1
|
Hafeez Z, Benoit S, Cakir-Kiefer C, Dary A, Miclo L. Food protein-derived anxiolytic peptides: their potential role in anxiety management. Food Funct 2021; 12:1415-1431. [DOI: 10.1039/d0fo02432e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Could bioactive peptides from food proteins be used as prophylactic in the management of anxiety disorders?
Collapse
Affiliation(s)
| | - Simon Benoit
- Université de Lorraine
- CALBINOTOX
- F-54000 Nancy
- France
| | | | - Annie Dary
- Université de Lorraine
- CALBINOTOX
- F-54000 Nancy
- France
| | | |
Collapse
|
2
|
Tulipano G. Role of Bioactive Peptide Sequences in the Potential Impact of Dairy Protein Intake on Metabolic Health. Int J Mol Sci 2020; 21:E8881. [PMID: 33238654 PMCID: PMC7700308 DOI: 10.3390/ijms21228881] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
For years, there has been an increasing move towards elucidating the complexities of how food can interplay with the signalling networks underlying energy homeostasis and glycaemic control. Dairy foods can be regarded as the greatest source of proteins and peptides with various health benefits and are a well-recognized source of bioactive compounds. A number of dairy protein-derived peptide sequences with the ability to modulate functions related to the control of food intake, body weight gain and glucose homeostasis have been isolated and characterized. Their being active in vivo may be questionable mainly due to expected low bioavailability after ingestion, and hence their real contribution to the metabolic impact of dairy protein intake needs to be discussed. Some reports suggest that the differential effects of dairy proteins-in particular whey proteins-on mechanisms underlying energy balance and glucose-homeostasis may be attributed to their unique amino acid composition and hence the release of free amino acid mixtures enriched in essential amino acids (i.e., branched-chain-amino acids) upon digestion. Actually, the research reports reviewed in this article suggest that, among a number of dairy protein-derived peptides isolated and characterized as bioactive compounds in vitro, some peptides can be active in vivo post-oral administration through a local action in the gut, or, alternatively, a systemic action on specific molecular targets after entering the systemic circulation. Moreover, these studies highlight the importance of the enteroendocrine system in the cross talk between food proteins and the neuroendocrine network regulating energy balance.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
3
|
|
4
|
McCullough KM, Choi D, Guo J, Zimmerman K, Walton J, Rainnie DG, Ressler KJ. Molecular characterization of Thy1 expressing fear-inhibiting neurons within the basolateral amygdala. Nat Commun 2016; 7:13149. [PMID: 27767183 PMCID: PMC5078744 DOI: 10.1038/ncomms13149] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular characterization of neuron populations, particularly those controlling threat responses, is essential for understanding the cellular basis of behaviour and identifying pharmacological agents acting selectively on fear-controlling circuitry. Here we demonstrate a comprehensive workflow for identification of pharmacologically tractable markers of behaviourally characterized cell populations. Thy1-eNpHR-, Thy1-Cre- and Thy1-eYFP-labelled neurons of the BLA consistently act as fear inhibiting or 'Fear-Off' neurons during behaviour. We use cell-type-specific optogenetics and chemogenetics (DREADDs) to modulate activity in this population during behaviour to block or enhance fear extinction. Dissociated Thy1-eYFP neurons are isolated using FACS. RNA sequencing identifies genes strongly upregulated in RNA of this population, including Ntsr2, Dkk3, Rspo2 and Wnt7a. Pharmacological manipulation of neurotensin receptor 2 confirms behavioural effects observed in optogenetic and chemogenetic experiments. These experiments identify and validate Ntsr2-expressing neurons within the BLA, as a putative 'Fear-Off' population.
Collapse
Affiliation(s)
- Kenneth M. McCullough
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
- Division of Depression & Anxiety Disorders, McLean Hospital, Belmont, Massachusetts 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02478, USA
| | - Dennis Choi
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
| | - Jidong Guo
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
| | - Kelsey Zimmerman
- School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jordan Walton
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
- Division of Depression & Anxiety Disorders, McLean Hospital, Belmont, Massachusetts 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02478, USA
| | - Donald G. Rainnie
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
| | - Kerry J. Ressler
- Behavioral Neuroscience, Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia 30322, USA
- Division of Depression & Anxiety Disorders, McLean Hospital, Belmont, Massachusetts 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts 02478, USA
| |
Collapse
|
5
|
Yoshikawa M. Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides 2015; 72:208-25. [PMID: 26297549 DOI: 10.1016/j.peptides.2015.07.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
We have found various bioactive peptides derived from animal and plant proteins, which interact with receptors for endogenous bioactive peptides such as opioids, neurotensin, complements C3a and C5a, oxytocin, and formyl peptides etc. Among them, rubiscolin, a δ opioid peptide derived from plant RuBisCO, showed memory-consolidating, anxiolytic-like, and food intake-modulating effects. Soymorphin, a μ opioid peptide derived from β-conglycinin showed anxiolytic-like, anorexigenic, hypoglycemic, and hypotriglyceridemic effects. β-Lactotensin derived from β-lactoglobulin, the first natural ligand for the NTS2 receptor, showed memory-consolidating, anxiolytic-like, and hypocholesterolemic effects. Weak agonist peptides for the complements C3a and C5a receptors were released from many proteins and exerted various central effects. Peptides showing anxiolytic-like antihypertensive and anti-alopecia effects via different types of receptors such as OT, FPR and AT2 were also obtained. Based on these study, new functions and post-receptor mechanisms of receptor commom to endogenous and exogenous bioactive peptides have been clarified.
