be used to induce either extinction or reconsolidation and strengthening, depending on the pharmacological intervention used. Here we show that, within an experiment that leads to extinction in control rats, memory can be strengthened if rolipram, a selective inhibitor of phosphodiesterase type 4 (PDE4), is administered into the dorsal hippocampus immediately after retrieval. The memory-enhancing effect of rolipram lasted for at least 1 week, was blocked by the protein synthesis inhibitor anisomycin, and did not occur when drug administration was not paired with retrieval. These findings indicate that the behavioral outcome of memory retrieval can be pharmacologically switched from extinction to strengthening. The cAMP/protein kinase A (PKA) signaling pathway might be a crucial mechanism determining the fate of memories after recall.
Collapse
Affiliation(s)
- Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul Porto Alegre, Brazil ; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul Porto Alegre, Brazil ; National Institute for Translational Medicine (INCT-TM) Porto Alegre, Brazil
| | - Gustavo K Reolon
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul Porto Alegre, Brazil ; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul Porto Alegre, Brazil ; National Institute for Translational Medicine (INCT-TM) Porto Alegre, Brazil
| | - Natasha Maurmann
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul Porto Alegre, Brazil ; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul Porto Alegre, Brazil ; National Institute for Translational Medicine (INCT-TM) Porto Alegre, Brazil
| | - Gilberto Schwartsmann
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul Porto Alegre, Brazil ; National Institute for Translational Medicine (INCT-TM) Porto Alegre, Brazil ; Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul Porto Alegre, Brazil
| | - Nadja Schröder
- National Institute for Translational Medicine (INCT-TM) Porto Alegre, Brazil ; Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University Porto Alegre, Brazil
| | - Olavo B Amaral
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Samira Valvassori
- National Institute for Translational Medicine (INCT-TM) Porto Alegre, Brazil ; Laboratory of Neurosciences, Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina (UNESC) Criciúma, Brazil
| | - João Quevedo
- National Institute for Translational Medicine (INCT-TM) Porto Alegre, Brazil ; Laboratory of Neurosciences, Graduate Program in Health Sciences, Academic Unit of Health Sciences, University of Southern Santa Catarina (UNESC) Criciúma, Brazil ; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston Houston, TX, USA
| |
Collapse
|
9
|
Merali Z, Presti-Torres J, Mackay JC, Johnstone J, Du L, St-Jean A, Levesque D, Kent P, Schwartsmann G, Roesler R, Schroder N, Anisman H. Long-term behavioral effects of neonatal blockade of gastrin-releasing peptide receptors in rats: similarities to autism spectrum disorders. Behav Brain Res 2014; 263:60-9. [PMID: 24462726 DOI: 10.1016/j.bbr.2014.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 12/31/2022]
Abstract
Gastrin releasing peptide, the mammalian counterpart of the amphibian peptide, bombesin, has been increasingly implicated in regulating normal brain function as well as in the pathogenesis of psychiatric and/or neurodevelopmental disorders. We have previously shown that the neonatal blockade of the gastrin-releasing peptide receptor (GRPr) in rats produces long-lasting consequences during central nervous system development that are commonly observed in neurodevelopmental disorders such as autism spectrum disorders. The present investigation assessed in further detail, long-term behavioral effects of neonatal GRPr blockade. During postnatal days 1-10, male Wistar rat pups (n=5-10/litter) were injected (subcutaneously) with the GRPr antagonist, RC-3095 (1 mg/kg), or a vehicle (control), twice daily. Following the drug treatment regimen, several behaviors were assessed (starting on postnatal day 14) including specific social behaviors (namely, group huddling characteristics, social interaction, and social approach), restrictive/repetitive and stereotyped behaviors (y-maze, repetitive novel object contact task, observation for stereotypies) and anxiety/fear-related responses (open field, elevated plus maze and contextual fear conditioning). Rats treated neonatally with RC-3095 showed reduced sociability, restrictive interests, motor stereotypies and enhanced learned fear response compared to the controls (vehicle-treated rats). These behavioral abnormalities are consistent with those observed in autism spectrum disorders and provide further evidence that neonatal blockade of GRPr could potentially serve as a useful model to gain a better understanding of the underlying neurodevelopmental disruptions contributing to the expression of autism-relevant phenotypes.
