1
|
Su L, Li G, Chow BKC, Cardoso JCR. Neuropeptides and receptors in the cephalochordate: A crucial model for understanding the origin and evolution of vertebrate neuropeptide systems. Mol Cell Endocrinol 2024; 592:112324. [PMID: 38944371 DOI: 10.1016/j.mce.2024.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Genomes and transcriptomes from diverse organisms are providing a wealth of data to explore the evolution and origin of neuropeptides and their receptors in metazoans. While most neuropeptide-receptor systems have been extensively studied in vertebrates, there is still a considerable lack of understanding regarding their functions in invertebrates, an extraordinarily diverse group that account for the majority of animal species on Earth. Cephalochordates, commonly known as amphioxus or lancelets, serve as the evolutionary proxy of the chordate ancestor. Their key evolutionary position, bridging the invertebrate to vertebrate transition, has been explored to uncover the origin, evolution, and function of vertebrate neuropeptide systems. Amphioxus genomes exhibit a high degree of sequence and structural conservation with vertebrates, and sequence and functional homologues of several vertebrate neuropeptide families are present in cephalochordates. This review aims to provide a comprehensively overview of the recent findings on neuropeptides and their receptors in cephalochordates, highlighting their significance as a model for understanding the complex evolution of neuropeptide signaling in vertebrates.
Collapse
Affiliation(s)
- Liuru Su
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| | - João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
2
|
Satake H, Sasakura Y. The neuroendocrine system of Ciona intestinalis Type A, a deuterostome invertebrate and the closest relative of vertebrates. Mol Cell Endocrinol 2024; 582:112122. [PMID: 38109989 DOI: 10.1016/j.mce.2023.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Deuterostome invertebrates, including echinoderms, hemichordates, cephalochordates, and urochordates, exhibit common and species-specific morphological, developmental, physiological, and behavioral characteristics that are regulated by neuroendocrine and nervous systems. Over the past 15 years, omics, genetic, and/or physiological studies on deuterostome invertebrates have identified low-molecular-weight transmitters, neuropeptides and their cognate receptors, and have clarified their various biological functions. In particular, there has been increasing interest on the neuroendocrine and nervous systems of Ciona intestinalis Type A, which belongs to the subphylum Urochordata and occupies the critical phylogenetic position as the closest relative of vertebrates. During the developmental stage, gamma-aminobutylic acid, D-serine, and gonadotropin-releasing hormones regulate metamorphosis of Ciona. In adults, the neuropeptidergic mechanisms underlying ovarian follicle growth, oocyte maturation, and ovulation have been elucidated. This review article provides the most recent and fundamental knowledge of the neuroendocrine and nervous systems of Ciona, and their evolutionary aspects.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
3
|
Satake H. Kobayashi Award 2021: Neuropeptides, receptors, and follicle development in the ascidian, Ciona intestinalis Type A: New clues to the evolution of chordate neuropeptidergic systems from biological niches. Gen Comp Endocrinol 2023; 337:114262. [PMID: 36925021 DOI: 10.1016/j.ygcen.2023.114262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
4
|
Satake H, Osugi T, Shiraishi A. Impact of Machine Learning-Associated Research Strategies on the Identification of Peptide-Receptor Interactions in the Post-Omics Era. Neuroendocrinology 2023; 113:251-261. [PMID: 34348315 DOI: 10.1159/000518572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUNDS Elucidation of peptide-receptor pairs is a prerequisite for many studies in the neuroendocrine, endocrine, and neuroscience fields. Recent omics analyses have provided vast amounts of peptide and G protein-coupled receptor (GPCR) sequence data. GPCRs for homologous peptides are easily characterized based on homology searching, and the relevant peptide-GPCR interactions are also detected by typical signaling assays. In contrast, conventional evaluation or prediction methods, including high-throughput reverse-pharmacological assays and tertiary structure-based computational analyses, are not useful for identifying interactions between novel and omics-derived peptides and GPCRs. SUMMARY Recently, an approach combining machine learning-based prediction of novel peptide-GPCR pairs and experimental validation of the predicted pairs have been shown to breakthrough this bottleneck. A machine learning method, logistic regression for human class A GPCRs and the multiple subsequent signaling assays led to the deorphanization of human class A orphan GPCRs, namely, the identification of 18 peptide-GPCR pairs. Furthermore, using another machine learning algorithm, the support vector machine (SVM), the peptide descriptor-incorporated SVM was originally developed and employed to predict GPCRs for novel peptides characterized from the closest relative of vertebrates, Ciona intestinalis Type A (Ciona robusta). Experimental validation of the predicted pairs eventually led to the identification of 11 novel peptide-GPCR pairs. Of particular interest is that these newly identified GPCRs displayed neither significant sequence similarity nor molecular phylogenetic relatedness to known GPCRs for peptides. KEY MESSAGES These recent studies highlight the usefulness and versatility of machine learning for enabling the efficient, reliable, and systematic identification of novel peptide-GPCR interactions.