Collapse
|
6
|
Nath A, Mondal S, Kanjilal T, Chakraborty S, Curcio S, Bhattacharjee C. Synthesis and functionality of proteinacious nutraceuticals from casein whey—A clean and safe route of valorization of dairy waste. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Miyazaki Y, Kaneko K, Iguchi S, Mizushige T, Kanamoto R, Yoshikawa M, Shimizu T, Ohinata K. Orally administered δ opioid agonist peptide rubiscolin-6 stimulates food intake in aged mice with ghrelin resistance. Mol Nutr Food Res 2014; 58:2046-52. [DOI: 10.1002/mnfr.201400100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Yuri Miyazaki
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Shin Iguchi
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Takafumi Mizushige
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
- Research Unit for Physiological Chemistry, C-PIER; Kyoto University; Kyoto Japan
| | - Ryuhei Kanamoto
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Masaaki Yoshikawa
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| | - Takahiko Shimizu
- Department of Advanced Aging Medicine; Chiba University Graduate School of Medicine; Chiba Japan
- Molecular Gerontology; Tokyo Metropolitan Institute of Gerontology; Itabashi-ku; Tokyo Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Gokasho Uji; Kyoto Japan
| |
Collapse
|
8
|
Kaneko K, Mizushige T, Miyazaki Y, Lazarus M, Urade Y, Yoshikawa M, Kanamoto R, Ohinata K. δ-Opioid receptor activation stimulates normal diet intake but conversely suppresses high-fat diet intake in mice. Am J Physiol Regul Integr Comp Physiol 2014; 306:R265-72. [PMID: 24401991 DOI: 10.1152/ajpregu.00405.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The central opioid system is involved in a broadly distributed neural network that regulates food intake. Here, we show that activation of central δ-opioid receptor not only stimulated normal diet intake but conversely suppressed high-fat diet intake as well. [D-Pen(2,5)]-enkephalin (DPDPE), an agonist selective for the δ-receptor, increased normal diet intake after central administration to nonfasted male mice. The orexigenic activity of DPDPE was inhibited by blockade of cyclooxygenase (COX)-2, lipocalin-type prostaglandin D synthase (L-PGDS), D-type prostanoid receptor 1 (DP(1)), and neuropeptide Y (NPY) receptor type 1 (Y1) for PGD(2) and NPY, respectively, suggesting that this was mediated by the PGD(2)-NPY system. In contrast, DPDPE decreased high-fat diet intake in mice fed a high-fat diet. DPDPE-induced suppression of high-fat diet intake was blocked by antagonists of melanocortin 4 (MC(4)) and corticotropin-releasing factor (CRF) receptors but not by knockout of the L-PGDS gene. These results suggest that central δ-opioid receptor activation suppresses high-fat diet intake via the MC-CRF system, independent of the orexigenic PGD(2) system. Furthermore, orally administered rubiscolin-6, an opioid peptide derived from spinach Rubisco, suppressed high-fat diet intake. This suppression was also blocked by centrally administered naltrindole, an antagonist for the δ-receptor, suggesting that rubiscolin-6 suppressed high-fat diet intake via activation of central δ-opioid receptor.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kontani N, Omae R, Kagebayashi T, Kaneko K, Yamada Y, Mizushige T, Kanamoto R, Ohinata K. Characterization of Ile-His-Arg-Phe, a novel rice-derived vasorelaxing peptide with hypotensive and anorexigenic activities. Mol Nutr Food Res 2013; 58:359-64. [DOI: 10.1002/mnfr.201300334] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/17/2013] [Accepted: 07/20/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Noriyasu Kontani
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Ryo Omae
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Tomomi Kagebayashi
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Kentaro Kaneko
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Yuko Yamada
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Takafumi Mizushige
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
- Research Unit for Physiological Chemistry; C-PIER, Kyoto University; Kyoto Japan
| | - Ryuhei Kanamoto
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology; Graduate School of Agriculture, Kyoto University; Gokasho Uji Kyoto Japan
| |
Collapse
|
10
|
Kaneko K, Yoshikawa M, Ohinata K. Novel orexigenic pathway prostaglandin D2-NPY system--involvement in orally active orexigenic δ opioid peptide. Neuropeptides 2012; 46:353-7. [PMID: 23141054 DOI: 10.1016/j.npep.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
Prostaglandin (PG) D(2), the most abundant PG in the central nervous system (CNS), is a bioactive lipid having various central actions including sleep induction, hypothermia and modulation of the pain response. We found that centrally administered PGD(2) stimulates food intake via the DP(1) among the two receptor subtypes for PGD(2) in mice. Hypothalamic mRNA expression of lipocalin-type PGD synthase (L-PGDS), which catalyzes production of PGD(2) from arachidonic acid via PGH(2) in the CNS, was increased after fasting. Central administration of antagonist and antisense ODN for the DP(1) receptor remarkably decreased food intake, body weight and fat mass. The orexigenic activity of PGD(2) was also blocked by an antagonist of Y(1) receptor for NPY, the most potent orexigenic peptide in the hypothalamus. Thus, the central PGD(2)-NPY system may play a critical role in food intake regulation under normal physiological conditions. We also found that orally active orexigenic peptide derived from food protein activates the PGD(2)-NPY system, downstream of δ opioid receptor. We revealed that the δ agonist peptide, rubiscolin-6-induced orexigenic activity was mediated by L-PGDS in the leptomeninges but not parenchyma using conditional knockout mice. In this review, we discuss the PGD(2)-NPY system itself, and orexigenic signals to activate it.