Collapse
Affiliation(s)
- Z Merali
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Psychiatry, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada; University of Ottawa, Institute of Mental Health Research, Ottawa, ON, K1Z 7K4, Canada.
| | - J Presti-Torres
- University of Ottawa, Institute of Mental Health Research, Ottawa, ON, K1Z 7K4, Canada; Neurobiology and Developmental Biology Laboratory, Pontifical Catholic University, Porto Alegre, 90619-900, Brazil
| | - J C Mackay
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; University of Ottawa, Institute of Mental Health Research, Ottawa, ON, K1Z 7K4, Canada
| | - J Johnstone
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; University of Ottawa, Institute of Mental Health Research, Ottawa, ON, K1Z 7K4, Canada
| | - L Du
- University of Ottawa, Institute of Mental Health Research, Ottawa, ON, K1Z 7K4, Canada
| | - A St-Jean
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - D Levesque
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - P Kent
- School of Psychology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; University of Ottawa, Institute of Mental Health Research, Ottawa, ON, K1Z 7K4, Canada
| | - G Schwartsmann
- Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003, Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003, Porto Alegre, RS, Brazil; National Institute for Translational Medicine (INCT-TM), 90035-003, Porto Alegre, RS, Brazil
| | - R Roesler
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003, Porto Alegre, RS, Brazil; National Institute for Translational Medicine (INCT-TM), 90035-003, Porto Alegre, RS, Brazil; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170, Porto Alegre, RS, Brazil
| | - N Schroder
- Neurobiology and Developmental Biology Laboratory, Pontifical Catholic University, Porto Alegre, 90619-900, Brazil; National Institute for Translational Medicine (INCT-TM), 90035-003, Porto Alegre, RS, Brazil
| | - H Anisman
- Institute of Neuroscience, Carleton University, Ottawa, ON, K1S 5B6, Canada; University of Ottawa, Institute of Mental Health Research, Ottawa, ON, K1Z 7K4, Canada
| |
Collapse
|
10
|
Gastrin-releasing peptide receptor signaling in the integration of stress and memory. Neurobiol Learn Mem 2013; 112:44-52. [PMID: 24001571 DOI: 10.1016/j.nlm.2013.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/13/2022]
Abstract
Neuropeptides act as signaling molecules that regulate a range of aspects of brain function. Gastrin-releasing peptide (GRP) is a 27-amino acid mammalian neuropeptide, homolog of the amphibian peptide bombesin. GRP acts by binding to the GRP receptor (GRPR, also called BB2), a member of the G-protein coupled receptor (GPCR) superfamily. GRP produced by neurons in the central nervous system (CNS) plays a role in synaptic transmission by activating GRPRs located on postsynaptic membranes, influencing several aspects of brain function. Here we review the role of GRP/GRPR as a system mediating both stress responses and the formation and expression of memories for fearful events. GRPR signaling might integrate the processing of stress and fear with synaptic plasticity and memory, serving as an important component of the set of neurobiological systems underlying the enhancement of memory storage by aversive information.