Collapse
Affiliation(s)
- Honoo Satake
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tomohiro Osugi
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Division of Integrative Biomolecular Function, Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
5
|
Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A. Sci Rep 2021; 11:10911. [PMID: 34035343 PMCID: PMC8149874 DOI: 10.1038/s41598-021-90295-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identified in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifically in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to significantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confirmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were significantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory effect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the first report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism.
Collapse
|
6
|
Invertebrate Gonadotropin-Releasing Hormone Receptor Signaling and Its Relevant Biological Actions. Int J Mol Sci 2020; 21:ijms21228544. [PMID: 33198405 PMCID: PMC7697785 DOI: 10.3390/ijms21228544] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproduction via the hypothalamus-pituitary-gonad axis (HPG axis) in vertebrates. GnRHs and their receptors (GnRHRs) are also conserved in invertebrates lacking the HPG axis, indicating that invertebrate GnRHs do not serve as “gonadotropin-releasing factors” but, rather, function as neuropeptides that directly regulate target tissues. All vertebrate and urochordate GnRHs comprise 10 amino acids, whereas amphioxus, echinoderm, and protostome GnRH-like peptides are 11- or 12-residue peptides. Intracellular calcium mobilization is the major second messenger for GnRH signaling in cephalochordates, echinoderms, and protostomes, while urochordate GnRHRs also stimulate cAMP production pathways. Moreover, the ligand-specific modulation of signal transduction via heterodimerization between GnRHR paralogs indicates species-specific evolution in Ciona intestinalis. The characterization of authentic or putative invertebrate GnRHRs in various tissues and their in vitro and in vivo activities indicate that invertebrate GnRHs are responsible for the regulation of both reproductive and nonreproductive functions. In this review, we examine our current understanding of and perspectives on the primary sequences, tissue distribution of mRNA expression, signal transduction, and biological functions of invertebrate GnRHs and their receptors.
Collapse
|
7
|
The ventral peptidergic system of the adult ascidian Ciona robusta (Ciona intestinalis Type A) insights from a transgenic animal model. Sci Rep 2020; 10:1892. [PMID: 32024913 PMCID: PMC7002689 DOI: 10.1038/s41598-020-58884-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Ascidians are the sister group of vertebrates and occupy a critical position in explorations of the evolution of the endocrine and nervous systems of chordates. Here, we describe the complete ventral peptidergic system in adult transgenic Ciona robusta (Ciona intestinalis Type A) which expresses the Kaede reporter gene driven by the prohormone convertase 2 (PC2) gene promoter. Numerous PC2 promoter-driven fluorescent (Kaede-positive) non-neural cells were distributed in the blood sinus located at the anterior end of the pharynx, suggesting the acquisition of a peptidergic circulatory system in Ciona. Kaede-positive ciliated columnar cells, rounded cells, and tall ciliated cells were observed in the alimentary organs, including the endostyle, pharynx, esophagus, stomach, and intestine, suggesting that digestive functions are regulated by multiple peptidergic systems. In the heart, Kaede-positive neurons were located in the ring-shaped plexus at both ends of the myocardium. Nerve fiber-like tracts ran along the raphe and appeared to be connected with the plexuses. Such unique structures suggest a role for the peptidergic system in cardiac function. Collectively, the present anatomic analysis revealed the major framework of the ventral peptidergic system of adult Ciona, which could facilitate investigations of peptidergic regulation of the pharynx, endostyle, alimentary tissues, and heart.