Collapse
Affiliation(s)
- Kentaro Kaneko
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho Uji, Kyoto 611-0011, Japan
| | | | | |
Collapse
|
11
|
Kagebayashi T, Kontani N, Yamada Y, Mizushige T, Arai T, Kino K, Ohinata K. Novel CCK-dependent vasorelaxing dipeptide, Arg-Phe, decreases blood pressure and food intake in rodents. Mol Nutr Food Res 2012; 56:1456-63. [DOI: 10.1002/mnfr.201200168] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/15/2012] [Accepted: 05/31/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Tomomi Kagebayashi
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Noriyasu Kontani
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | - Yuko Yamada
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| | | | - Toshinobu Arai
- Research Institute for Science and Engineering; Waseda University; Tokyo; Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering; Waseda University; Tokyo; Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology; Graduate School of Agriculture; Kyoto University; Kyoto; Japan
| |
Collapse
|
12
|
Hernández-Ledesma B, Ramos M, Gómez-Ruiz JÁ. Bioactive components of ovine and caprine cheese whey. Small Rumin Res 2011. [DOI: 10.1016/j.smallrumres.2011.09.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
13
|
Hou IC, Suzuki C, Kanegawa N, Oda A, Yamada A, Yoshikawa M, Yamada D, Sekiguchi M, Wada E, Wada K, Ohinata K. β-Lactotensin derived from bovine β-lactoglobulin exhibits anxiolytic-like activity as an agonist for neurotensin NTS2 receptor via activation of dopamine D1 receptor in mice. J Neurochem 2011; 119:785-90. [DOI: 10.1111/j.1471-4159.2011.07472.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Kaneko K, Iwasaki M, Yoshikawa M, Ohinata K. Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut mu(1)-receptor coupled to 5-HT(1A), D(2), and GABA(B) systems. Am J Physiol Gastrointest Liver Physiol 2010; 299:G799-805. [PMID: 20616303 DOI: 10.1152/ajpgi.00081.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that soymorphins, mu-opioid agonist peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic-like activity. The aim of this study was to investigate the effects of soymorphins on food intake and gut motility, along with their mechanism. We found that soymorphins decreases food intake after oral administration in fasted mice. Orally administered soymorphins suppressed small intestinal transit at lower dose than that of anorexigenic activity. Suppression of food intake and small intestinal transit after oral administration of soymorphins was inhibited by naloxone or naloxonazine, antagonists of mu- or mu(1)-opioid receptor, respectively, after oral but not intraperitoneal administration. The inhibitory activities of small intestinal transit by soymorphins were also inhibited by WAY100135, raclopride, or saclofen, antagonists for serotonin 5-HT(1A), dopamine D(2), or GABA(B) receptor, respectively. We then examined the order of activation of 5-HT(1A), D(2), and GABA(B) receptors, using their agonists and antagonists. The inhibitory effect of 8-hydroxy-2-dipropylaminotetralin hydrobromide, a 5-HT(1A) agonist, after oral administration on small intestinal transit was blocked by raclopride or saclofen. Bromocriptine, a D(2) agonist-induced small intestinal transit suppression, was inhibited by saclofen, but not by WAY100135. Baclofen, a GABA(B) agonist-induced small intestinal transit suppression, was not blocked by WAY100135 or raclopride. These results suggest that 5-HT(1A) activation elicits D(2) followed by GABA(B) activations in small intestinal motility. We conclude that orally administered soymorphins suppress food intake and small intestinal transit via mu(1)-opioid receptor coupled to 5-HT(1A), D(2), and GABA(B) systems.
Collapse
|