Collapse
|
11
|
Salih DAM, Rashid AJ, Colas D, de la Torre-Ubieta L, Zhu RP, Morgan AA, Santo EE, Ucar D, Devarajan K, Cole CJ, Madison DV, Shamloo M, Butte AJ, Bonni A, Josselyn SA, Brunet A. FoxO6 regulates memory consolidation and synaptic function. Genes Dev 2012; 26:2780-801. [PMID: 23222102 DOI: 10.1101/gad.208926.112] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The FoxO family of transcription factors is known to slow aging downstream from the insulin/IGF (insulin-like growth factor) signaling pathway. The most recently discovered FoxO isoform in mammals, FoxO6, is highly enriched in the adult hippocampus. However, the importance of FoxO factors in cognition is largely unknown. Here we generated mice lacking FoxO6 and found that these mice display normal learning but impaired memory consolidation in contextual fear conditioning and novel object recognition. Using stereotactic injection of viruses into the hippocampus of adult wild-type mice, we found that FoxO6 activity in the adult hippocampus is required for memory consolidation. Genome-wide approaches revealed that FoxO6 regulates a program of genes involved in synaptic function upon learning in the hippocampus. Consistently, FoxO6 deficiency results in decreased dendritic spine density in hippocampal neurons in vitro and in vivo. Thus, FoxO6 may promote memory consolidation by regulating a program coordinating neuronal connectivity in the hippocampus, which could have important implications for physiological and pathological age-dependent decline in memory.
Collapse
Affiliation(s)
- Dervis A M Salih
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang WS, Fei KL, Wu MT, Wu XH, Liang QH. Neuromedin B and its receptor influence the activity of myometrial primary cells in vitro through regulation of Il6 expression via the Rela/p65 pathway in mice. Biol Reprod 2012; 86:154, 1-7. [PMID: 22262690 DOI: 10.1095/biolreprod.111.095984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The neuromedin B receptor (Nmbr) is an important physiological regulator of spontaneous activities and stress responses through different cascades as well as its autocrine and paracrine effects. Previous studies have revealed that neuromedin B (Nmb) and its receptor signal via the Rela (also known as p65)/Il6 pathway in a mouse model of pregnancy. This study investigated the mechanism of Nmbr signaling via the Rela/p65-Il6 pathway and regulation of the concentration of intracellular free calcium ([Ca(2+)](i)) during the onset of labor in primary mouse myometrial cell cultures isolated from mice in term labor. Data demonstrated Nmbr agonist-mediated upregulation of the DNA binding activity of Rela/p65, Il6 expression, and [Ca(2+)](i) in a concentration-dependent manner. Furthermore, a significant correlation was observed between DNA binding activity of Rela/p65 and Il6 expression. Moreover, this up-regulation was blocked by Nmbr and Rela/p65 knockdown, achieved by RNA interference (RNAi) technology. No significant differences were identified in the inhibition of Il6 expression as a result of Nmbr or Rela/p65 knockdown. However, significant differences were observed between the [Ca(2+)](i) in Rela/p65-specific group and that in the Nmbr-specific small interfering RNA (siRNA)-treated groups. These data demonstrated that the Nmb/Nmbr interaction in pregnant myometrial primary cells in vitro predominantly influenced uterine activity through regulation of Il6 expression via the Rela/p65 pathway, although the effects of Nmbr on [Ca(2+)](i) involved several pathways that remain to be elucidated.
Collapse
Affiliation(s)
- Wei-She Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Hunan, Changsha, China.
| | | | | | | | | |
Collapse
|
13
|
Roesler R, Schwartsmann G. Gastrin-releasing peptide receptors in the central nervous system: role in brain function and as a drug target. Front Endocrinol (Lausanne) 2012; 3:159. [PMID: 23251133 PMCID: PMC3523293 DOI: 10.3389/fendo.2012.00159] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/23/2012] [Indexed: 11/13/2022] Open
Abstract
Neuropeptides acting on specific cell membrane receptors of the G protein-coupled receptor (GPCR) superfamily regulate a range of important aspects of nervous and neuroendocrine function. Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that binds to the GRP receptor (GRPR, BB2). Increasing evidence indicates that GRPR-mediated signaling in the central nervous system (CNS) plays an important role in regulating brain function, including aspects related to emotional responses, social interaction, memory, and feeding behavior. In addition, some alterations in GRP or GRPR expression or function have been described in patients with neurodegenerative, neurodevelopmental, and psychiatric disorders, as well as in brain tumors. Findings from preclinical models are consistent with the view that the GRPR might play a role in brain disorders, and raise the possibility that GRPR agonists might ameliorate cognitive and social deficits associated with neurological diseases, while antagonists may reduce anxiety and inhibit the growth of some types of brain cancer. Further preclinical and translational studies evaluating the potential therapeutic effects of GRPR ligands are warranted.