Collapse
|
8
|
Satake H, Matsubara S, Shiraishi A, Yamamoto T, Osugi T, Sakai T, Kawada T. Peptide receptors and immune-related proteins expressed in the digestive system of a urochordate, Ciona intestinalis. Cell Tissue Res 2019; 377:293-308. [PMID: 31079207 DOI: 10.1007/s00441-019-03024-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The digestive system is responsible for nutrient intake and defense against pathogenic microbes. Thus, identification of regulatory factors for digestive functions and immune systems is a key step to the verification of the life cycle, homeostasis, survival strategy and evolutionary aspects of an organism. Over the past decade, there have been increasing reports on neuropeptides, their receptors, variable region-containing chitin-binding proteins (VCBPs) and Toll-like receptors (TLRs) in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomes and genome database-searching detected not only Ciona orthologs or prototypes of vertebrate peptides and their receptors, including cholecystokinin, gonadotropin-releasing hormones, tachykinin, calcitonin and vasopressin but also Ciona-specific neuropeptides including Ci-LFs and Ci-YFVs. The species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors has also been revealed. These findings shed light on the remarkable significance of ascidians in investigations of the evolution and diversification of the peptidergic systems in chordates. In the defensive systems of C. intestinalis, VCBPs and TLRs have been shown to play major roles in the recognition of exogenous microbes in the innate immune system. These findings indicate both common and species-specific functions of the innate immunity-related molecules between C. intestinalis and vertebrates. In this review article, we present recent advances in molecular and functional features and evolutionary aspects of major neuropeptides, their receptors, VCBPs and TLRs in C. intestinalis.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan.
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika, Souraku, Kyoto, 619-0284, Japan
| |
Collapse
|
9
|
Neuropeptides, Peptide Hormones, and Their Receptors of a Tunicate, Ciona intestinalis. Results Probl Cell Differ 2019; 68:107-125. [PMID: 31598854 DOI: 10.1007/978-3-030-23459-1_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The critical phylogenetic position of the ascidian, Ciona intestinalis, as the closest relative of vertebrates, suggested its potential applicability as a model organism in a wide variety of biological events including the nervous, neuroendocrine, and endocrine regulation. To date, approximately 40 neuropeptides and/or peptide hormones and several cognate receptors have been identified. These peptides are categorized into two types: (1) orthologs of vertebrate peptides, such as cholecystokinin, GnRH, tachykinin, vasopressin, and calcitonin, and (2) novel family peptides such as LF peptides and YFL/V peptides. Ciona GnRH receptors (Ci-GnRHR) were found to be multiplicated in the Ciona-specific lineages and to form unique heterodimers between Ci-GnRHR1 and R4 and between Ci-GnRHR2 and R4, leading to fine-tuning of the generation of second messengers. Furthermore, Ciona tachykinin was shown to regulate a novel protease-associated follicle growth pathway. These findings will pave the way for the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of invertebrate deuterostomes and/or chordates. In this chapter, we provide an overview of primary sequences, functions, and evolutionary aspects of neuropeptides, peptide hormones, and their receptors in C. intestinalis.
Collapse
|
10
|
The nervous system of the adult ascidian Ciona intestinalis Type A (Ciona robusta): Insights from transgenic animal models. PLoS One 2017. [PMID: 28651020 PMCID: PMC5484526 DOI: 10.1371/journal.pone.0180227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nervous system of ascidians is an excellent model system to provide insights into the evolutionary process of the chordate nervous system due to their phylogenetic positions as the sister group of vertebrates. However, the entire nervous system of adult ascidians has yet to be functionally and anatomically investigated. In this study, we have revealed the whole dorsal and siphon nervous system of the transgenic adult ascidian of Ciona intestinalis Type A (Ciona robusta) in which a Kaede reporter gene is expressed in a pan-neuronal fashion. The fluorescent signal of Kaede revealed the innervation patterns and distribution of neurons in the nervous system of Ciona. Precise microscopic observation demonstrated the clear innervation of the anterior and posterior main nerves to eight and six lobes of the oral and atrial siphons, respectively. Moreover, visceral nerves, previously identified as unpaired nerves, were found to be paired; one nerve was derived from the posterior end of the cerebral ganglion and the other from the right posterior nerve. This study further revealed the full trajectory of the dorsal strand plexus and paired visceral nerves on either side from the cerebral ganglion to the ovary, and precise innervation between the cerebral ganglion and the peripheral organs including the gonoduct, cupular organ, rectum and ovary. The differential innervation patterns of visceral nerves and the dorsal strand plexus indicate that the peripheral organs including the ovary undergo various neural regulations. Collectively, the present anatomical analysis revealed the major innervation of the dorsal and siphon nervous systems of adult Ciona.
Collapse
|
11
|
Sakai T, Shiraishi A, Kawada T, Matsubara S, Aoyama M, Satake H. Invertebrate Gonadotropin-Releasing Hormone-Related Peptides and Their Receptors: An Update. Front Endocrinol (Lausanne) 2017; 8:217. [PMID: 28932208 PMCID: PMC5592718 DOI: 10.3389/fendo.2017.00217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproductive functions via the hypothalamus, pituitary, and gonad axis, namely, HPG axis in vertebrates. GnRHs and their receptors (GnRHRs) are likely to be conserved in invertebrate deuterostomes and lophotrochozoans. All vertebrate and urochordate GnRHs are composed of 10 amino acids, whereas protostome, echinoderm, and amphioxus GnRH-like peptides are 11- or 12-residue peptide containing two amino acids after an N-terminal pyro-Glu. In urochordates, Halocynthia roretzi GnRH gene encodes two GnRH peptide sequences, whereas two GnRH genes encode three different GnRH peptides in Ciona intestinalis. These findings indicate the species-specific diversification of GnRHs. Intriguingly, the major signaling pathway for GnRHRs is intracellular Ca2+ mobilization in chordates, echinoderms, and protostomes, whereas Ciona GnRHRs (Ci-GnRHRs) are endowed with multiple GnRHergic cAMP production pathways in a ligand-selective manner. Moreover, the ligand-specific modulation of signal transduction via heterodimerization among Ci-GnRHR paralogs suggests the species-specific development of fine-tuning of gonadal functions in ascidians. Echinoderm GnRH-like peptides show high sequence differences compared to those of protostome counterparts, leading to the difficulty in classification of peptides and receptors. These findings also show both the diversity and conservation of GnRH signaling systems in invertebrates. The lack of the HPG axis in invertebrates indicates that biological functions of GnRHs are not release of gonadotropins in current invertebrates and common ancestors of vertebrates and invertebrates. To date, authentic or putative GnRHRs have been characterized from various echinoderms and protostomes as well as chordates and the mRNAs have been found to be distributed not only reproductive organs but also other tissues. Collectively, these findings further support the notion that invertebrate GnRHs have biological roles other than the regulation of reproductive functions. Moreover, recent molecular phylogenetic analysis suggests that adipokinetic hormone (AKH), corazonin (CRZ), and AKH/CRZ-related peptide (ACP) belong to the GnRH superfamily but has led to the different classifications of these peptides and receptors using different datasets including the number of sequences and structural domains. In this review, we provide current knowledge of, and perspectives in, molecular basis and evolutionary aspects of the GnRH, AKH, CRZ, and ACP.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Masato Aoyama
- Faculty of Science, Department of Biological Sciences, Nara Women’s University, Nara, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
- *Correspondence: Honoo Satake,
| |
Collapse
|
12
|
Matsubara S, Kawada T, Sakai T, Aoyama M, Osugi T, Shiraishi A, Satake H. The significance of Ciona intestinalis as a stem organism in integrative studies of functional evolution of the chordate endocrine, neuroendocrine, and nervous systems. Gen Comp Endocrinol 2016; 227:101-8. [PMID: 26031189 DOI: 10.1016/j.ygcen.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022]
Abstract
Ascidians are the closest phylogenetic neighbors to vertebrates and are believed to conserve the evolutionary origin in chordates of the endocrine, neuroendocrine, and nervous systems involving neuropeptides and peptide hormones. Ciona intestinalis harbors various homologs or prototypes of vertebrate neuropeptides and peptide hormones including gonadotropin-releasing hormones (GnRHs), tachykinins (TKs), and calcitonin, as well as Ciona-specific neuropeptides such as Ciona vasopressin, LF, and YFV/L peptides. Moreover, molecular and functional studies on Ciona tachykinin (Ci-TK) have revealed the novel molecular mechanism of inducing oocyte growth via up-regulation of vitellogenesis-associated protease activity, which is expected to be conserved in vertebrates. Furthermore, a series of studies on Ciona GnRH receptor paralogs have verified the species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors. These findings confirm the remarkable significance of ascidians in investigations of the evolutionary processes of the peptidergic systems in chordates, leading to the promising advance in the research on Ciona peptides in the next stage based on the recent development of emerging technologies including genome-editing techniques, peptidomics-based multi-color staining, machine-learning prediction, and next-generation sequencing. These technologies and bioinformatic integration of the resultant "multi-omics" data will provide unprecedented insights into the comprehensive understanding of molecular and functional regulatory mechanisms of the Ciona peptides, and will eventually enable the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of chordates.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Masato Aoyama
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan.