Collapse
Affiliation(s)
- Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do SulPorto Alegre, Brazil
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- *Correspondence: Rafael Roesler, Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, Rio Grande do Sul, Brazil. e-mail:
| | - Gilberto Schwartsmann
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do SulPorto Alegre, Brazil
- National Institute for Translational MedicinePorto Alegre, Brazil
- Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do SulPorto Alegre, Brazil
| |
Collapse
|
14
|
Presti-Torres J, Garcia VA, Dornelles A, Halmenschlager LH, Alcalde LA, Vedana G, Rico EP, Bogo MR, Schwartsmann G, Roesler R, Schröder N. Rescue of social behavior impairment by clozapine and alterations in the expression of neuronal receptors in a rat model of neurodevelopmental impairment induced by GRPR blockade. J Neural Transm (Vienna) 2011; 119:319-27. [PMID: 21847557 DOI: 10.1007/s00702-011-0695-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/24/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Juliana Presti-Torres
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University, Av. Ipiranga, 6681 Prédio 12D, Sala 340, 90619-900 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Shimizu T, Lu L, Yokotani K. Endogenously generated 2-arachidonoylglycerol plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow in rats. Eur J Pharmacol 2011; 658:123-31. [PMID: 21371452 DOI: 10.1016/j.ejphar.2011.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/31/2011] [Accepted: 02/15/2011] [Indexed: 02/02/2023]
Abstract
We previously reported the involvement of brain diacylglycerol lipase and cyclooxygenase in intracerebroventricularly (i.c.v.) administered bombesin-induced secretion of noradrenaline and adrenaline from the adrenal medulla in rats. Diacylglycerol can be hydrolyzed by diacylglycerol lipase into 2-arachidonoylglycerol, which may be further hydrolyzed by monoacylglycerol lipase into arachidonic acid, a substrate of cyclooxygenase. 2-Arachidonoylglycerol is a major endocannabinoid, which can inhibit synaptic transmission by presynaptic cannabinoid CB(1) receptors. Released 2-arachidonoylglycerol is rapidly inactivated by uptake into cells and enzymatic hydrolysis. In the present study, we examined the involvement of brain 2-arachidonoylglycerol and its regulatory role in the bombesin-induced central activation of adrenomedullary outflow using anesthetized rats. The elevation of plasma noradrenaline and adrenaline induced by a sub-maximal dose of bombesin (1 nmol/animal, i.c.v.) was reduced by MAFP (monoacylglycerol lipase inhibitor) (0.28 and 0.7 μmol/animal, i.c.v.), JZL184 (selective monoacylglycerol lipase inhibitor) (0.7 and 1.4 μmol/animal, i.c.v.), ACEA (CB(1) receptor agonist) (0.7 and 1.4 μmol/animal, i.c.v.) and AM 404 (endocannabinoid uptake-inhibitor) (80 and 250 nmol/animal, i.c.v.), while AM 251 (CB(1) receptor antagonist) (90 and 180 nmol/animal, i.c.v.) potentiated the response induced by a small dose of bombesin (0.1 nmol/animal, i.c.v.). These results suggest a possibility that 2-arachidonoylglycerol is endogenously generated in the brain during bombesin-induced activation of central adrenomedullary outflow, thereby inhibiting the peptide-induced response by activation of brain CB(1) receptors in rats.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, School of Medicine, Kochi University, Nankoku, Kochi 783-8505, Japan.
| | | | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review will highlight recent advances in the understanding of mammalian bombesin receptor-related pathophysiological roles in disease states and new insights into bombesin receptor pharmacology. RECENT FINDINGS Studies regarding bombesin-like peptides and mammalian bombesin receptor functions have demonstrated significant biological impact on a broad array of physiological and pathophysiological conditions. Pharmacological experiments in vitro and in vivo as well as utilization of genetic rodent models of the gastrin-releasing peptide receptor (GRP-R/BB2) and neuromedin B receptor (NMB-R/BB1) further delineated roles in memory and fear behavior, inhibition of tumor cell growth, mediating signals for pruritus and male reproductive behavior. All three mammalian bombesin receptors were shown to possess some role in the regulation of energy balance. Novel synthesis of selective high affinity agonists and antagonists of the orphan bombesin receptor subtype-3 (BRS-3/BB3) has been accomplished and will facilitate further studies using animal model systems. SUMMARY Mammalian bombesin receptors participate in the regulation of energy homeostasis and may represent an attractive target for pharmacological treatment of obesity and certain eating disorders. Novel pharmacological insights of bombesin-like peptides and the interaction with their respective receptors have been elucidated to aid future treatment and imaging of epithelial cell-derived tumors.
Collapse
Affiliation(s)
- Ishita D Majumdar
- Section of Gastroenterology, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
17
|
Hallak JEC, Crippa JAS, Quevedo J, Roesler R, Schröder N, Nardi AE, Kapczinski F. National Science and Technology Institute for Translational Medicine (INCT-TM): advancing the field of translational medicine and mental health. BRAZILIAN JOURNAL OF PSYCHIATRY 2011; 32:83-90. [PMID: 20339739 DOI: 10.1590/s1516-44462010000100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/30/2009] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Translational medicine has been described as the integrated application of innovative pharmacology tools, biomarkers, clinical methods, clinical technologies and study designs to improve the understanding of medical disorders. In medicine, translational research offers an opportunity for applying the findings obtained from basic research to every-day clinical applications. The National Science and Technology Institute for Translational Medicine is comprised of six member institutions (Universidade Federal do Rio Grande do Sul, Universidade de São Paulo-Ribeirão Preto, Universidade Federal do Rio de Janeiro, Pontifícia Universidade Católica do Rio Grande do Sul, Universidade Estadual de Santa Catarina and a core facility that serves all centers). The objectives of the project are divided into four areas: Institutional, Research, Human Resources and Technology for the Community and Productive Sector. METHOD In this manuscript, we describe some of the approaches used to attain the main objectives of the National Science and Technology Institute for Translational Medicine, which include the development of 1) animal models for bipolar disorder; 2) strategies to investigate neurobehavioral function and cognitive dysfunction associated with brain disorders; 3) experimental models of brain function and behavior, neuropsychiatric disorders, cell proliferation, and cancer; 4) Simulated Public Speaking and 5) Virtual reality simulation for inducing panic disorder and agoraphobia. CONCLUSION The main focus of the National Science and Technology Institute for Translational Medicine is the development of more useful methods that allow for a better application of basic research-based knowledge to the medical field.
Collapse
Affiliation(s)
- Jaime E C Hallak
- National Science and Technology Institute (INCT) for Translational Medicine, Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol Biochem Behav 2011; 99:155-63. [PMID: 21236291 DOI: 10.1016/j.pbb.2010.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 12/24/2022]
Abstract
Biological research has unraveled many of the molecular and cellular mechanisms involved in the formation of long-lasting memory, providing new opportunities for the development of cognitive-enhancing drugs. Studies of drug enhancement of cognition have benefited from the use of pharmacological treatments given after learning, allowing the investigation of mechanisms regulating the consolidation phase of memory. Modulatory systems influencing consolidation processes include stress hormones and several neurotransmitter and neuropeptide systems. Here, we review some of the findings on memory enhancement by drug administration in animal models, and discuss their implications for the development of cognitive enhancers.
Collapse
|