| |
Collapse
|
13
|
Detection of periodic patterns in microarray data reveals novel oscillating transcripts of biological rhythms in Ciona intestinalis. ARTIFICIAL LIFE AND ROBOTICS 2015. [DOI: 10.1007/s10015-015-0237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Nagasawa K, Osugi T, Suzuki I, Itoh N, Takahashi KG, Satake H, Osada M. Characterization of GnRH-like peptides from the nerve ganglia of Yesso scallop, Patinopecten yessoensis. Peptides 2015; 71:202-10. [PMID: 26238596 DOI: 10.1016/j.peptides.2015.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/23/2022]
Abstract
There is yet no firm experimental evidence that the evolutionary ancient gonadotropin-releasing hormone GnRH (i.e., GnRH1) also acts in invertebrate gametogenesis. The objective of this paper is to characterize candidate invGnRH peptides of Yesso scallop Patinopecten yessoensis (i.e., peptide identification, immunohistochemical localization, and immunoquantification) in order to reveal their bioactive form in bivalves. Using mass spectrometry (MS), we identified two invGnRH (py-GnRH) peptides from the scallop nerve ganglia: a precursor form of py-GnRH peptide (a non-amidated dodecapeptide; py-GnRH12aa-OH) and a mature py-GnRH peptide (an amidated undecapeptide; py-GnRH11aa-NH2). Immunohistochemical staining allowed the localization of both py-GnRH peptides in the neuronal cell bodies and fibers of the cerebral and pedal ganglia (CPG) and the visceral ganglion (VG). We found that the peptides showed a dimorphic distribution pattern. Notably, the broad distribution of mature py-GnRH in neuronal fibers elongating to peripheral organs suggests that it is multi-functional. Time-resolved fluorescent immunoassays (TR-FIA) enabled the quantification of each py-GnRH form in the single CPG or VG tissue obtained from one individual. In addition, we observed greater abundance of mature py-GnRH in VG compared with its level in CPG, suggesting that VG is the main producing organ of mature py-GnRH peptide and that py-GnRH may play a central regulatory role in neurons of scallops. Our study provides evidence, for the first time, for the presence of precursor and mature forms of invGnRH peptides in the nerve ganglia of an invertebrate.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Tomohiro Osugi
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Iwao Suzuki
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Naoki Itoh
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keisuke G Takahashi
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan
| | - Honoo Satake
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-Machi, Tsutsumidori, Aoba-Ku, Sendai, Miyagi 981 8555, Japan.
| |
Collapse
|
15
|
Hasunuma I, Terakado K. Two novel gonadotropin-releasing hormones (GnRHs) from the urochordate ascidian, Halocynthia roretzi: implications for the origin of vertebrate GnRH isoforms. Zoolog Sci 2013; 30:311-8. [PMID: 23537242 DOI: 10.2108/zsj.30.311] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three forms of gonadotropin-releasing hormone (GnRH) are found in vertebrates; these differ in amino acid sequence, localization, distribution, and embryological origin. We used northern blot analysis, and in situ hybridization to detect GnRH transcripts in various tissues in the large ascidian Halocynthia roretzi. We cloned a cDNA encoding two novel GnRHs, termed tGnRH-10 and tGnRH-11, from H. roretzi, with deduced amino acid sequences of QHWSYGFSPG and QHWSYGFLPG, respectively. Both GnRHs are highly similar to those of teleosts and tetrapods. For example, the tGnRH-10 sequence is 90% identical to seabream GnRH1, and tGnRH-11 is 90% identical to salmon GnRH3. The primary structure of the deduced preprotein is similar to that of chordate GnRHs and consists of a signal peptide, two decapeptides, up- and downstream processing sequences (containing lysine and arginine), and a GnRH-associated peptide. The transcripts of the H. roretzi GnRH gene were expressed in all tissues examined. Comparison of the signal peptide of the lamprey GnRH-II precursor with those of three forms from representative vertebrates revealed homology to GnRH2 precursors. These novel ascidian GnRHs offer a new perspective on the origin of vertebrate GnRH subtypes. We hypothesize that gnathostome GnRH2 was derived only from lamprey GnRH-II and that ancestral gnathostome GnRH, which produces neurons that originate in peripheral organs, gave rise to vertebrate GnRH1 and GnRH3 through whole-genome duplication.
Collapse
Affiliation(s)
- Itaru Hasunuma
- Department of Biology, Toho University, Funabashi 274-8510, Japan
| | | |
Collapse
|
16
|
Matsumae H, Hamada M, Fujie M, Niimura Y, Tanaka H, Kawashima T. A methodical microarray design enables surveying of expression of a broader range of genes in Ciona intestinalis. Gene 2013; 519:82-90. [PMID: 23388151 DOI: 10.1016/j.gene.2013.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/22/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
We provide a new oligo-microarray for Ciona intestinalis, based on the NimbleGen 12-plex×135k format. The array represents 106,285 probes, which is more than double the probe number of the currently available 44k microarray. These probes cover 99.2% of the transcripts in the KyotoHoya (KH) models, published in 2008, and they contain 81.1% of the entries in the UniGene database that are not included in the KH models. In this paper, we show that gene expression levels measured by this new 135k microarray are highly correlated with those obtained by the existing 44k microarray for genes common to both arrays. We also investigated gene expression using samples obtained from the ovary and the neural complex of adult C. intestinalis, showing that the expression of tissue-specific genes is consistent with previous reports. Approximately half of the highly expressed genes identified in the 135k microarray are not included in the previous microarray. The high coverage of gene models by this microarray made it possible to identify splicing variants for a given transcript. The 135k microarray is useful in investigating the functions of genes that are not yet well characterized. Detailed information about this 135k microarray is accessible at no charge from supplemental materials, NCBI Gene Expression Omnibus (GEO), and http://marinegenomics.oist.jp.
Collapse
Affiliation(s)
- Hiromi Matsumae
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Satake H, Matsubara S, Aoyama M, Kawada T, Sakai T. GPCR Heterodimerization in the Reproductive System: Functional Regulation and Implication for Biodiversity. Front Endocrinol (Lausanne) 2013; 4:100. [PMID: 23966979 PMCID: PMC3744054 DOI: 10.3389/fendo.2013.00100] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/31/2013] [Indexed: 01/24/2023] Open
Abstract
A G protein-coupled receptor (GPCR) functions not only as a monomer or homodimer but also as a heterodimer with another GPCR. GPCR heterodimerization results in the modulation of the molecular functions of the GPCR protomer, including ligand binding affinity, signal transduction, and internalization. There has been a growing body of reports on heterodimerization of multiple GPCRs expressed in the reproductive system and the resultant functional modulation, suggesting that GPCR heterodimerization is closely associated with reproduction including the secretion of hormones and the growth and maturation of follicles and oocytes. Moreover, studies on heterodimerization among paralogs of gonadotropin-releasing hormone (GnRH) receptors of a protochordate, Ciona intestinalis, verified the species-specific regulation of the functions of GPCRs via multiple GnRH receptor pairs. These findings indicate that GPCR heterodimerization is also involved in creating biodiversity. In this review, we provide basic and current knowledge regarding GPCR heterodimers and their functional modulation, and explore the biological significance of GPCR heterodimerization.
Collapse
Affiliation(s)
- Honoo Satake
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
- *Correspondence: Honoo Satake, Suntory Foundation for Life Sciences, Bioorganic Research Institute, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan e-mail:
| | - Shin Matsubara
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| | - Masato Aoyama
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| | - Tsuyoshi Kawada
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| | - Tsubasa Sakai
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Osaka, Japan
| |
Collapse
|
18
|
Sakai T, Aoyama M, Kawada T, Kusakabe T, Tsuda M, Satake H. Evidence for differential regulation of GnRH signaling via heterodimerization among GnRH receptor paralogs in the protochordate, Ciona intestinalis. Endocrinology 2012; 153:1841-9. [PMID: 22294747 DOI: 10.1210/en.2011-1668] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocrine and neuroendocrine systems for reproductive functions have diversified as a result of the generation of species-specific paralogs of peptide hormones and their receptors including GnRH and their receptors (GnRHR), which belong to the class A G protein-coupled receptor family. A protochordate, Ciona intestinalis, has been found to possess seven GnRH (tGnRH-3 to -8 and Ci-GnRH-X) and four GnRHR (Ci-GnRHR1 to -4). Moreover, Ci-GnRHR4 (R4) does not bind to any Ciona GnRH and activate any signaling pathways. Here we show novel functional diversification of GnRH signaling pathways via G protein-coupled receptor heterodimerization among Ciona GnRHR. R4 was shown to heterodimerize with R2 specifically in test cells of vitellogenic oocytes by coimmunoprecipitation. The R2-R4 heterodimerization in human embryonic kidney 293 cells cotransfected with R2 and R4 was also observed by coimmunoprecipitation and fluorescent energy transfer analyses. Of particular interest is that the R2-R4 heterodimer decreases the cAMP production in a nonligand-selective manner via shift of activation of Gs protein to Gi protein by R2, compared with R2 monomer/homodimer. Considering that the R1-R4 heterodimer elicits 10-fold more potent Ca²⁺ mobilization than R1 monomer/homodimer in a ligand-selective manner but does not affect cAMP production, these results indicate that R4 regulates differential GnRH signaling cascades via heterodimerization with R1 and R2 as an endogenous allosteric modulator. Collectively, the present study suggests that the heterodimerization among GnRHR paralogs, including the species-specific orphan receptor subtype, is involved in rigorous and diversified GnRHergic signaling of the protochordate, which lacks a hypothalamus-pituitary gonad axis.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Osaka 618-8503, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Kawada T, Ogasawara M, Sekiguchi T, Aoyama M, Hotta K, Oka K, Satake H. Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides. Endocrinology 2011; 152:2416-27. [PMID: 21467196 DOI: 10.1210/en.2010-1348] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The phylogenetic position of ascidians as the chordate invertebrates closest to vertebrates suggests that they might possess homologs and/or prototypes of vertebrate peptide hormones and neuropeptides as well as ascidian-specific peptides. However, only a small number of peptides have so far been identified in ascidians. In the present study, we have identified various peptides in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomic analysis detected 33 peptides, including 26 novel peptides, from C. intestinalis. The ascidian peptides are largely classified into three categories: 1) prototypes and homologs of vertebrate peptides, such as galanin/galanin-like peptide, which have never been identified in any invertebrates; 2) peptides partially homologous with vertebrate peptides, including novel neurotesin-like peptides; 3) novel peptides. These results not only provide evidence that C. intestinalis possesses various homologs and prototypes of vertebrate neuropeptides and peptide hormones but also suggest that several of these peptides might have diverged in the ascidian-specific evolutionary lineage. All Ciona peptide genes were expressed in the neural complex, whereas several peptide gene transcripts were also distributed in peripheral tissues, including the ovary. Furthermore, a Ciona neurotensin-like peptide, C. intestinalis neurotensin-like peptide 6, was shown to down-regulate growth of Ciona vitellogenic oocytes. These results suggest that the Ciona peptides act not only as neuropeptides in the neural tissue but also as hormones in nonneuronal tissues and that ascidians, unlike other invertebrates, such as nematodes, insects, and sea urchins, established an evolutionary origin of the peptidergic neuroendocrine, endocrine, and nervous systems of vertebrates with certain specific molecular diversity.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Hamada M, Shimozono N, Ohta N, Satou Y, Horie T, Kawada T, Satake H, Sasakura Y, Satoh N. Expression of neuropeptide- and hormone-encoding genes in the Ciona intestinalis larval brain. Dev Biol 2011; 352:202-14. [PMID: 21237141 DOI: 10.1016/j.ydbio.2011.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 12/03/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023]
Abstract
Despite containing only approximately 330 cells, the central nervous system (CNS) of Ciona intestinalis larvae has an architecture that is similar to the vertebrate CNS. Although only vertebrates have a distinct hypothalamus-the source of numerous neurohormone peptides that play pivotal roles in the development, function, and maintenance of various neuronal and endocrine systems, it is suggested that the Ciona brain contains a region that corresponds to the vertebrate hypothalamus. To identify genes expressed in the brain, we isolated brain vesicles using transgenic embryos carrying Ci-β-tubulin(promoter)::Kaede, which resulted in robust Kaede expression in the larval CNS. The associated transcriptome was investigated using microarray analysis. We identified 565 genes that were preferentially expressed in the larval brain. Among these genes, 11 encoded neurohormone peptides including such hypothalamic peptides as gonadotropin-releasing hormone and oxytocin/vasopressin. Six of the identified peptide genes had not been previously described. We also found that genes encoding receptors for some of the peptides were expressed in the brain. Interestingly, whole-mount in situ hybridization showed that most of the peptide genes were expressed in the ventral brain. This catalog of the genes expressed in the larval brain should help elucidate the evolution, development, and functioning of the chordate brain.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Onna, Okinawa 904-0412, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kano S. Genomics and Developmental Approaches to an Ascidian Adenohypophysis Primordium. Integr Comp Biol 2010; 50:35-52. [DOI: 10.1093/icb/icq050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
22
|
Kawada T, Sekiguchi T, Sakai T, Aoyama M, Satake H. Neuropeptides, hormone peptides, and their receptors in Ciona intestinalis: an update. Zoolog Sci 2010; 27:134-53. [PMID: 20141419 DOI: 10.2108/zsj.27.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
23
|
Sakai T, Aoyama M, Kusakabe T, Tsuda M, Satake H. Functional diversity of signaling pathways through G protein-coupled receptor heterodimerization with a species-specific orphan receptor subtype. Mol Biol Evol 2009; 27:1097-106. [PMID: 20026483 DOI: 10.1093/molbev/msp319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in control of reproduction via a hypothalamic-pituitary-periphery endocrine system and nervous systems of not only vertebrates but also invertebrates. GnRHs trigger several signal transduction cascades via GnRH receptors (GnRHRs), members of the G protein-coupled receptor (GPCR) family. Recently, six GnRHs (tunicate GnRH [tGnRH]-3 to tGnRH-8) and four GnRHRs (Ciona intestinalis [Ci]-GnRHR1 to GnRHR-4), including a species-specific paralog, Ci-GnRHR4 (R4) regarded as an orphan receptor or nonfunctional receptor, were identified in the protochordate, C. intestinalis, which lacks the hypothalamic-pituitary system. Here, we show novel functional modulation of GnRH signaling pathways via GPCR heterodimerization. Immunohistochemical analysis showed colocalization of R1 and R4 in test cells of the ascidian ovary. The native R1-R4 heterodimerization was detected in the Ciona ovary by coimmunoprecipitation analysis. The heterodimerization in HEK293 cells cotransfected with R1 and R4 was also observed by coimmunoprecipitation and fluorescent energy transfer analyses. Binding assay revealed that R4 had no affinity for tGnRHs, and the heterodimerization did not alter the binding affinity of R1 to the ligands. The R1-R4 elicited 10-fold more potent Ca2+ mobilization than R1 exclusively by tGnRH-6, although R1-mediated cyclic AMP production was not affected by any of tGnRHs via the R1-R4 heterodimer. Moreover, the R1-R4 heterodimer potentiated translocation of both Ca2+-dependent protein kinase C-alpha (PKCalpha) by tGnRH-6 and Ca2+-independent PKCzeta by tGnRH-5 and tGnRH-6, eventually leading to the upregulation of extracellular signal-regulated kinase (ERK) phosphorylation compared with R1 alone. These results provide evidence that the species-specific GnRHR orphan paralog, R4, serves as an endogenous modulator for the fine-tuning of activation of PKC subtype-selective signal transduction via heterodimerization with R1 and that the species-specific GPCR heterodimerization, in concert with multiplication of tGnRHs and Ci-GnRHRs, participates in functional evolution of neuropeptidergic GnRH signaling pathways highly conserved throughout the animal kingdom.
Collapse
Affiliation(s)
- Tsubasa Sakai
- Division of Biomolecular Research, Suntory Institute for Bioorganic Research, Osaka, Japan
| | | | | | | | | |
Collapse
|